# **PROJECT MANUAL**

**FOR** 



# **Early Childhood Center Addition**

Logan, Utah

VOLUME 2 - Divisions 21 - 33

255 South 300 West Logan, Utah 84321

435.752.7031

Architects Project # 125054

May 29, 2025



# SECTION 00 0110 TABLE OF CONTENTS

## **VOLUME 1**

## PROCUREMENT AND CONTRACTING REQUIREMENTS

#### **DIVISION 00 -- PROCUREMENT AND CONTRACTING REQUIREMENTS**

- 00 0110 Table of Contents
- 00 1113 Advertisement for Bids
- 00 4100 Bid Form
- 00 4328 Tax Rebate Form
- 00 6000 Project Forms

# **SPECIFICATIONS**

#### **DIVISION 01 -- GENERAL REQUIREMENTS**

- 01 2300 Alternates
- 01 2500 Substitution Procedures
- 01 3000 Administrative Requirements
- 01 3553 Security Procedures
- 01 4000 Quality Requirements
- 01 5500 Vehicular Access and Parking
- 01 6000 Product Requirements
- 01 6116 Volatile Organic Compound (VOC) Content Restrictions
- 01 7000 Execution and Closeout Requirements
- 01 7329 Cutting and Patching
- 01 7800 Closeout Submittals

# **DIVISION 02 -- EXISTING CONDITIONS**

- 02 4100 Demolition
- 02 4119 Selective Site Demolition

# **DIVISION 03 -- CONCRETE**

- 03 1000 Concrete Forming and Accessories
- 03 2000 Concrete Reinforcing
- 03 3000 Cast-in-Place Concrete

# **DIVISION 04 -- MASONRY (NOT USED)**

#### **DIVISION 05 -- METALS**

- 05 5133 Metal Ladders
- 05 5213 Pipe and Tube Railings

# **DIVISION 06 -- WOOD, PLASTICS, AND COMPOSITES**

- 06 1000 Rough Carpentry
- 06 1753 Shop-Fabricated Wood Trusses
- 06 4100 Architectural Wood Casework

#### **DIVISION 07 -- THERMAL AND MOISTURE PROTECTION**

- 07 1300 Sheet Waterproofing
- 07 2100 Thermal Insulation

- 07 2500 Weather Barriers
- 07 2501 Rainscreen Drainage Mat
- 07 4213.23 Metal Composite Material Wall Panels
- 07 4643 Composition Siding
- 07 5400 Thermoplastic Membrane Roofing
- 07 7123 Manufactured Gutters and Downspouts
- 07 7200 Roof Accessories
- 07 8400 Firestopping
- 07 9200 Joint Sealants
- 07 9513 Expansion Joint Cover Assemblies

# **DIVISION 08 -- OPENINGS**

- 08 1113 Hollow Metal Doors and Frames
- 08 1416 Flush Wood Doors
- 08 3100 Access Doors and Panels
- 08 4313 Aluminum-Framed Storefronts
- 08 6223 Tubular Skylights
- 08 7100 Door Hardware
- 08 8000 Glazing
- 08 8300 Mirrors
- 08 8800 Special Function Glazing

# **DIVISION 09 -- FINISHES**

- 09 0561 Common Work Results for Flooring Preparation
- 09 2116 Gypsum Board Assemblies
- 09 3000 Tiling
- 09 5100 Acoustical Ceilings
- 09 6500 Resilient Flooring
- 09 6813 Tile Carpeting
- 09 8430 Sound-Absorbing Wall and Ceiling Units
- 09 9113 Exterior Painting
- 09 9123 Interior Painting

#### **DIVISION 10 -- SPECIALTIES**

- 10 1100 Visual Display Units
- 10 1124 Tackable Wall Systems
- 10 1400 Signage
- 10 1453 Traffic Signage
- 10 2113.19 Plastic Toilet Compartments
- 10 2600 Wall and Door Protection
- 10 2800 Toilet, Bath, and Laundry Accessories
- 10 4400 Fire Protection Specialties
- 10 8214 Grilles and Screens/Treillage

## **DIVISION 11 -- EQUIPMENT (NOT USED)**

## **DIVISION 12 -- FURNISHINGS**

12 2400 - Window Shades

# **DIVISION 13 -- SPECIAL CONSTRUCTION (NOT USED)**

**DIVISION 14 -- CONVEYING EQUIPMENT (NOT USED)** 

## **VOLUME 2**

#### **DIVISION 21 -- FIRE SUPPRESSION**

21 1000 - Water Based Fire Suppression Systems

# **DIVISION 22 -- PLUMBING**

- 22 0500 Common Work Results for Plumbing
- 22 0513 Common Motor Requirements for Plumbing Equipment
- 22 0516 Expansion Fittings and Loops for Plumbing Piping
- 22 0517 Sleeves and Sleeve Seals for Plumbing Piping
- 22 0518 Escutcheons for Plumbing Piping
- 22 0519 Meters and Gauges for Plumbing Piping
- 22 0523 General-Duty Valves for Plumbing Piping
- 22 0529 Hangers and Supports for Plumbing Piping and Equipment
- 22 0548 Vibration and Seismic Controls for Plumbing Piping and Equipment
- 22 0553 Identification for Plumbing Piping and Equipment
- 22 0700 Plumbing Insulation
- 22 0716 Plumbing Equipment Insulation
- 22 1116 Domestic Water Piping
- 22 1119 Domestic Water Piping Specialties
- 22 1123 Domestic Water Pumps
- 22 1316 Sanitary Waste and Vent Piping
- 22 1319 Sanitary Waste Piping Specialties
- 22 1413 Facility Storm Drainage Piping
- 22 1423 Storm Drainage Piping Specialties
- 22 3100 Domestic Water Softeners
- 22 3400 Fuel-Fired Domestic Water Heaters
- 22 4000 Plumbing Fixtures
- 22 4700 Drinking Fountains and Water Coolers

# **DIVISION 23 -- HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)**

- 23 0100 Mechanical Requirements
- 23 0150 Temporary Use of Equipment and Systems
- 23 0500 Common Work Results for HVAC
- 23 0513 Common Motor Requirements for HVAC Equipment
- 23 0519 Meters and Gauges for HVAC Piping
- 23 0529 Hangers and Supports for HVAC Piping and Equipment
- 23 0548 Vibration and Seismic Controls for HVAC

- 23 0550 Operation and Maintenance of HVAC System
- 23 0553 Identification for HVAC Piping and Equipment
- 23 0593 Testing, Adjusting, and Balancing for HVAC
- 23 0713 Duct Insulation
- 23 0900 Building Automation System
- 23 0993 Sequence of Operations for HVAC Controls
- 23 1123 Facility Natural-Gas Piping
- 23 3001 Common Duct Requirements
- 23 3113 Metal Ducts
- 23 3300 Air Duct Accessories
- 23 3423 HVAC Power Ventilators
- 23 3713 Diffusers, Registers, and Grilles
- 23 7200 Air-To-Air Energy Recovery Equipment
- 23 7413 Packaged Outdoor Rooftop Units
- 23 8239 Wall and Ceiling Electric Unit Heaters

# **DIVISION 25 -- INTEGRATED AUTOMATION (NOT USED)**

#### **DIVISION 26 -- ELECTRICAL**

- 26 0500 Common Work Results For Electrical
- 26 0519 Low-Voltage Electrical Power Conductors and Cables
- 26 0526 Grounding and Bonding for Electrical Systems
- 26 0529 Hangers and Supports for Electrical Systems
- 26 0533 Raceway and Boxes for Electrical Systems
- 26 0544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
- 26 0548 Vibration and Seismic Controls for Electrical Systems
- 26 0553 Identification for Electrical Systems
- 26 0572 Short-circuit Studies
- 26 0573 Coordination Studies
- 26 0923 Lighting Control Devices
- 26 0943 Relay-based Lighting Controls
- 26 2413 Switchboards
- 26 2416 Panelboards
- 26 2713 Electricity Metering
- 26 2726 Wiring Devices
- 26 2816 Enclosed Switches and Circuit Breakers
- 26 2913 Enclosed Controllers
- 26 5100 Interior Lighting
- 265600 Exterior Lighting

## **DIVISION 27 -- COMMUNICATIONS**

- 27 0526 Grounding and Bonding for Communications Systems
- 27 0528 Pathways for Communications Systems
- 27 0529 Hangers and Supports for Communications Systems

- 27 0536 Cable Trays for Communication Systems
- 27 0553 Identification for Communication Systems
- 27 1100 Communications Equipment Room Fittings
- 27 1116 Communications Racks, Frames, and Enclosures
- 27 1313 Communications Copper Backbone Cabling
- 27 1323 Communications Optical Fiber Backbone Cabling
- 27 1333 Communications Coaxial Backbone Cabling
- 27 1513 Communications Copper Horizontal Cabling
- 27 1533 Communications Coaxial Horizontal Cabling
- 27 5123 Educational Intercommunications and Program Systems
- 27 5313 Clock Systems

#### **DIVISION 28 -- ELECTRONIC SAFETY AND SECURITY**

- 28 0500 Common Work Results for Electronic Safety and Security
- 28 0513 Conductors and Cables for Electronic Safety and Security
- 28 0528 Pathways for Electronic Safety and Security
- 28 1300 Access Control
- 28 3111 Digital, Addressable Fire-alarm Systems

# **DIVISION 31 -- EARTHWORK**

- 31 1000 Site Clearing
- 31 2000 Earth Moving
- 31 2500 Erosion Control

#### **DIVISION 32 -- EXTERIOR IMPROVEMENTS**

- 32 1216 Asphalt Paving
- 32 1313 Concrete Paving
- 32 1373 Concrete Paving Joint Sealants
- 32 3113 Chain Link Fences and Gates
- 32 8423 Underground Sprinklers
- 32 9113 Soil Preparation
- 32 9223 Sodding
- 32 9300 Plants
- 32 9419 Landscape Surfacing

#### **DIVISION 33 -- UTILITIES**

- 33 1100 Potable Water Systems
- 33 3100 Sanitary Sewage Systems
- 33 4100 Storm Drainage

# **DIVISION 34 -- TRANSPORTATION (NOT USED)**

- **DIVISION 40 -- PROCESS INTEGRATION (NOT USED)**
- DIVISION 46 -- WATER AND WASTEWATER EQUIPMENT (NOT USED)

  END OF SECTION 00 0110

Logan City School District

This page intentionally left blank

# SECTION 211000 WATER-BASED FIRE-SUPPRESSION SYSTEMS

#### PART 1 - GENERAL

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following fire-suppression piping inside the building:
  - 1. Wet-pipe sprinkler systems.
  - 2. Description: Existing wet-pipe sprinkler system shall supply the new addition, sprinkler riser shall be updated to include double check backflow preventer.
- B. Related Sections include the following:
  - 1. Division 10 Section "Fire Extinguisher Cabinets" and "Fire Extinguishers" for cabinets and fire extinguishers.
  - 2. Division 22 Section "Facility Water Distribution Piping" for piping outside the building.
  - 3. Division 28 Section "Fire Detection and Alarm" for alarm devices not specified in this Section.
- C. All black steel sprinkler pipe shall have a wall thickness less than or equal to schedule 40 and greater than schedule 10.
  - 1. Exception: Pipe with a nominal pipe size of 6 inches and greater may be schedule 10.

## D. Summary Table:

| Item                                | Summary                                                                                    | ref                       |
|-------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|
| Underground service entrance piping | Ductile Iron, restrained as required, with thrust blocks, transitioned with bolted flange. | 2.2,3.4.E,<br>3.6.B,3.8.D |
| Interior pipe type                  | Mains: Schedule 40 Branchlines: Threadable thinwall or schedule 40                         | 2.3,2.                    |
| Sprinkler Finish                    | Match existing sprinklers                                                                  | 3.11, 3.12                |
| Extended Coverage                   | Not Allowed                                                                                | 3.11.A                    |
| Center of Tile                      | Required, Center thirds are acceptable for rectangular tiles                               |                           |
| Flexible Sprinkler Drops            | Designers preference                                                                       | 2.9                       |
| FM Global                           | No                                                                                         | Green High-<br>lights     |
| Calculations                        | Required, use reduced flow data                                                            | 1.5.D, 3.1                |
| Alarm Device                        | Existing to remain                                                                         | 2.19.B                    |
| FDC                                 | Existing to remain                                                                         |                           |
| Special Items                       |                                                                                            | Hazard<br>Classification  |
| Seismic                             |                                                                                            | 1.5.E                     |
| Coordination                        | All sprinkler piping exposed to view shall be coordinated                                  |                           |

with the architect prior to final design acceptance.

#### 1.3 DEFINITIONS

- A. CPVC: Chlorinated polyvinyl chloride plastic.
- B. CR: Chlorosulfonated polyethylene synthetic rubber.
- C. High-Pressure Piping System: Fire-suppression piping system designed to operate at working pressure higher than standard 175 psig.
- D. PE: Polyethylene plastic.
- E. Underground Service-Entrance Piping: Underground service piping below the building.

# 1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

## 1.5 PERFORMANCE REQUIREMENTS

- A. Standard Piping System Component Working Pressure: Listed for at least 175 psig.
- B. High-Pressure Piping System Component Working Pressure: Listed for 250 psig minimum 300 psig.
- C. Fire-suppression standpipe system design shall be approved by authorities having jurisdiction.
  - 1. Minimum residual pressure at each hose-connection outlet is the following:
  - a. NPS 1-1/2 Hose Connections: 65 psig.
  - b. NPS 2-1/2 Hose Connections: 100 psig.
  - 2. Unless otherwise indicated, the following is maximum residual pressure at required flow at each hose-connection outlet:
    - a. NPS 1-1/2 Hose Connections: 100 psig.
    - b. NPS 2-1/2 Hose Connections: 175 psig.
- D. Design sprinkler piping according to the following and obtain approval from engineer, prior to submitting to other authorities having jurisdiction:
  - 1. Design sprinkler system with the following 10% reduced flow data:

Flow data available at 325 W 400 S, Logan UT 84321

Static - 90 psi

Residual – 81 psi @ 1404 gpm flowing

Date of Test - 12/6/2021 by VBFA, Inc.

- 2. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
- 3. Sprinkler Occupancy Hazard Classifications:
  - a. Automobile Parking Areas: Ordinary Hazard, Group 1.
- b. Building Service Areas: Ordinary Hazard, Group 1.
- c. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
- d. General Storage Areas: Ordinary Hazard, Group 1.
- e. Laundries: Ordinary Hazard, Group 1.
- f. Libraries, Except Stack Areas: Light Hazard.
- g. Library Stack Areas: Ordinary Hazard, Group 2.

- h. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
- i. Office and Public Areas: Light Hazard.
- j. Residential Living Areas: Light Hazard.
- k. Restaurant Service Areas: Ordinary Hazard, Group 1.
- 4. Minimum Density for Automatic-Sprinkler Piping Design:
- a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
- b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
- c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
- d. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. area.
- e. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over 2500-sq. ft. area.
- f. Special Occupancy Hazard: As determined by authorities having jurisdiction.
- 5. Maximum Protection Area per Sprinkler: Per UL listing.
- 6. Maximum Protection Area per Sprinkler:
- a. Office Spaces: 225 sq. ft..
- b. Storage Areas: 130 sq. ft..
- c. Mechanical Equipment Rooms: 130 sq. ft..
- d. Electrical Equipment Rooms: 130 sq. ft..
- e. Other Areas: According to NFPA 13 recommendations, unless otherwise indicated.
- Total Combined Hose-Stream Demand Requirement: According to NFPA 13, unless otherwise indicated:
  - a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
  - b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.
  - c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes.
- 8. Sprinklers are to be installed throughout the premises, as required by NFPA 13.
- E. Seismic Performance: Fire-suppression piping shall be capable of withstanding the effects of earthquake motions determined according to NFPA 13.

## 1.6 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For the following:
  - 1. Piping materials, including dielectric fittings, flexible connections, and sprinkler specialty fittings.
  - 2. Pipe hangers and supports, including seismic restraints.
  - 3. Valves, including listed fire-protection valves, unlisted general-duty valves, and specialty valves and trim.
  - 4. Sprinklers, escutcheons, and guards. Include sprinkler flow characteristics, mounting, finish, and other pertinent data.
  - 5. Fire department connections, including type; number, size, and arrangement of inlets; caps and chains; size and direction of outlet; escutcheon and marking; and finish.
- C. Shop Drawings: Diagram power, signal, and control wiring.
- D. Fire-hydrant flow test report.

- E. Seismic Calculations.
- F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations, if applicable. Drawings are to be approved by Engineer prior to submission to State Fire Marshal.
- G. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13 and NFPA 14. Include "Contractor's Material and Test Certificate for Aboveground Piping" and "Contractor's Material and Test Certificate for Underground Piping."
- H. Welding certificates.
- I. Field quality-control test reports.
- J. Operation and Maintenance Data: For standpipe and sprinkler specialties to include in emergency, operation, and maintenance manuals.

## 1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
  - 1. An experienced installer who has designed and installed fire-suppression piping similar to that indicated for this Project and obtained design approval and inspection approval from authorities having jurisdiction. The Engineer requires evidence to support the ability of the contractor to perform work in the scope and volume as specified. A contractor, who cannot show such experience, may be found not suitable to perform the work. The following are the approved contractors for this project:
  - a. PRE-APPROVED CONTRACTORS LIST
    - 1) A&D Fire
    - Alta Fire
    - 3) Certified Fire
    - 4) Chaparral Fire (A-1 National)
    - 5) Delta Fire
    - 6) Kimco Fire
    - 7) Preferred Fire Protection
    - 8) Quality Fire Protection
    - 9) FireTrol
    - 10) FireFly Fire Protection
    - 11) Simplex-Grinnell
    - 12) State Fire DC Specialties
    - 13) The Safety Team
    - 14) Western Automatic
    - 15) Or prior approved equal
  - b. A contractor not listed in the "PRE-APPROVED CONTRACTORS LIST" must receive prior approval from the engineer to bid this project.
- B. Installer's responsibilities include designing, fabricating, and installing fire-suppression systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

- 1. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer or NICET Level III technician.
- C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
- D. NFPA Standards: Fire-suppression-system equipment, specialties, accessories, installation, and testing shall comply with the following:
  - 1. NFPA 13, "Installation of Sprinkler Systems."
- E. International Conference of Building Code Officials codes and standards complying with the following:
  - 1. IBC-2018, "International Building Code."
  - 2. IFC-2018, "International Fire Code."
- F. Utah Amendments
  - 1. Title 15A

## 1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

#### 1.9 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Sprinkler Cabinets: Finished, wall-mounting, steel cabinet with hinged cover, with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler on Project.

# 1.10 General Engineering Quality

- A. Unless noted otherwise the following applies:
  - 1. The maximum water velocity shall not exceed 32-fps.
  - 2. Submit the calculations using the reduced flow data.
  - When calculating flexible drops, the contractor shall use the maximum number of bends for the associated length. The value is to be taken from the UL tests (unless the material is only FM approved).
  - 4. In the event of multiple (3) submittal rejections (including revise and resubmit) a meeting shall be held at the engineer's office at the engineer time of choosing and the designer, fire sprinkler contractor, and general contractor shall be physically in attendance to discuss the required modifications to the design.

# 1.11 Contract Completion

- A. Incomplete and Unacceptable work:
  - If additional site visits or design work is required by the Engineer or Architect because
    of the use of incomplete or unacceptable work by the Contractor, then the Contractor
    shall reimburse the Engineer and Architect for all additional time and expenses
    involved.

# PART 2 - PRODUCTS

#### 2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

## 2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell end and plain end.
  - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, Class 53, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
  - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron gland, rubber gasket, and steel bolts and nuts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell end and plain end.
  - 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
  - 2. Gaskets: AWWA C111, rubber.

#### 2.3 STEEL PIPE AND FITTINGS

- A. Threaded-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory- or field-formed threaded ends.
  - 1. Cast-Iron Threaded Flanges: ASME B16.1.
  - 2. Malleable-Iron Threaded Fittings: ASME B16.3.
  - 3. Gray-Iron Threaded Fittings: ASME B16.4.
  - 4. Steel Threaded Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, seamless steel pipe hot-dip galvanized where indicated. Include ends matching joining method.
  - 5. Steel Threaded Couplings: ASTM A 865 hot-dip galvanized-steel pipe where indicated.
- B. Plain-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795 hot-dip galvanized-steel pipe where indicated.
  - 1. Locking-Lug Fittings: UL 213, ductile-iron body with retainer lugs that require one-quarter turn to secure pipe in fitting not allowed.
- C. Plain-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795 hot-dip galvanized-steel pipe where indicated.
  - 1. Steel Welding Fittings: ASTM A 234/A 234M, and ASME B16.9 or ASME B16.11.
  - 2. Steel Flanges and Flanged Fittings: ASME B16.5.
- D. Grooved-End, Standard-Weight Steel Pipe: ASTM A 53/A 53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory- or field-formed, rollgrooved ends.
  - 1. Grooved-Joint Piping Systems:
    - a. Manufacturers:
      - 1) Anvil International, Inc.
      - 2) Bull Moose Tube Co.
      - 3) Grinnell (Tyco)
      - 4) Victaulic Co. of America.
      - 5) Wheatland Tube
    - b. Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.

- c. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, prelubricated rubber gasket listed for use with housing, and steel bolts and nuts.
- E. Threaded-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10, and with factory- or field-formed threaded ends.
  - 1. Cast-Iron Threaded Flanges: ASME B16.1.
  - 2. Malleable-Iron Threaded Fittings: ASME B16.3.
  - 3. Gray-Iron Threaded Fittings: ASME B16.4.
  - 4. Steel Threaded Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, seamless steel pipe.
  - 5. Steel Threaded Couplings: ASTM A 865.
- F. Plain-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10.
  - 1. Locking-Lug Fittings: UL 213, ductile-iron body with retainer lugs that require one-quarter turn to secure pipe in fitting not allowed.
- G. Plain-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10.
  - 1. Steel Welding Fittings: ASTM A 234/A 234M, and ASME B16.9 or ASME B16.11.
  - 2. Steel Flanges and Flanged Fittings: ASME B16.5.
- H. Grooved-End, Threadable, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 40 and greater than Schedule 10, and with factory- or fieldformed, roll-grooved ends.
  - 1. Grooved-Joint Piping Systems:
    - a. Manufacturers:
      - 1) Anvil International, Inc.
      - 2) Bull Moose Tube Co.
      - 3) Grinnell (Tyco)
      - 4) Victaulic Co. of America.
      - 5) Wheatland Tube
  - Grooved-End Fittings: UL-listed, ASTM A 536, ductile-iron casting with OD matching steel-pipe OD.
  - c. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless otherwise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, prelubricated rubber gasket listed for use with housing, and steel bolts and nuts.
- Plain-End, Schedule 10 Steel Pipe: ASTM A 135 or ASTM A 795, Schedule 10 is not allowed.
- J. Plain-End, Nonstandard OD, Thinwall Steel Pipe: ASTM A 135 or ASTM A 795, with wall thickness less than Schedule 10 is not allowed.
- K. Plain-End, Hybrid Steel Pipe: ASTM A 135 or ASTM A 795, lightwall, with wall thickness less than Schedule 10 and greater than Schedule 5 is not allowed.
- L. Grooved-End, Hybrid Steel Pipe: ASTM A 135 or ASTM A 795, lightwall, with wall thickness less than Schedule 10 and greater than Schedule 5; with factory- or field-formed, roll-grooved ends are not allowed.

M. Schedule 5 Steel Pipe: ASTM A 135 or ASTM A 795, lightwall, with plain ends is not allowed.

# 2.4 CPVC TUBE AND FITTINGS

A. CPVC pipe is produced to the specifications of ASTM F442; Complete system in accordance with its listing limitations, including installation instructions. CPVC is not allowed on this project.

## 2.5 FLEXIBLE SPRINKLER DROPS

- A. Flexible connectors shall be FM approved with exterior wire braid and have materials suitable for system fluid. Include 175-psig minimum working-pressure rating and ends according to the following:
  - 1. NPS 1: Threaded.
- B. Manufacturers:
  - 1. Flex-Head
  - 2. Victaulic
- C. Stainless-Steel-Hose/Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include steel nipples or flanges, welded to hose.
- D. Stainless-Steel-Hose/Stainless-Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include stainless-steel nipples or flanges, welded to hose.

# 2.6 FLEXIBLE PIPE CONNECTORS (SEISMIC)

- A. Flexible connectors shall be FM approved with exterior wire braid and have materials suitable for system fluid. Include 175-psig minimum working-pressure rating and ends according to the following:
  - 1. NPS 2 and Smaller: Threaded.
  - 2. NPS 2-1/2 and Larger: Flanged.
  - 3. Option for NPS 2-1/2 and Larger: Grooved for use with grooved-end-pipe couplings.
- B. Manufacturers:
  - 1. Flexicraft Industries.
  - 2. Flex-Pression, Ltd.
  - 3. Metraflex. Inc.
- C. Bronze-Hose, Flexible Connectors: Corrugated, bronze, inner tubing covered with bronze wire braid. Include copper-tube ends or bronze flanged ends, braze welded to hose.
- D. Stainless-Steel-Hose/Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include steel nipples or flanges, welded to hose.
- E. Stainless-Steel-Hose/Stainless-Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include stainless-steel nipples or flanges, welded to hose.

## 2.7 CORROSION-PROTECTIVE ENCASEMENT FOR PIPING

A. Encasement for Underground Metal Piping: ASTM A 674 or AWWA C105, PE film, 0.008-inch minimum thickness, tube or sheet.

#### 2.8 SPRINKLER SPECIALTY FITTINGS

A. Sprinkler specialty fittings shall be FMG approved with 175-psig minimum working-pressure rating, and made of materials compatible with piping. Sprinkler specialty fittings shall have 250-

- psig minimum working-pressure rating if fittings are components of high-pressure piping systems.
- B. Sprinkler Drain and Alarm Test Fittings: Cast- or ductile-iron body, with threaded or locking-lug inlet and outlet, test valve, and orifice and sight glass.

## 1. Manufactures:

- a. Central Sprinkler Corp.
- b. Fire-End and Croker Corp.
- c. Viking Corp.
- d. Victaulic Co. of America.
- C. Sprinkler Branch-Line Test Fittings: Brass body with threaded inlet, capped drain outlet, and threaded outlet for sprinkler.
- D. Sprinkler Inspector's Test Fitting: Cast- or ductile-iron housing with threaded inlet and drain outlet and sight glass.
- E. Drop-Nipple Fittings: UL 1474, adjustable with threaded inlet and outlet, and seals.
- F. Dry-Pipe-System Fittings: UL listed for dry-pipe service.

## 2.9 LISTED FIRE-PROTECTION VALVES

- A. Valves shall be FMG approved, with 175-psig minimum pressure rating. Valves shall have 250-psig minimum pressure rating if valves are components of high-pressure piping system.
- B. Gate Valves with Wall Indicator Posts:
  - 1. Gate Valves: UL 262, cast-iron body, bronze mounted, with solid disc, nonrising stem, operating nut, and flanged ends.
  - 2. Indicator Posts: UL 789, horizontal-wall type, cast-iron body, with hand wheel, extension rod, locking device, and cast-iron barrel.
  - 3. Manufacturers:
    - a. Grinnell Fire Protection.
    - b. McWane, Inc.; Kennedy Valve Div.
  - c. NIBCO.
  - d. Stockham.
- C. Ball Valves: Comply with UL 1091, except with ball instead of disc.
  - 1. NPS 1-1/2 and Smaller: Bronze body with threaded ends.
  - 2. NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
  - 3. NPS 3: Ductile-iron body with grooved ends.
  - 4. Manufacturers:
    - a. NIBCO.
  - b. Victaulic Co. of America.
- D. Butterfly Valves: UL 1091.
  - 1. NPS 2 and Smaller: Bronze body with threaded ends.
    - a. Manufacturers:
      - 1) Global Safety Products, Inc.

- 2) Milwaukee Valve Company.
- 2. NPS 2-1/2 and Larger: Bronze, cast-iron, or ductile-iron body; wafer type or with flanged or grooved ends.
  - a. Manufacturers:
    - 1) Central Sprinkler Corp.
    - 2) McWane, Inc.; Kennedy Valve Div.
    - 3) Mueller Company.
    - 4) NIBCO.
    - 5) Victaulic Co. of America.
- E. Check Valves NPS 2 and Larger: UL 312, swing type, cast-iron body with flanged or grooved ends.
  - 1. Manufacturers:
    - a. American Cast Iron Pipe Co.; Waterous Co.
  - b. Central Sprinkler Corp.
  - c. Clow Valve Co.
  - d. Crane Co.; Crane Valve Group; Crane Valves.
  - e. Crane Co.; Crane Valve Group; Jenkins Valves.
  - f. Fivalco
  - g. Globe Fire Sprinkler Corporation.
  - h. Grinnell Fire Protection.
  - i. Hammond Valve.
  - j. McWane, Inc.; Kennedy Valve Div.
  - k. Mueller Company.
  - I. NIBCO.
  - m. Potter-Roemer; Fire Protection Div.
  - n. Reliable Automatic Sprinkler Co., Inc.
  - Star Sprinkler Inc.
  - p. Stockham.
  - q. United Brass Works, Inc.
  - r. Victaulic Co. of America.
  - s. Watts Industries, Inc.; Water Products Div.
- F. Gate Valves: UL 262, OS&Y type.
  - 1. NPS 2 and Smaller: Bronze body with threaded ends.
    - a. Manufacturers:
      - 1) Crane Co.; Crane Valve Group; Crane Valves.
      - 2) Fivalco.
      - 3) Hammond Valve.
      - 4) NIBCO.
      - 5) United Brass Works, Inc.
  - 2. NPS 2-1/2 and Larger: Cast-iron body with flanged ends.
    - a. Manufacturers:

- 1) Clow Valve Co.
- 2) Crane Co.; Crane Valve Group; Crane Valves.
- 3) Crane Co.; Crane Valve Group; Jenkins Valves.
- 4) Fivalco
- 5) Hammond Valve.
- 6) Milwaukee Valve Company.
- 7) Mueller Company.
- 8) NIBCO.
- 9) United Brass Works, Inc.
- G. Indicating Valves: UL 1091, with integral indicating device and ends matching connecting piping.
  - 1. Indicator: Electrical, 115-V ac, prewired, single-circuit, supervisory switch and Visual.
  - 2. NPS 2 and Smaller: Ball or butterfly valve with bronze body and threaded ends.
    - a. Manufacturers:
      - 1) Milwaukee Valve Company.
      - 2) NIBCO.
      - 3) Victaulic Co. of America.
  - 3. NPS 2-1/2 and Larger: Butterfly valve with cast- or ductile-iron body; wafer type or with flanged or grooved ends.
    - a. Manufacturers:
      - 1) Central Sprinkler Corp.
      - 2) Grinnell Fire Protection.
      - 3) McWane, Inc.; Kennedy Valve Div.
      - 4) Milwaukee Valve Company.
      - NIBCO.
      - Victaulic Co. of America.
- H. Supervised Normally Closed Valve
  - 1. Indicator: Electrical, 115-V ac, prewired, single-circuit, supervisory switch and visual to send signal on partial close.
    - a. Manufactures:
      - 1) NIBCO.
      - 2) Victaulic Co. of America.
- 2.10 UNLISTED GENERAL-DUTY VALVES
  - A. Ball Valves NPS 2 and Smaller: MSS SP-110, 2-piece copper-alloy body with chrome-plated brass ball, 600-psig minimum CWP rating, blowout-proof stem, and threaded ends.
  - B. Check Valves NPS 2 and Smaller: MSS SP-80, Type 4, Class 125 minimum, swing type with bronze body, nonmetallic disc, and threaded ends.
  - C. Gate Valves NPS 2 and Smaller: MSS SP-80, Type 2, Class 125 minimum, with bronze body, solid wedge, and threaded ends.
  - D. Globe Valves NPS 2 and Smaller: MSS SP-80, Type 2, Class 125 minimum, with bronze body, nonmetallic disc, and threaded ends.

#### 2.11 SPECIALTY VALVES

- A. Sprinkler System Control Valves: FMG approved, cast- or ductile-iron body with flanged or grooved ends, and 175-psig minimum pressure rating. Control valves shall have 250-psig minimum pressure rating if valves are components of high-pressure piping system.
  - 1. Manufacturers:
    - a. Globe Fire Sprinkler Corporation.
  - b. Reliable Automatic Sprinkler Co., Inc.
  - C. Victaulic Co. of America.
  - Viking Corp. d.
  - 2. Dry-Pipe Valves: UL 260, differential type; with bronze seat with O-ring seals, singlehinge pin, and latch design. Include UL 1486, quick-opening devices, trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
    - Air-Pressure Maintenance Device: UL 260, automatic device to maintain correct air pressure in piping. Include shutoff valves to permit servicing without shutting down sprinkler piping, bypass valve for quick filling, pressure regulator or switch to maintain pressure, strainer, pressure ratings with 14- to 60-psig adjustable range, and 175-psig maximum inlet pressure.
      - 1) Manufacturers:
        - a) AFAC Inc.
        - b) Central Sprinkler Corp.
        - General Air Products, Inc. c)
        - d) Globe Fire Sprinkler Corporation.
        - Reliable Automatic Sprinkler Co., Inc. e)
        - Viking Corp. f)
    - Air Compressor: UL 753, fractional horsepower, 120-V ac, 60 Hz, single phase. b.
      - 1) Manufacturers:
        - AFAC Inc. a)
        - b) Gast Manufacturing, Inc.
        - General Air Products. Inc. c)
        - d) Grinnell Fire Protection.
        - Reliable Automatic Sprinkler Co., Inc. e)
        - f) Viking Corp.
  - 3. Deluge Valves: UL 260, cast-iron body, hydraulically operated, differential-pressure type. Include bronze seat with O-ring seals, trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, drip cup assembly piped without valves and separate from main drain line, fill-line attachment with strainer, and push-rod chamber supply connection.
    - Dry, Pilot-Line Trim Set: Include dry, pilot-line actuator; air- and water-pressure gages: low-air-pressure warning switch; air relief valve; and actuation device. Dry. pilot-line actuator includes cast-iron, operated, diaphragm-type valve with resilient facing plate, resilient diaphragm, and replaceable bronze seat. Valve includes threaded water and air inlets and water outlet. Loss of air pressure on dry, pilot-line side allows pilot-line actuator to open and causes deluge valve to open immediately.
- B. Automatic Drain Valves: UL 1726, NPS 3/4, ball-check device with threaded ends.
  - Manufacturers:

Addition

Grinnell Fire Protection.

# 2.12 SPRINKLERS

- A. Sprinklers shall be UL listed or FMG approved, with 175-psig minimum pressure rating. Sprinklers shall have 250-psig minimum 300-psig pressure rating if sprinklers are components of high-pressure piping system.
- B. Sprinklers shall be FM approved, with 175-psig minimum pressure rating. Sprinklers shall have 250-psig minimum 300-psig pressure rating if sprinklers are components of high-pressure piping system.
- C. Manufacturers:
  - 1. Globe Fire Sprinkler Corporation.
  - 2. Reliable Automatic Sprinkler Co., Inc.
  - 3. Victaulic Co. of America.
  - 4. Viking Corp.
  - 5. Tyco Fire
- D. Automatic Sprinklers: With heat-responsive element complying with the following:
  - 1. UL 199, for nonresidential applications.
  - 2. UL 1626, for residential applications.
- E. Sprinkler Types and Categories: Nominal 1/2-inch orifice for "Ordinary" temperature classification rating, unless otherwise indicated or required by application.
  - 1. Open Sprinklers: UL 199, without heat-responsive element.
    - a. Orifice: 1/2 inch, with discharge coefficient K between 5.3 and 5.8.
    - b. Orifice: 17/32 inch, with discharge coefficient K between 7.4 and 8.2.
- F. Sprinkler types, features, and options as follows:
  - 1. Concealed ceiling sprinklers, including cover plate.
  - Extended-coverage sprinklers, not allowed unless approved in writing prior to bidding.
  - 3. Flow-control sprinklers, with automatic open and shutoff feature.
  - 4. Flush ceiling sprinklers, including escutcheon, not allowed.
  - 5. Institution sprinklers, made with a small, breakaway projection.
  - 6. Pendent sprinklers.
  - 7. Pendent, dry-type sprinklers.
  - 8. Quick-response sprinklers.
  - 9. Sidewall sprinklers.
  - 10. Sidewall, dry-type sprinklers.
  - 11. Upright sprinklers.
- G. Sprinkler Finishes: Chrome plated, bronze, and painted. Finishes as approved by FM Global.
- H. Special Coatings: Wax, lead, and corrosion-resistant paint.
- I. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
  - 1. Ceiling Mounting: Flat plate concealed, white.
  - 2. Sidewall Mounting: Flat plate concealed, white.
- J. Sprinkler Guards: Wire-cage type, including fastening device for attaching to sprinkler.

## 2.13 FIRE DEPARTMENT CONNECTIONS

- A. Manufacturers:
  - 1. Central Sprinkler Corp.
  - 2. Elkhart Brass Mfg. Co., Inc.
  - 3. Fire-End and Croker Corp.
  - 4. Fire Protection Products, Inc.
  - 5. Guardian Fire Equipment Incorporated.
  - 6. Potter-Roemer; Fire-Protection Div.
  - 7. Reliable Automatic Sprinkler Co., Inc.
  - 8. United Brass Works, Inc.
- B. Wall-Type, Fire Department Connection: UL 405, 175-psig minimum pressure rating; with corrosion-resistant-metal body with brass inlets, brass wall escutcheon plate, brass lugged caps with gaskets and brass chains, and brass lugged swivel connections. Include inlets with threads according to NFPA 1963 and matching local fire department sizes and threads, outlet with pipe threads, extension pipe nipples, check devices or clappers for inlets, and escutcheon plate with marking similar to "AUTO SPKR & STANDPIPE."
  - 1. Type: Flush, with three inlets and square or rectangular escutcheon plate.
  - 2. Finish: Polished brass.

#### 2.14 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Electrically Operated Alarm: Horn/Strobe, NEMA 3R minimum suitable for outdoor use.
  - 1. Manufacturers:
    - a. Potter Electric Signal Company.
    - b. System Sensor.
- C. Water-Flow Indicator: UL 346, electrical-supervision, paddle-operated-type, water-flow detector with 250-psig pressure rating and designed for horizontal or vertical installation. Include two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
  - 1. Manufacturers:
    - a. ADT Security Services, Inc.
  - b. Grinnell Fire Protection.
  - c. ITT McDonnell & Miller.
  - d. Potter Electric Signal Company.
  - e. System Sensor.
  - f. Viking Corp.
  - g. Watts Industries, Inc.; Water Products Div.
- D. Pressure Switch: UL 753, electrical-supervision-type, water-flow switch with retard feature. Include single-pole, double-throw, normally closed contacts and design that operates on rising pressure and signals water flow.
  - Manufacturers:
    - Grinnell Fire Protection.
    - b. Potter Electric Signal Company.
  - c. System Sensor.

- d. Viking Corp.
- E. Valve Supervisory Switch: UL 753, electrical, single-pole, double-throw switch with normally closed contacts. Include design that signals controlled valve is in other than fully open position.
  - 1. Manufacturers:
    - a. McWane, Inc.; Kennedy Valve Div.
  - b. Potter Electric Signal Company.
  - c. System Sensor.
- F. Indicator-Post Supervisory Switch: UL 753, electrical, single-pole, double-throw switch with normally closed contacts. Include design that signals controlled indicator-post valve is in other than fully open position.
  - 1. Manufacturers:
    - Potter Electric Signal Company.
    - b. System Sensor.

## 2.15 PRESSURE GAGES

- A. Manufacturers:
  - 1. Brecco Corporation.
  - 2. Dresser Equipment Group; Instrument Div.
  - 3. Marsh Bellofram.
  - 4. WIKA Instrument Corporation.
- B. Description: UL 393, 3-1/2- to 4-1/2-inch- diameter, dial pressure gage with range of 0 to 250 psig minimum.
  - 1. Water System Piping: Include caption "WATER" or "AIR/WATER" on dial face.
  - Air System Piping: Include retard feature and caption "AIR" or "AIR/WATER" on dial face.

#### 2.16 DOUBLE CHECK VALVE ASSEMBLIES

- A. Manufacturers
  - 1. Ames
  - 2. Backflow Direct
  - 3. Febco
  - 4. Wilkins
  - 5. Watts
- B. Description; Resilient seated, spring loaded with testable outlets provided, as required by Authorities Having Jurisdiction.

#### PART 3 - EXECUTION

- 3.1 PREPARATION
  - A. Obtain Engineer's Water Analysis or fire-hydrant flow test. Use results for system design calculations required in "Quality Assurance" Article in Part 1 of this Section.
  - B. Engineer's Water Analysis. See Flow Analysis provided by Van Boerum & Frank Associates.
- 3.2 EARTHWORK
  - A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

# 3.3 EXAMINATION

- A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.
- B. Examine walls and partitions for suitable thicknesses, fire- and smoke-rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

## 3.4 PIPING APPLICATIONS

- A. Shop weld pipe joints where welded piping is indicated.
- B. Do not use welded joints for galvanized-steel pipe.
- C. Flanges, flanged fittings, unions, nipples, and transition and special fittings with finish and pressure ratings same as or higher than system's pressure rating may be used in aboveground applications, unless otherwise indicated.
- D. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.
- E. Underground Service-Entrance Piping: Ductile-iron, push-on or mechanical-joint pipe and fittings and restrained joints. Include corrosion-protective encasement.
- F. Sprinkler Main Piping: Use the following:
  - 1. NPS 6 and Smaller: Standard-weight steel pipe with threaded ends, or grooved ends. No plain ends allowed.
  - 2. Outlets shall be welded.
    - a. Victaulic Brand Mechanical tee fittings may be used in lieu of welded outlets.
- G. Branch line piping: Use the following:
  - 1. NPS 1-1/4 and Smaller: Threadable steel pipe with threaded ends; cast- or malleable-iron threaded fittings; and threaded joints.
    - a. Victaulic Brand Mechanical tee fittings may be used
- H. Standpipes and mains: Use the following:
  - 1. NPS 4 to NPS 6: Schedule 40 steel pipe with grooved ends & Welded outlets.
  - 2. NPS 3 and Smaller: Schedule 40 steel pipe with threaded ends, or grooved ends. No plain ends allowed.

## 3.5 VALVE APPLICATIONS

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
  - 1. Fire-Protection-Service Valves: UL listed and FM approved for applications where required by NFPA 13 and NFPA 14.
  - 2. General-Duty Valves: For applications where UL-listed and FM-approved valves are not required by NFPA 13 and NFPA 14.

- a. Shutoff Duty: Use gate, ball, or butterfly valves.
- b. Throttling Duty: Use globe, ball, or butterfly valves.

## 3.6 JOINT CONSTRUCTION

- A. Refer to Division 23 Section "Common Work Result for HVAC" for basic piping joint construction.
- B. Ductile-Iron-Piping, Grooved Joints: Use ductile-iron pipe with radius-cut-grooved ends; ductile-iron, grooved-end fittings; and ductile-iron, keyed couplings. Assemble joints with couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions.
- C. Steel-Piping, Grooved Joints: Use Schedule 40 steel pipe with cut or roll-grooved ends and Schedule 30 or thinner steel pipe with roll-grooved ends; steel, grooved-end fittings; and steel, keyed couplings. Assemble joints with couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions. Use gaskets listed for dry-pipe service for dry piping.

## 3.7 WATER-SUPPLY CONNECTION

A. Install shutoff Backflow preventions assemblies, valve, pressure gage's, drain, and other accessories at connection to water service.

## 3.8 PIPING INSTALLATION

- A. Refer to Division 23 Section "Common Work Result for HVAC" for basic piping installation.
- B. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
  - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- C. Install underground service-entrance piping according to NFPA 24 and with restrained joints.
- D. Make connections between underground and above-ground piping using bolted flange.
- E. Install mechanical sleeve seal at pipe penetrations in basement and foundation walls. Refer to Division 23 Section "Common Work Result for HVAC."
- F. Use approved fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- G. Install unions adjacent to each valve in pipes NPS 2 and smaller. Unions are not required on flanged devices or in piping installations using grooved joints.
- H. Install flanges or flange adapters on valves, apparatus, and equipment having NPS 2-1/2 and larger connections.
- I. Install "Inspector's Test Connections" in sprinkler piping, complete with shutoff valve, sized and located according to NFPA 13.
- J. Install sprinkler piping with drains for complete system drainage.
- K. Install sprinkler zone control valves, check valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- L. Install drain valves on standpipes.
- M. Install ball drip valves to drain piping between fire department connections and check valves. Drain to floor drain or outside building.
- N. Install alarm devices in piping systems.
- O. Hangers and Supports: Comply with NFPA 13 for hanger materials. Install according to NFPA 13 for sprinkler piping and to NFPA 14 for standpipes.

- 1. No powder driven studs allowed.
- 2. Wrap-around braces are to be provided at end of branch lines.
- P. Earthquake Protection: Install piping according to NFPA 13-9.3 requirements, to protect from earthquake damage. Seismic Bracing shall be designed to withstand vertical forces and movement.
- Q. Install piping with grooved joints according to manufacturer's written instructions. Construct rigid piping joints, unless otherwise indicated, or required by NFPA 13 for flexibility in seismic zones.
- R. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- S. When a fire pipe crosses a seismic expansion joint it shall have a Metraflex fire loop installed at the joint in accordance with NFPA 13 chapter 9.

## 3.9 SPECIALTY SPRINKLER FITTING INSTALLATION

A. Install specialty sprinkler fittings according to manufacturer's written instructions.

#### 3.10 VALVE INSTALLATION

- A. Refer to Division 23 Section "Valves" for installing general-duty valves. Install fire-protection specialty valves, trim, fittings, controls, and specialties according to NFPA 13 and NFPA 14, manufacturer's written instructions, and authorities having jurisdiction.
- B. Valves: Install fire-protection-service valves supervised-open, located to control sources of water supply except from fire department connections. Provide permanent identification signs indicating portion of system controlled by each valve.
- C. Double Check Valve Assemblies: Install valves in vertical up or horizontal position, per listings and for proper direction of flow.

# 3.11 SPRINKLER APPLICATIONS

- A. General: All sprinklers are to be quick response type. Sprinkler heads shall be of the latest design closed spray type for 155°F unless specified otherwise or required by code. Extended coverage heads shall not be used. Orifices larger than 1/2" may be used as required by density and spacing demands. Use sprinklers according to the following applications:
  - 1. Rooms without Ceilings: Upright and/or pendent sprinklers. Provide mechanical guards on all heads at or below 7'-0" height above the floor or where damage from room occupant use may occur.
  - 2. Rooms with Ceilings: Concealed sprinklers unless indicated otherwise.
  - Wall Mounting: Concealed sidewall sprinklers unless indicated otherwise.
  - 4. Institutional sprinklers shall be installed in areas of detention, correctional or mental health care facilities.
  - Spaces Subject to Freezing: Upright; pendent, dry-type; and sidewall, dry-type sprinklers.
  - 6. Provide freeze proof type automatic sprinkler heads serving unconditioned spaces, areas subject to freezing and in other areas requiring their use.
  - 7. Heads located within the air streams of unit heaters or other heat-emitting equipment shall be selected for proper temperature rating.
  - 8. Sprinkler Finishes: Use sprinklers with the following finishes:

- a. Upright, Pendent, and Sidewall Sprinklers: Chrome in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view.
- b. Concealed Sprinklers: Rough brass, with White cover plate to match ceiling color.
- c. Semi-Recessed Sprinklers: White, with FMG approved white escutcheon.
- B. Sprinklers: Use the following:
  - 1. All sprinklers shall be listed, quick response type.
  - 2. Sprinkler in future finish spaces (shelled) 10' x 10' spacing shall be pendents/uprights installed with 1 x ½" bushing, to accommodate future finishes.
  - 3. Finish ceiling spaces shall have flat-plate concealed sprinklers.

#### 3.12 SPRINKLER INSTALLATION

- A. Every effort shall be required to ensure that the heads form a symmetrical pattern in the ceiling with the ceiling grid if included, as well as lights, diffusers and grilles. Offsets shall be made in piping to accommodate ductwork in the ceiling. Heads shall be symmetrical in all ceilings and all piping run parallel or perpendicular to building lines. Heads shall be linearly aligned in corridors.
  - 1. In no case shall sprinkler heads be installed closer than approved distances from ceiling obstructions and HVAC ductwork.
  - 2. Sprinkler heads shall not conflict with tile grids.
  - 3. Sprinkler heads shall be located near center of corridors.
- B. Where layout of sprinkler heads is shown on reflected ceiling plans the locations shall be followed unless approval is obtained from the Architect or such locations shown do not meet the requirements of NFPA-13. In either case, approval of the Architect shall be obtained in writing before sprinkler head locations are changed. If the installation of additional heads is needed to conform to NFPA 13 requirements in areas where heads are shown on reflected ceiling plans, they shall be included in the contract price.
- C. Install sprinklers in patterns indicated.
- D. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing. Use dry-type sprinklers with water supply from heated space.
- E. Future finish shelled and tenant finish; Shell spaces shall be piped to accommodate future. Install sprinklers with 1" x ½" bushings, and space heads at a maximum spacing of 100 sq. ft. per head. Occupancy shall be Ordinary-Hazard Group 1 Design.
- F. Concealed type sprinkler shall be installed in the following areas:
  - 1. All areas.

## 3.13 HOSE-CONNECTION INSTALLATION

- A. Install hose connections adjacent to standpipes, unless otherwise indicated.
- B. Install freestanding hose connections for access and minimum passage restriction.
- C. Install NPS 2-1/2 hose connections with quick-disconnect NPS 2-1/2 by NPS 1-1/2 reducer adapter, cap and chain.

#### 3.14 FIRE DEPARTMENT CONNECTION INSTALLATION

- A. When installing the Fire Department Connection, the contractor is to ensure that there are no permanent obstruction(s) as to the fire department access. If an obstruction is present immediately notify the designer and the design team before proceeding with the installation.
- B. Coordinate the exact location with the Architect and the Authority Having Jurisdiction.

C. Install ball drip valves at each check valve for fire department connection. Drain to floor drain or outside building.

## 3.15 CONNECTIONS

- A. Connect water-supply piping and standpipes and sprinklers where indicated.
- B. Connect piping to specialty valves, hose valves, specialties, fire department connections, and accessories.
- C. Electrical Connections: Power wiring is specified in Division 28.
- D. Connect alarm devices to fire alarm.

#### 3.16 LABELING AND IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13 and NFPA 14 and in Division 23 Section "Common Work Result for HVAC."

#### 3.17 FIELD QUALITY CONTROL

- A. Flush, test, and inspect sprinkler piping according to NFPA 13, "System Acceptance" Chapter.
- B. Flush, test, and inspect standpipes according to NFPA 14, "Tests and Inspection" Chapter.
- C. Replace piping system components that do not pass test procedures and retest to demonstrate compliance. Repeat procedure until satisfactory results are obtained.
- D. When making a mechanical tee connection the coupon shall be attached at the mechanical tee.
- E. Report test results promptly and in writing to Architect and authorities having jurisdiction.
- F. Whether the underground serving the sprinkler system is done by this contractor or another, this contractor will be responsible to assure and have in his possession a certificate that the underground has been flushed and tested by the contractor who installed it in accordance with NFPA-24 prior to connection of the underground piping to the overhead sprinkler system.

## 3.18 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers having paint other than factory finish.

## 3.19 PROTECTION

A. Protect sprinklers from damage until Substantial Completion.

# 3.20 COMMISSIONING

- A. Verify that specialty valves, trim, fittings, controls, and accessories are installed and operate correctly.
- B. Verify that specified tests of piping are complete and that "Material Test Certificates" are complete.
- C. Verify that damaged sprinklers and sprinklers with paint or coating not specified are replaced with new, correct type.
- D. Verify that sprinklers are correct types, have correct finishes and temperature ratings, and have guards as required for each application.
- E. Verify that hose connections and fire department connections have threads compatible with local fire department equipment.
- F. Fill wet-pipe sprinkler piping with water.
- G. Verify that hose connections are correct type and size.
- H. Coordinate with fire alarm tests. Operate as required.

## 3.21 DEMONSTRATION & TESTS

- A. Demonstrate equipment, specialties, and accessories. Review operating and maintenance information.
- B. All tests will be conducted as required by the local authority having jurisdiction, and in no case less than those required by NFPA standards. As a minimum, piping in the sprinkler system shall be tested at a water pressure at 200 psi for a period of not less two hours, or at 50 psi in excess of the normal pressure when the normal pressure is above 150 psi. Bracing shall be in place, and air shall be removed from the system through the hydrants and drain valves before the test pressure is applied. No apparent leaks will be permitted on interior or underground piping.
- C. The local jurisdiction having authority and the Utah State Fire Marshal's office (where required) shall be notified at least three working days in advance of all tests and flushing. This includes any flushing of underground, hydrostatic testing, or flow testing that may be required.
- D. This contractor shall make all the required tests to the sprinkler system as required by code. He shall be responsible to assure that the Contractor Test Certificates for the overhead, backflow and underground work are completed and delivered to the owner's insurance underwriter to assure proper insurance credit.
- E. All tests requiring the witnessing by local authorities will be the responsibility of this contractor. If tests are not run or do not have the proper witness, then they will be run later and all damage caused by the system, or caused in uncovering the system for such test, will be borne by this contractor.

#### 3.22 WARRANTY

- A. This contractor shall warranty the sprinkler system and all its components for one year from the date of acceptance by the owner. Any costs incurred to extend any warranties of materials to assure this time frame shall be borne by this contractor.
- B. Provide Operation and Maintenance Manuals with correct as-builts test certificates and warranties included. A minimum 6 sets to be provided in red 3-ring binders. Include a current adopted version of NFPA 25 softbound copy left with owner.
- Electronic copy of AutoCAD as-built drawings shall also be provided on CD, with each O&M Manual.

## 3.23 FIELD QUALITY CONTROL

- A. Flush, test and inspect sprinkler piping according to NFPA 13, "System Acceptance" Chapter.
- B. Replace piping system components that do not pass test procedures and retest to demonstrate compliance. Repeat procedure until satisfactory results are obtained.
- C. Report test results promptly and in writing to Architect and authorities having jurisdiction.

#### **END OF SECTION 21 1000**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 0500 COMMON WORK RESULTS FOR PLUMBING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following:
  - 1. Piping materials and installation instructions common to most piping systems.
  - 2. Transition fittings.
  - 3. Dielectric fittings.
  - Mechanical sleeve seals.
  - Sleeves.
  - 6. Escutcheons.
  - 7. Grout.
  - 8. Equipment installation requirements common to equipment sections.
  - 9. Painting and finishing.
  - 10. Concrete bases.
  - 11. Supports and anchorages.
  - 12. Link Seal
  - 13. Lead Free requirements.

#### 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, *Ip*, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Equipment, pipe hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - 1. For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

## 1.4 LEAD FREE REQUIREMENTS

A. For all projects within the United States, and when water is anticipated for human consumption, all pipes, pipe fittings, plumbing fittings and fixtures shall comply with PUBLIC LAW 111-380 "Reduction of Lead in Drinking Water Act" 124 STAT. 4131, 42-USC 1201, January 4<sup>th</sup>, 2011.

#### 1.5 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, and crawlspaces.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms, accessible pipe shafts, accessible plumbing chases and accessible tunnels.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for rubber materials:
  - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
  - 2. NBR: Acrylonitrile-butadiene rubber.
- G. Lead Free:
  - 1. Not containing more than 0.2 percent lead when used with respect to solder and flux.
  - 2. Not more than a weighted average of 0.25 percent lead when used with respect to the wetted surfaces of pipes, pipe fittings, plumbing fittings and fixtures.
  - 3. Calculation: The weighted average lead content of a pipe, pipe fitting, plumbing fitting or fixture shall be calculated by using the formula prescribed in the law named in LEAD FREE REQUIREMENTS above.

#### 1.6 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For the following:
  - 1. Transition fittings.
  - 2. Dielectric fittings.
  - 3. Mechanical sleeve seals.
  - Escutcheons.
- C. Welding certificates.

# 1.7 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

# 1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

#### 1.9 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

## **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
  - Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

## 2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

# 2.3 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
  - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
    - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
    - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
  - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
  - C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
  - D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
  - E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
  - F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

#### 2.4 TRANSITION FITTINGS

A. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

- 1. Manufacturers:
  - a. Cascade Waterworks Mfg. Co.
  - b. Fernco, Inc.
  - c. Mission Rubber Company.
  - d. Plastic Oddities, Inc.

#### 2.5 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
  - 1. Manufacturers:
    - a. Capitol Manufacturing Co.
    - b. Central Plastics Company.
    - c. Eclipse, Inc.
    - d. Epco Sales, Inc.
    - e. Hart Industries, International, Inc.
    - f. Watts Industries, Inc.; Water Products Div.
    - g. Zurn Industries, Inc.; Wilkins Div.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
  - 1. Manufacturers:
    - a. Capitol Manufacturing Co.
    - b. Central Plastics Company.
    - c. Epco Sales, Inc.
    - d. Watts Industries, Inc.; Water Products Div.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
  - 1. Manufacturers:
    - a. Advance Products & Systems, Inc.
    - b. Calpico, Inc.
    - c. Central Plastics Company.
    - d. Pipeline Seal and Insulator, Inc.
  - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
  - 1. Manufacturers:
    - a. Calpico, Inc.
    - b. Lochinvar Corp.

- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
  - 1. Manufacturers:
    - a. Perfection Corp.
    - b. Precision Plumbing Products, Inc.
    - c. Sioux Chief Manufacturing Co., Inc.
    - d. Victaulic Co. of America.

#### 2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
  - 1. Manufacturers:
    - a. Advance Products & Systems, Inc.
    - b. Calpico, Inc.
    - c. Metraflex Co.
    - d. Pipeline Seal and Insulator, Inc.
  - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
  - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
  - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

#### 2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
  - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

#### 2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish
- C. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- D. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

#### 2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
  - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.

- 2. Design Mix: 5000-psi, 28-day compressive strength.
- 3. Packaging: Premixed and factory packaged.

## 2.10 LINK SEAL

- A. Link-Seal® Modular Seal Pressure Plates
  - 1. Link-Seal® modular seal pressure plates shall be molded of glass reinforced Nylon Polymer with the following properties:
    - a. Izod Impact Notched = 2.05ft-lb/in. per ASTM D-256
       Flexural Strength @ Yield = 30,750 psi per ASTM D-790

       Flexural Modulus = 1,124,000 psi per ASTM D-790
       Elongation Break = 11.07% per ASTM D-638
       Specific Gravity = 1.38 per ASTM D-792
  - 2. Models LS200-275-300-315 shall incorporate the most current Link-Seal® Modular Seal design modifications and shall include an integrally molded compression assist boss on the top (bolt entry side) of the pressure plate, which permits increased compressive loading of the rubber sealing element. Models 315-325-340-360-400-410-425-475-500-525-575-600 shall incorporate an integral recess known as a "Hex Nut Interlock" designed to accommodate commercially available fasteners to insure proper thread engagement for the class and service of metal hardware. All pressure plates shall have a permanent identification of the manufacturer's name molded into it.
  - 3. For fire and Hi-Temp service, pressure plates shall be steel with 2-part Zinc Dichromate Coating.
  - 4. Link-Seal® Modular Seal Hardware: All fasteners shall be sized according to latest Link-Seal® modular seal technical data. Bolts, flange hex nuts shall be: 316 Stainless Steel per ASTM F593-95, with a 85,000 psi average tensile strength.

## 2.11 LEAD FREE PRODUCTS:

A. For all products to be purchased whenever water is anticipated for human consumption, all pipes, pipe fittings, plumbing fittings and fixtures shall comply with the LEAD FREE REQUIREMENTS in PART 1 above.

# PART 3 - EXECUTION

# 3.1 PLUMBING DEMOLITION

- A. Refer to Division 01 Section "Cutting and Patching" and Division 02 Section "Selective Structure Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove plumbing systems, equipment, and components indicated to be removed.
  - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
  - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
  - 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
  - 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
  - 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

# 3.2 SEISMIC REQUIREMENTS

A. Comply with SEI/ASCE 7 and with requirements for seismic seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

## 3.3 LEAD FREE REQUIREMENTS

A. Installations where water is anticipated for human consumption, all pipes, pipe fittings, plumbing fittings and fixtures shall be Lead Free as given in PART 1 above.

## 3.4 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
  - 1. New Piping:
    - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
    - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
    - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
    - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
    - e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
    - f. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
  - 2. Existing Piping: Use the following:
    - a. Chrome-Plated Piping: Split-casting, cast-brass type with chrome-plated finish.
    - b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
    - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and spring clips.

- d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
- e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and set screw.
- f. Bare Piping in Equipment Rooms: Split-casting, cast-brass type.
- g. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with set screw or spring clips.
- h. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.
- M. Sleeves are not required for core-drilled holes.
- N. Permanent sleeves are not required for holes formed by removable PE sleeves.
- Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
  - 1. Cut sleeves to length for mounting flush with both surfaces.
    - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
  - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
  - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
    - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
    - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
    - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
      - 1) Seal space outside of sleeve fittings with grout.
  - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
  - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
  - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
  - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

- Mechanical Sleeve Seal Installation: Select type and number of sealing elements
  required for pipe material and size. Position pipe in center of sleeve. Assemble
  mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten
  bolts against pressure plates that cause sealing elements to expand and make watertight
  seal.
- S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- T. Verify final equipment locations for roughing-in.
- U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

## 3.5 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
  - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
  - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
  - 1. Plain-End Pipe and Fittings: Use butt fusion.
  - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- J. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

#### 3.6 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
  - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
  - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

- 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
- 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

## 3.7 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

## 3.8 PAINTING

- A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

#### 3.9 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
  - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
  - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
  - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
  - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
  - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
  - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

## 3.10 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

#### 3.11 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

# 3.12 GROUTING

- A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

**END OF SECTION 22 0500** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

#### **SECTION 22 0513**

#### COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to **600 V** and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

#### 1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
  - 1. Motor controllers.
  - 2. Torque, speed, and horsepower requirements of the load.
  - 3. Ratings and characteristics of supply circuit and required control sequence.
  - 4. Ambient and environmental conditions of installation location.

# **PART 2 - PRODUCTS**

# 2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when the requirements in plumbing equipment schedules, other specification sections, drawing notes or in other contract documents are more stringent.
- B. Comply with **NEMA MG 1** unless otherwise indicated.
- C. Comply with **IEEE 841** for severe-duty motors.

#### 2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

## 2.3 POLYPHASE MOTORS

- A. Description: **NEMA MG 1**, **Design B**, medium induction motor.
- B. Efficiency: Energy efficient, as defined in **NEMA MG 1**.
- C. Service Factor: 1.15.
- D. Rotor: Random-wound, squirrel cage.
- E. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- F. Temperature Rise: Match insulation rating.
- G. Insulation: Class F.
- H. Code Letter Designation:
  - 1. Motors **15 HP** and Larger: NEMA starting Code F or Code G.
  - 2. Motors smaller than **15 HP**: Manufacturer's standard starting characteristic.

I. Enclosure Material: Cast iron for motor frame sizes **324T** and larger; rolled steel for motor frame sizes smaller than **324T**.

## 2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

# 2.5 Electronically Commutated Motor (ECM)

- 1. Motor enclosures: Open type
- 2. Motor to be a DC electronic commutation type motor (ECM).
  - a. AC induction type motors are not acceptable.
- 3. Permanently lubricated motor with heavy duty ball bearing
- Internal motor circuitry to convert AC power supplied to the fan to DC power to operate the motor.
- 5. Speed controllable to 20% of full speed (80% turndown).
  - a. Potentiometer dial mounted at the motor speed controller
  - b. 0-10 VDC signal.
- 6. 85% efficient at all speeds minimum.
- 7. Motors smaller than 2.0 hp.

## 2.6 SINGLE-PHASE MOTORS

- A. Motors larger than **1/20** hp shall be one of the following, to suit starting torque and requirements of specific motor application:
  - 1. Permanent-split capacitor.
  - 2. Split phase.
  - 3. Capacitor start, inductor run.
  - Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

# PART 3 - EXECUTION (Not Applicable)

**END OF SECTION 22 0513** 

#### **SECTION 22 0516**

#### **EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING**

#### **PART 1 - GENERAL**

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Metal-bellows packless expansion joints.
  - 2. Pipe loops and swing connections.
  - 3. Alignment guides and anchors.

## 1.2 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - The component is in or attached to an Occupancy Category IV structure and it is needed
    for continued operation of the facility or its failure could impair the continued operation of
    the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

#### 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
  - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
  - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
  - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
  - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.
  - 1. Seismic calculations and detailed analysis: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events.

Indicate association with vibration isolation devices. Project specific design documentation and calculations shall be prepared and stamped by a registered professional engineer who is responsible for the seismic restraint design and who is licensed in the state where the project is being constructed (ASCE 7, 13.2.1.1).

## 1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Product certificates.

## 1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

#### 1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
  - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
  - 2. ASME Boiler and Pressure Vessel Code: Section IX.

## **PART 2 - PRODUCTS**

## 2.1 PACKLESS EXPANSION JOINTS

- A. Metal-Bellows Packless Expansion Joints:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Expansion Joint Systems, Inc.
    - b. Flex-Hose Co., Inc.
    - c. Flexicraft Industries.
    - d. Flex Pression Ltd.
    - e. Flo Fab inc.
    - f. Hyspan Precision Products, Inc.
    - g. Metraflex, Inc.
    - h. Tozen Corporation.
    - i. Unaflex.
    - j. Unisource Manufacturing, Inc.
    - k. Universal Metal Hose; a subsidiary of Hyspan Precision Products, Inc.
    - I. U.S. Bellows, Inc.
  - 2. Standards: ASTM F 1120 and EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."
  - 3. Type: Circular, corrugated bellows with external tie rods.
  - 4. Minimum Pressure Rating: 175 psi unless otherwise indicated.
  - 5. Configuration: double joint with base class(es) unless otherwise indicated.
  - 6. Expansion Joints for Copper Tubing: Single- or multi-ply phosphor-bronze bellows, copper pipe ends, and brass shrouds.
    - a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint or threaded.
    - End Connections for Copper Tubing NPS 2-1/2 to NPS 8: Solder joint or threaded or flanged.

# 2.2 ALIGNMENT GUIDES AND ANCHORS

# A. Alignment Guides:

1. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

## B. Anchor Materials:

- Steel Shapes and Plates: ASTM A 36/A 36M.
- 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
- 3. Washers: ASTM F 844, steel, plain, flat washers.
- 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
  - a. Stud: Threaded, zinc-coated carbon steel.
  - b. Expansion Plug: Zinc-coated steel.
  - c. Washer and Nut: Zinc-coated steel.
- 5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
  - a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
  - b. Stud: ASTM A 307, zinc-coated carbon steel with continuous thread on stud unless otherwise indicated.
  - c. Washer and Nut: Zinc-coated steel.

#### **PART 3 - EXECUTION**

## 3.1 HANGER AND SUPPORT INSTALLATION

A. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

#### 3.2 EXPANSION-JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

## 3.3 PIPE LOOP AND SWING CONNECTION INSTALLATION

- A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
- B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.
- C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.
- D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

## 3.4 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

- A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
- B. Install guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.

- C. Attach guides to pipe and secure guides to building structure.
- D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- E. Anchor Attachments:
  - Anchor Attachment to Black-Steel Pipe: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
  - 2. Anchor Attachment to Galvanized-Steel Pipe: Attach with pipe hangers. Use MSS SP-69, Type 42, riser clamp welded to anchor.
  - 3. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.
- F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
  - 1. Anchor Attachment to Steel Structural Members: Attach by welding.
  - 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
- G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

## **END OF SECTION 22 0516**

#### **SECTION 22 0517**

#### SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Sleeves.
  - 2. Sleeve-seal systems.
  - 3. Grout.

#### 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.

#### **PART 2 - PRODUCTS**

#### 2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

#### 2.2 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Advance Products & Systems, Inc.
  - 2. CALPICO, Inc.
  - 3. Link-Seal
  - 4. Metraflex Company (The).
  - 5. Pipeline Seal and Insulator, Inc.
  - 6. Proco Products, Inc.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
  - 1. Sealing Elements: **EPDM-rubber** interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
  - 2. Pressure Plates: Carbon steel.

3. Connecting Bolts and Nuts: **Carbon steel, with corrosion-resistant coating**, of length required to secure pressure plates to sealing elements.

# 2.3 GROUT

- A. Standard: ASTM C 1107, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

#### **PART 3 - EXECUTION**

#### 3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide **1-inch** annular clear space between piping and concrete slabs and walls.
  - Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
  - Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
  - 2. Cut sleeves to length for mounting flush with both surfaces.
    - Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
  - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
  - 1. Cut sleeves to length for mounting flush with both surfaces.
  - 2. Install sleeves that are large enough to provide **1/4-inch** annular clear space between sleeve and pipe or pipe insulation.
  - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

## 3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

## 3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
  - 1. Exterior Concrete Walls above Grade:
    - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.

- b. Piping NPS 6 and Larger: Cast-iron wall sleeves.
- 2. Exterior Concrete Walls below Grade:
  - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
    - 1) Select sleeve size to allow for **1-inch** annular clear space between piping and sleeve for installing sleeve-seal system.
  - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
    - Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
- 3. Concrete Slabs-on-Grade:
  - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
    - Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
  - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
    - 1) Select sleeve size to allow for **1-inch** annular clear space between piping and sleeve for installing sleeve-seal system.
- 4. Concrete Slabs above Grade:
  - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
  - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
- 5. Interior Partitions:
  - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
  - b. Piping **NPS 6** and Larger: Galvanized-steel-sheet sleeves.

**END OF SECTION 22 0517** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 0518 ESCUTCHEONS FOR PLUMBING PIPING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Escutcheons.

#### 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.

### **PART 2 - PRODUCTS**

#### 2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With **polished, chrome-plated** finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

## **PART 3 - EXECUTION**

## 3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to 2 inch (50mm), tube, and insulation of insulated piping and with OD that completely covers opening.
  - 1. Escutcheons for New Piping:
    - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type with polished, chrome-plated finish.
    - b. Chrome-Plated Piping: One-piece, **cast-brass** type with polished, chrome-plated finish.
    - c. Insulated Piping: One-piece, stamped-steel type with chrome-plated finish.
    - d. Bare Piping **2 inch** and Smaller at Wall and Floor Penetrations in Finished Spaces: **One-piece, cast-brass** type with polished, chrome-plated finish.
    - e. Bare Piping Larger than **2 inch** at Wall and Floor Penetrations in Finished Spaces: **One-piece, stamped-steel type with polished, chrome-plated finish**.
    - f. Bare Piping **2 inch** and Smaller at Ceiling Penetrations in Finished Spaces: **One- piece**, **cast-brass** type with polished, chrome-plated finish.
    - g. Bare Piping Larger than 2 inch at Ceiling Penetrations in Finished Spaces: Onepiece, stamped-steel type with polished, chrome-plated finish.
    - h. Bare Piping **2 inch** and Smaller in Unfinished Service Spaces: **One-piece**, **cast-brass** type with polished, chrome-plated or rough-brass finish.
    - i. Bare Piping Larger than **2** inch in Unfinished Service Spaces: **One-piece**, stamped-steel type with polished, chrome-plated finish.
    - j. Bare Piping **2 inch** and Smaller in Equipment Rooms: **One-piece, cast-brass** type with polished, chrome-plated or rough-brass finish.

- k. Bare Piping in Equipment Rooms Larger than 2 inch: One-piece, stamped-steel type with chrome- or cadmium-plated finish.
- 2. Escutcheons for Existing Piping:
  - a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
  - b. Insulated Piping: Split-plate, stamped-steel type with polished, chrome-plated finish and concealed hinge.
  - c. Bare Piping **2 inch** and Smaller at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
  - d. Bare Piping Larger than 2 inch at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with polished, chrome-plated finish and concealed.
  - e. Bare Piping **2 inch** and Smaller at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
  - f. Bare Piping Larger than 2 inch at Ceiling Penetrations in Finished Spaces: **Split-** plate, stamped-steel type with polished, chrome-plated finish and concealed.
  - g. Bare Piping **2 inch** and Smaller in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated or rough-brass finish.
  - h. Bare Piping Larger than 2 inch in Unfinished Service Spaces: Split-plate, stamped-steel type with polished, chrome-plated finish and concealed.
  - i. Bare Piping **2 inch** and Smaller in Equipment Rooms: Split-casting brass type with polished, chrome-plated or rough-brass finish.
  - j. Bare Piping Larger than 2 inch in Equipment Rooms: Split-plate, stamped-steel type with chrome- or cadmium-plated finish and concealed.

#### 3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

**END OF SECTION 22 0518** 

# SECTION 22 0519 METERS AND GAUGES FOR PLUMBING PIPING

#### **PART 1 - GENERAL**

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Bimetallic-actuated thermometers.
  - 2. Liquid-in-glass thermometers.
  - 3. Thermowells.
  - 4. Dial-type pressure gauges.
  - 5. Gauge attachments.

#### 1.2 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.

#### 1.3 INFORMATIONAL SUBMITTALS

A. Product certificates.

## 1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

## **PART 2 - PRODUCTS**

### 2.1 BIMETALLIC-ACTUATED THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - Ashcroft Inc.
  - 2. Ernst Flow Industries.
  - 3. Marsh Bellofram.
  - 4. Miljoco Corporation.
  - 5. Nanmac Corporation.
  - 6. Noshok.
  - 7. Palmer Wahl Instrumentation Group.
  - 8. REOTEMP Instrument Corporation.
  - 9. Tel-Tru Manufacturing Company.
  - 10. Trerice, H. O. Co.
  - 11. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
  - 12. Weiss Instruments, Inc.
  - 13. WIKA Instrument Corporation USA.
  - 14. Winters Instruments U.S.
  - 15. Weksler
- B. Standard: ASME B40.200.
- C. Case: Liquid-filled and sealed type(s); stainless steel with 5 inch nominal diameter.
- D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F and deg C.
- E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

- F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.
- G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
- H. Window: Plain glass or plastic.
- I. Ring: Stainless steel.
- J. Element: Bimetal coil.
- K. Pointer: Dark-colored metal.
- L. Accuracy: Plus or minus 1 percent of scale range.

# 2.2 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
    - a. Flo Fab Inc.
    - b. Miljoco Corporation.
    - c. Palmer Wahl Instrumentation Group.
    - d. Tel-Tru Manufacturing Company.
    - e. Trerice, H. O. Co.
    - f. Weiss Instruments, Inc.
    - g. Winters Instruments U.S.
    - h. Weksler
  - 2. Standard: ASME B40,200.
  - 3. Case: Cast aluminum 7-inch nominal size unless otherwise indicated.
  - 4. Case Form: Adjustable angle unless otherwise indicated.
  - 5. Tube: Glass with magnifying lens and blue or red organic liquid.
  - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.
  - 7. Window: Glass or plastic.
  - 8. Stem: Aluminum and of length to suit installation.
    - a. Design for Thermowell Installation: Bare stem.
  - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
  - 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

#### 2.3 THERMOWELLS

- A. Thermowells:
  - 1. Standard: ASME B40.200.
  - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
  - 3. Material for Use with Copper Tubing: CNR or CUNI.
  - 4. Material for Use with Steel Piping: CRES.
  - 5. Type: Stepped shank unless straight or tapered shank is indicated.
  - 6. External Threads: NPS 1/2, ASME B1.20.1 pipe threads.
  - 7. Internal Threads: 1/2, with ASME B1.1 screw threads.
  - 8. Bore: Diameter required to match thermometer bulb or stem.
  - 9. Insertion Length: Length required to match thermometer bulb or stem.

- 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
- 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.
- C. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

## 2.4 PRESSURE GAUGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gauges:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
    - a. AMETEK, Inc.; U.S. Gauge.
    - b. Ashcroft Inc.
    - c. Ernst Flow Industries.
    - d. Flo Fab Inc.
    - e. Marsh Bellofram.
    - f. Miljoco Corporation.
    - g. Noshok.
    - h. Palmer Wahl Instrumentation Group.
    - i. REOTEMP Instrument Corporation.
    - j. Tel-Tru Manufacturing Company.
    - k. Trerice, H. O. Co.
    - I. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
    - m. Weiss Instruments, Inc.
    - n. WIKA Instrument Corporation USA.
    - o. Winters Instruments U.S.
    - p. Weksler
  - 2. Standard: ASME B40.100.
  - 3. Case: Liquid-filled Open-front, pressure relief type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
  - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
  - 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
  - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
  - 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.
  - 8. Pointer: Dark-colored metal.
  - 9. Window: Glass or plastic.
  - 10. Ring: Metal or Brass.
  - 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

#### 2.5 GAUGE ATTACH TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Flow Design, Inc.
- 2. MG Piping Products Co.
- 3. National Meter, Inc.
- 4. Peterson Equipment Co., Inc.
- 5. Sisco Manufacturing Co.
- 6. Trerice, H. O. Co.
- 7. Weksler.
- 8. Watts Industries, Inc.; Water Products Div.
- B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.
- C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- D. Core Inserts: One or two self-sealing rubber valves.
  - 1. Insert material for water service at 20 to 200 deg F shall be CR.
  - 2. Insert material for water service at minus 30 to plus 275 deg F shall be EPDM.
- E. Test Kit: Furnish one test kit(s) containing one pressure gauge and adaptor, one thermometer, and carrying case. Pressure gauge, adapter probes, and thermometer sensing elements shall be of diameter to fit test plugs and of length to project into piping.
  - 1. Pressure Gauge: Small bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be 0 to 200 psig.
  - 2. Low-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial ranges shall be 25 to 125 deg F.
  - 3. High-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial ranges shall be 0 to 220 deg F.
  - 4. Carrying case shall have formed instrument padding.

#### 2.6 ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston porous-metal-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

## **PART 3 - EXECUTION**

## 3.1 INSTALLATION

- A. Install thermowells with socket extending a minimum of 2 inches into fluid one-third of pipe diameter to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install direct-mounted pressure gauges in piping tees with pressure gauge located on pipe at the most readable position.
- G. Install valve and snubber in piping for each pressure gauge for fluids.
- H. Install thermometers in the following locations:
  - 1. Inlet and outlet of each water heater.
  - 2. Inlets and outlets of each domestic water heat exchanger.

- 3. Inlet and outlet of each domestic hot-water storage tank.
- 4. Inlet and outlet of each remote domestic water chiller.
- I. Install pressure gauges in the following locations:
  - 1. Building water service entrance into building.
  - 2. Inlet and outlet of each pressure-reducing valve.
  - 3. Suction and discharge of each domestic water pump.
- J. Install meters and gauges adjacent to machines and equipment to allow service and maintenance of meters, gauges, machines, and equipment.
- K. Adjust faces of meters and gauges to proper angle for best visibility.
- L. Install remote-mounting dial thermometers on panel, with tubing connecting panel and thermometer bulb supported to prevent kinds. Use minimum tubing length.
- M. Install test plugs in tees in piping.
- N. Install permanent indicator on walls or brackets in accessible and readable positions.

#### 3.2 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each domestic water heater shall be one of the following:
  - 1. Liquid-filled Sealed, bimetallic-actuated type.
  - 2. Industrial-style, liquid-in-glass type.
- B. Thermometers at inlets and outlets of each domestic water heat exchanger shall be one of the following:
  - 1. Liquid-filled Sealed, bimetallic-actuated type.
  - 2. Industrial-style, liquid-in-glass type.
- C. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be one of the following:
  - 1. Liquid-filled Sealed, bimetallic-actuated type.
  - 2. Industrial-style, liquid-in-glass type.
- D. Thermometer stems shall be of length to match thermowell insertion length.

# 3.3 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Domestic Cold-Water Piping: 0 to 150 deg F and minus 20 to plus 70 deg C.
- B. Scale Range for Domestic Hot-Water Piping: 20 to 240 deg F and 0 to 150 deg C.

## 3.4 PRESSURE-GAUGE SCHEDULE

- A. Pressure gauges at discharge of each water service into building shall be one of the following:
  - 1. Liquid-filled Sealed Open-front, pressure-relief, direct-mounted, metal case.
- B. Pressure gauges at inlet and outlet of each water pressure-reducing valve shall be one of the following:
  - 1. Liquid-filled Sealed Open-front, pressure-relief, direct mounted, metal case.
- C. Pressure gauges at suction and discharge of each domestic water pump shall be one of the following:
  - 1. Liquid-filled Sealed Open-front, pressure-relief, direct-mounted, metal case.

# 3.5 PRESSURE-GAUGE SCALE-RANGE SCHEDULE

- A. Scale Range for Water Service Piping 0 to 160 psi and 0 to 1100 kPa.
- B. Scale Range for Domestic Water Piping: 0 to 160 psi and 0 to 1100 kPa.

#### **END OF SECTION 22 0519**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

## **SECTION 22 0523**

#### **GENERAL-DUTY VALVES FOR PLUMBING PIPING**

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Bronze angle valves.
  - 2. Bronze ball valves.
  - 3. Iron, single-flange butterfly valves.
  - 4. Iron, grooved-end butterfly valves.
  - 5. Bronze lift check valves.
  - 6. Bronze swing check valves.
  - 7. Iron swing check valves.
  - 8. Iron, grooved-end swing check valves.
  - 9. Bronze globe valves.
  - 10. Iron globe valves.

#### B. Related Sections:

- Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
- 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
- Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

## 1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

#### 1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of valve indicated.

# 1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
  - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.

- 2. ASME B31.1 for power piping valves.
- 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

## 1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
  - 1. Protect internal parts against rust and corrosion.
  - 2. Protect threads, flange faces, grooves, and weld ends.
  - 3. Set angle, gate, and globe valves closed to prevent rattling.
  - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
  - 5. Set butterfly valves closed or slightly open.
  - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
  - 1. Maintain valve end protection.
  - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

#### **PART 2 - PRODUCTS**

## 2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
  - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
  - 2. Handwheel: For valves other than quarter-turn types.
  - 3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
  - 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
  - 1. Gate Valves: With rising stem.
  - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
  - 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
  - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
  - 2. Grooved: With grooves according to AWWA C606.
  - 3. Solder Joint: With sockets according to ASME B16.18.
  - 4. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

## 2.2 BRONZE ANGLE VALVES

- A. Class 125, Bronze Angle Valves with Bronze Disc:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Hammond Valve.
    - b. Milwaukee Valve Company.
  - 2. Description:
    - a. Standard: MSS SP-80, Type 1.
    - b. CWP Rating: 200 psig.
    - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
    - d. Ends: Threaded.
    - e. Stem and Disc: Bronze.
    - f. Packing: Asbestos free.
    - g. Handwheel: Malleable iron, bronze, or aluminum.

## 2.3 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Valve. Inc.
    - b. Conbraco Industries, Inc.; Apollo Valves.
    - c. Crane Co.; Crane Valve Group; Crane Valves.
    - d. Hammond Valve.
    - e. Lance Valves; a division of Advanced Thermal Systems, Inc.
    - f. Milwaukee Valve Company.
    - g. NIBCO INC.
    - h. Red-White Valve Corporation.
    - i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
  - 2. Description:
    - a. Standard: MSS SP-110.
    - b. SWP Rating: 150 psig.
    - c. CWP Rating: 600 psig.
    - d. Body Design: Two piece.
    - e. Body Material: Bronze.
    - f. Ends: Threaded.
    - g. Seats: PTFE or TFE.
    - h. Stem: Bronze.
    - Ball: Chrome-plated brass.
    - j. Port: Full.
- B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Conbraco Industries, Inc.; Apollo Valves.
- b. Crane Co.; Crane Valve Group; Crane Valves.
- c. Hammond Valve.
- d. Lance Valves; a division of Advanced Thermal Systems, Inc.
- e. Milwaukee Valve Company.
- f. NIBCO INC.
- g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Description:
  - a. Standard: MSS SP-110.
  - b. SWP Rating: 150 psig.
  - c. CWP Rating: 600 psig.
  - d. Body Design: Two piece.
  - e. Body Material: Bronze.
  - f. Ends: Threaded.
  - g. Seats: PTFE or TFE.
  - h. Stem: Stainless steel.
  - i. Ball: Stainless steel, vented.
  - i. Port: Full.
- C. Three-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Conbraco Industries, Inc.; Apollo Valves.
    - b. DynaQuip Controls.
    - c. Hammond Valve.
    - d. Milwaukee Valve Company.
    - e. NIBCO INC.
    - f. Red-White Valve Corporation.
  - 2. Description:
    - a. Standard: MSS SP-110.
    - b. SWP Rating: 150 psig.
    - c. CWP Rating: 600 psig.
    - d. Body Design: Three piece.
    - e. Body Material: Bronze.
    - f. Ends: Threaded.
    - g. Seats: PTFE or TFE.
    - h. Stem: Bronze.
    - i. Ball: Chrome-plated brass.
    - i. Port: Full.
- D. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Conbraco Industries, Inc.; Apollo Valves.
- b. Hammond Valve.
- c. Milwaukee Valve Company.
- d. NIBCO INC.

- a. Standard: MSS SP-110.
- b. SWP Rating: 150 psig.
- c. CWP Rating: 600 psig.
- d. Body Design: Three piece.
- e. Body Material: Bronze.
- f. Ends: Threaded.
- g. Seats: PTFE or TFE.
- h. Stem: Stainless steel.
- i. Ball: Stainless steel, vented.
- i. Port: Full.

## 2.4 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Aluminum-Bronze Disc:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
    - b. Conbraco Industries, Inc.; Apollo Valves.
    - c. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
    - d. Crane Co.; Crane Valve Group; Jenkins Valves.
    - e. Crane Co.; Crane Valve Group; Stockham Division.
    - f. DeZurik Water Controls.
    - g. Flo Fab Inc.
    - h. Hammond Valve.
    - i. Kitz Corporation.
    - j. Milwaukee Valve Company.
    - k. NIBCO INC.
    - I. Norriseal; a Dover Corporation company.
    - m. Red-White Valve Corporation.
    - n. Spence Strainers International; a division of CIRCOR International, Inc.
    - o. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

# 2. Description:

- a. Standard: MSS SP-67, Type I.
- b. CWP Rating: 200 psig.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
- e. Seat: EPDM.

- f. Stem: One- or two-piece stainless steel.
- g. Disc: Aluminum bronze.
- B. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Ductile-Iron Disc:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
    - b. American Valve, Inc.
    - c. Conbraco Industries, Inc.; Apollo Valves.
    - d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
    - e. Crane Co.; Crane Valve Group; Center Line.
    - f. Crane Co.; Crane Valve Group; Stockham Division.
    - g. DeZurik Water Controls.
    - h. Flo Fab Inc.
    - Hammond Valve.
    - j. Kitz Corporation.
    - k. Milwaukee Valve Company.
    - I. Mueller Steam Specialty; a division of SPX Corporation.
    - m. NIBCO INC.
    - n. Norriseal; a Dover Corporation company.
    - o. Spence Strainers International; a division of CIRCOR International, Inc.
    - p. Sure Flow Equipment Inc.
    - q. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
  - 2. Description:
    - a. Standard: MSS SP-67, Type I.
    - b. CWP Rating: 200 psig.
    - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
    - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
    - e. Seat: EPDM.
    - f. Stem: One- or two-piece stainless steel.
    - g. Disc: Nickel-plated or -coated ductile iron.
- C. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the:
    - a. ABZ Valve and Controls; a division of ABZ Manufacturing, Inc.
    - b. American Valve, Inc.
    - c. Conbraco Industries, Inc.; Apollo Valves.
    - d. Cooper Cameron Valves; a division of Cooper Cameron Corporation.
    - e. Crane Co.; Crane Valve Group; Jenkins Valves.
    - f. Crane Co.; Crane Valve Group; Stockham Division.
    - g. DeZurik Water Controls.
    - h. Flo Fab Inc.

- i. Hammond Valve.
- Kitz Corporation.
- k. Milwaukee Valve Company.
- I. Mueller Steam Specialty; a division of SPX Corporation.
- m. NIBCO INC.
- n. Norriseal; a Dover Corporation company.
- o. Red-White Valve Corporation.
- p. Spence Strainers International; a division of CIRCOR International, Inc.
- q. Sure Flow Equipment Inc.
- r. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

- a. Standard: MSS SP-67, Type I.
- b. CWP Rating: 200 psig.
- c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
- d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
- e. Seat: EPDM.
- f. Stem: One- or two-piece stainless steel.
- g. Disc: Stainless steel.

# 2.5 IRON, GROOVED-END BUTTERFLY VALVES

- A. 175 CWP, Iron, Grooved-End Butterfly Valves:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Kennedy Valve; a division of McWane, Inc.
    - b. Shurjoint Piping Products.
    - c. Tyco Fire Products LP; Grinnell Mechanical Products.
    - d. Victaulic Company.
  - 2. Description:
    - a. Standard: MSS SP-67, Type I.
    - b. CWP Rating: 175 psig.
    - c. Body Material: Coated, ductile iron.
    - d. Stem: Two-piece stainless steel.
    - e. Disc: Coated, ductile iron.
    - f. Seal: EPDM.
- B. 300 CWP, Iron, Grooved-End Butterfly Valves:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Anvil International, Inc.
    - b. Kennedy Valve; a division of McWane, Inc.
    - c. Mueller Steam Specialty; a division of SPX Corporation.
    - d. NIBCO INC.

- e. Shurjoint Piping Products.
- f. Tyco Fire Products LP; Grinnell Mechanical Products.
- g. Victaulic Company.

- a. Standard: MSS SP-67, Type I.
- b. NPS 8 and Smaller CWP Rating: 300 psig.
- c. NPS 10 and Larger CWP Rating: 200 psig.
- d. Body Material: Coated, ductile iron.
- e. Stem: Two-piece stainless steel.
- f. Disc: Coated, ductile iron.
- a. Seal: EPDM.

#### 2.6 BRONZE LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Bronze Disc:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Crane Co.; Crane Valve Group; Crane Valves.
    - b. Crane Co.; Crane Valve Group; Jenkins Valves.
    - c. Crane Co.; Crane Valve Group; Stockham Division.
  - 2. Description:
    - a. Standard: MSS SP-80, Type 1.
    - b. CWP Rating: 200 psig.
    - c. Body Design: Vertical flow.
    - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
    - e. Ends: Threaded.
    - f. Disc: Bronze.

## 2.7 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Valve, Inc.
    - b. Crane Co.; Crane Valve Group; Crane Valves.
    - c. Crane Co.; Crane Valve Group; Jenkins Valves.
    - d. Crane Co.; Crane Valve Group; Stockham Division.
    - e. Hammond Valve.
    - f. Kitz Corporation.
    - g. Milwaukee Valve Company.
    - h. NIBCO INC.
    - i. Powell Valves.
    - j. Red-White Valve Corporation.
    - k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
    - Zy-Tech Global Industries, Inc.

- a. Standard: MSS SP-80, Type 3.
- b. CWP Rating: 200 psig.
- c. Body Design: Horizontal flow.
- d. Body Material: ASTM B 62, bronze.
- e. Ends: Threaded.
- f. Disc: Bronze.
- B. Class 150, Bronze Swing Check Valves with Bronze Disc:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Valve, Inc.
    - b. Crane Co.; Crane Valve Group; Crane Valves.
    - c. Crane Co.; Crane Valve Group; Jenkins Valves.
    - d. Crane Co.; Crane Valve Group; Stockham Division.
    - e. Kitz Corporation.
    - f. Milwaukee Valve Company.
    - g. NIBCO INC.
    - h. Red-White Valve Corporation.
    - i. Zy-Tech Global Industries, Inc.
  - 2. Description:
    - a. Standard: MSS SP-80, Type 3.
    - b. CWP Rating: 300 psig.
    - c. Body Design: Horizontal flow.
    - d. Body Material: ASTM B 62, bronze.
    - e. Ends: Threaded.
    - f. Disc: Bronze.

## 2.8 IRON SWING CHECK VALVES

- A. Class 125, Iron Swing Check Valves with Metal Seats:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Crane Co.; Crane Valve Group; Crane Valves.
    - b. Crane Co.; Crane Valve Group; Jenkins Valves.
    - c. Crane Co.; Crane Valve Group; Stockham Division.
    - d. Hammond Valve.
    - e. Kitz Corporation.
    - f. Milwaukee Valve Company.
    - g. NIBCO INC.
    - h. Powell Valves.
    - i. Red-White Valve Corporation.
    - j. Sure Flow Equipment Inc.
    - k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

- I. Zy-Tech Global Industries, Inc.
- 2. Description:
  - a. Standard: MSS SP-71, Type I.
  - b. CWP Rating: 200 psig.
  - c. Body Design: Clear or full waterway.
  - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
  - e. Ends: Flanged.
  - f. Trim: Bronze.
  - g. Gasket: Asbestos free.
- B. Class 250, Iron Swing Check Valves with Metal Seats:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Crane Co.; Crane Valve Group; Crane Valves.
    - b. Crane Co.; Crane Valve Group; Jenkins Valves.
    - c. Crane Co.; Crane Valve Group; Stockham Division.
    - d. Hammond Valve.
    - e. Milwaukee Valve Company.
    - f. NIBCO INC.
    - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
  - 2. Description:
    - a. Standard: MSS SP-71, Type I.
    - b. CWP Rating: 500 psig.
    - c. Body Design: Clear or full waterway.
    - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
    - e. Ends: Flanged.
    - f. Trim: Bronze.
    - g. Gasket: Asbestos free.

# 2.9 IRON, GROOVED-END SWING CHECK VALVES

- A. 300 CWP, Iron, Grooved-End Swing Check Valves:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Anvil International, Inc.
    - b. Shurjoint Piping Products.
    - c. Tyco Fire Products LP; Grinnell Mechanical Products.
    - d. Victaulic Company.
  - 2. Description:
    - a. CWP Rating: 300 psig.
    - b. Body Material: ASTM A 536, ductile iron.
    - c. Seal: EPDM.
    - d. Disc: Spring-operated, ductile iron or stainless steel.

## 2.10 BRONZE GLOBE VALVES

- A. Class 125, Bronze Globe Valves with Bronze Disc:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Crane Co.; Crane Valve Group; Crane Valves.
    - b. Crane Co.; Crane Valve Group; Stockham Division.
    - c. Hammond Valve.
    - d. Kitz Corporation.
    - e. Milwaukee Valve Company.
    - f. NIBCO INC.
    - g. Powell Valves.
    - h. Red-White Valve Corporation.
    - i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
    - j. Zy-Tech Global Industries, Inc.

## 2. Description:

- a. Standard: MSS SP-80, Type 1.
- b. CWP Rating: 200 psig.
- c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
- d. Ends: Threaded or solder joint.
- e. Stem and Disc: Bronze.
- f. Packing: Asbestos free.
- g. Handwheel: Malleable iron, bronze, or aluminum.

## 2.11 IRON GLOBE VALVES

- A. Class 125, Iron Globe Valves:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Crane Co.; Crane Valve Group; Crane Valves.
    - b. Crane Co.; Crane Valve Group; Jenkins Valves.
    - c. Crane Co.; Crane Valve Group; Stockham Division.
    - d. Hammond Valve.
    - e. Kitz Corporation.
    - f. Milwaukee Valve Company.
    - g. NIBCO INC.
    - h. Powell Valves.
    - Red-White Valve Corporation.
    - j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
    - k. Zy-Tech Global Industries, Inc.
  - 2. Description:
    - a. Standard: MSS SP-85, Type I.
    - b. CWP Rating: 200 psig.
    - c. Body Material: ASTM A 126, gray iron with bolted bonnet.

- d. Ends: Flanged.
- e. Trim: Bronze.
- f. Packing and Gasket: Asbestos free.

#### B. Class 250, Iron Globe Valves:

- Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. Crane Co.; Crane Valve Group; Crane Valves.
  - b. Crane Co.; Crane Valve Group; Jenkins Valves.
  - c. Crane Co.; Crane Valve Group; Stockham Division.
  - d. Hammond Valve.
  - e. Milwaukee Valve Company.
  - f. NIBCO INC.
  - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

## 2. Description:

- a. Standard: MSS SP-85, Type I.
- b. CWP Rating: 500 psig.
- c. Body Material: ASTM A 126, gray iron with bolted bonnet.
- d. Ends: Flanged.
- e. Trim: Bronze.
- f. Packing and Gasket: Asbestos free.

## **PART 3 - EXECUTION**

## 3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

#### 3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
  - 1. Swing Check Valves: In horizontal position with hinge pin level.
  - 2. Lift Check Valves: With stem upright and plumb.

# 3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

# 3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
  - 1. Shutoff Service: Ball, butterfly, or gate valves.
  - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
  - 3. Throttling Service Globe, angle, ball or butterfly valves.
  - 4. Pump-Discharge Check Valves:
    - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
    - b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight check valves.
    - c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
  - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.
  - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
  - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
  - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
  - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
  - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.
  - 7. For Grooved-End Copper Tubing and Steel Piping: Valve ends may be grooved.

# 3.5 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

- A. Pipe NPS 2 and Smaller:
  - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
  - 2. Ball Valves: One, Two, or Three piece, full, regular or reduced port, with brass, bronze or stainless-steel trim.
  - 3. Bronze Lift Check Valves: Class 125, bronze disc.
  - 4. Bronze Swing Check Valves: Class 125, bronze disc.
- B. Pipe NPS 2-1/2 and Larger:
  - Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends
  - 2. Iron, Single-Flange Butterfly Valves: 200 CWP, NBR seat, aluminum-bronze, ductile-iron or stainless-steel disc.
  - 3. Iron Swing Check Valves: Class 125, metal seats.
  - 4. Iron, Grooved-End Swing Check Valves: 300 CWP.

# 3.6 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

- 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
- 2. Bronze Angle Valves: Class 125 or Class 150, bronze disc.
- 3. Ball Valves: One, Two or Three piece, full or, regular port, bronze with bronze or stainless-steel trim.
- 4. Bronze Swing Check Valves: Class 125 or Class 150, bronze disc.
- 5. Bronze Globe Valves: Class 125 or Class 150, bronze disc.

# B. Pipe NPS 2-1/2 and Larger:

- Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
- 2. Ball Valves: One, Two or Three piece, full or, regular port, bronze with bronze or stainless-steel trim.
- 3. Iron, Single-Flange Butterfly Valves: 200 CWP, EPDM seat, aluminum-bronze, ductile-iron or stainless-steel disc.
- 4. Iron, Grooved-End Butterfly Valves: 175 or 300 CWP.
- 5. Iron Swing Check Valves: Class 125 or Class 250, metal seats.
- 6. Iron, Grooved-End Swing Check Valves: 300 CWP.
- 7. Iron Globe Valves: Class 125 or Class 250.

**END OF SECTION 22 0523** 

## **SECTION 22 0529**

## HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. This Section includes the following hangers and supports for plumbing system piping and equipment:
  - 1. Steel pipe hangers and supports.
  - 2. Trapeze pipe hangers.
  - 3. Metal framing systems.
  - 4. Thermal-hanger shield inserts.
  - 5. Fastener systems.
  - 6. Pipe stands.
  - 7. Pipe positioning systems.
  - 8. Equipment supports.
- B. Related Sections include the following:
  - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
  - Division 21 Section "Water-Based Fire-Suppression Systems" for pipe hangers for firesuppression piping.
  - 3. Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.
  - 4. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

# 1.3 **DEFINITIONS**

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

# 1.4 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.

# 1.5 PERFORMANCE REQUIREMENTS

A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

# 1.6 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For the following:
  - 1. Steel pipe hangers and supports.
  - 2. Thermal-hanger shield inserts.
  - 3. Powder-actuated fastener systems.
  - 4. Pipe positioning systems.
  - Mechanical Anchors: ICC-ES Evaluation Reports validating 'Cracked Concrete' testing per A.C. 193 must be provided for anchors resisting seismic loads and/or supporting lifesafety systems including fire sprinkler systems.
- C. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
  - 1. Trapeze pipe hangers. Include Product Data for components.
  - 2. Metal framing systems. Include Product Data for components.
  - 3. Pipe stands. Include Product Data for components.
  - 4. Equipment supports.
- D. Welding certificates.

# E. Delegated-Design Submittal:

- 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
- 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
- 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
- 4. Seismic calculations and detailed analysis: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. Project specific design documentation and calculations shall be prepared and stamped by a registered professional engineer who is responsible for the seismic restraint design and who is licensed in the state where the project is being constructed (ASCE 7, 13.2.1.1).

# 1.7 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel.", AWS D1.4, "Structural Welding Code--Reinforcing Steel." and ASME Boiler and Pressure Vessel Code: Section IX.
- B. Welding: Qualify procedures and personnel according to the following:
  - 1. AWS D1.1, "Structural Welding Code--Steel."
  - 2. AWS D1.2, "Structural Welding Code--Aluminum."
  - 3. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
  - 4. ASME Boiler and Pressure Vessel Code: Section IX.

#### **PART 2 - PRODUCTS**

# 2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

# 2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
  - 1. Anvil International.
  - 2. AAA Technology & Specialties Co., Inc.
  - 3. Bergen-Power Pipe Supports.
  - 4. B-Line Systems, Inc.; a division of Cooper Industries.
  - 5. Carpenter & Paterson, Inc.
  - 6. Empire Industries, Inc.
  - 7. ERICO/Michigan Hanger Co.
  - 8. FNW/Ferguson Enterprises
  - 9. Globe Pipe Hanger Products, Inc.
  - 10. Grinnell Corp.
  - 11. GS Metals Corp.
  - 12. National Pipe Hanger Corporation.
  - 13. PHD Manufacturing, Inc.
  - 14. PHS Industries, Inc.
  - 15. Piping Technology & Products, Inc.
  - 16. Tolco Inc.
  - 17. Simpson Strong-Tie Co.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

# 2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

## 2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
  - 1. Anvil International.
  - 2. B-Line Systems, Inc.; a division of Cooper Industries.
  - 3. ERICO/Michigan Hanger Co.; ERISTRUT Div.
  - 4. FNW/Ferguson Enterprises
  - 5. GS Metals Corp.
  - 6. Hilti, Inc.
  - 7. Power-Strut Div.; Tyco International, Ltd.
  - 8. Thomas & Betts Corporation.
  - 9. Tolco Inc.
  - 10. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

# 2.5 THERMAL-HANGER SHIELD INSERTS

- Description: 100-psig- minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
  - 1. Carpenter & Paterson, Inc.
  - 2. ERICO/Michigan Hanger Co.
  - 3. PHS Industries, Inc.
  - 4. Pipe Shields, Inc.
  - 5. Rilco Manufacturing Company, Inc.
  - 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

# 2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
  - 1. Manufacturers:

- a. Hilti, Inc.
- b. MKT Fastening, LLC.
- c. Powers Fasteners.
- d. Simpson Strong-Tie Co.
- B. Mechanical-Expansion Anchors and Concrete Screws: Insert-wedge-type stainless steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used. For anchors resisting seismic loads and/or supporting life- safety systems including fire sprinkler systems, Anchors shall have been tested for 'Cracked Concrete' per A.C. 193 per a valid ICC-ES Evaluation Report. Manufacturers with these anchors have been designated below with: '\*'
  - 1. Manufacturers:
    - a. B-Line Systems, Inc.; a division of Cooper Industries.
    - b. Empire Industries, Inc.
    - c. Hilti, Inc.
    - d. ITW Ramset/Red Head.
    - e. MKT Fastening, LLC.
    - f. Powers Fasteners.
    - g. Simpson Strong-Tie Co. \*

# 2.7 PIPE STAND FABRICATION

- A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
  - 1. Manufacturers:
    - a. Anvil International.
    - b. ERICO/Michigan Hanger Co.
    - c. MIRO Industries.
    - d. Unipure
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
  - 1. Manufacturers:
    - a. MIRO Industries.
- D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
  - 1. Manufacturers:
    - a. Anvil International.
    - b. ERICO/Michigan Hanger Co.
    - c. MIRO Industries.
    - d. Portable Pipe Hangers.
  - 2. Base: Stainless steel.
  - Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuousthread rods.

- 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
  - 1. Manufacturers:
    - a. Anvil International.
    - b. Portable Pipe Hangers.
  - 2. Bases: One or more plastic.
  - 3. Vertical Members: Two or more protective-coated-steel channels.
  - 4. Horizontal Member: Protective-coated-steel channel.
  - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe support made from structural-steel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.

# 2.8 PIPE POSITIONING SYSTEMS

- A. Description: IAPMO PS 42, system of metal brackets, clips, and straps for positioning piping in pipe spaces for plumbing fixtures for commercial applications.
- B. Manufacturers:
  - 1. C & S Mfg. Corp.
  - 2. HOLDRITE Corp.; Hubbard Enterprises.
  - 3. Samco Stamping, Inc.

## 2.9 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

## 2.10 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
  - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
  - 2. Design Mix: 5000-psi, 28-day compressive strength.

# **PART 3 - EXECUTION**

# 3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
- 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
- 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
- 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
- 11. Extension Hinged or 2-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.
- 16. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
- 17. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2-1/2 to NPS 20, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes, NPS 2 to NPS 24, if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes, NPS 2 to NPS 30, if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
  - Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
  - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
  - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
  - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
  - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - Steel or Malleable Concrete Inserts (MSS Type 18 or Simpson Blue Banger Concrete insert with UL & FM approvals): For upper attachment to suspend pipe hangers from concrete ceiling.
  - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
  - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
  - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
  - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
  - 6. C-Clamps (MSS Type 23): For structural shapes.
  - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
  - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
  - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
  - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
  - 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
  - 12. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
    - a. Light (MSS Type 31): 750 lb.
    - b. Medium (MSS Type 32): 1500 lb.
    - c. Heavy (MSS Type 33): 3000 lb.
  - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
  - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
  - Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
  - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
  - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
  - Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
  - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
  - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
  - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from hanger.
  - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
  - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from trapeze support.
  - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
    - a. Horizontal (MSS Type 54): Mounted horizontally.
    - b. Vertical (MSS Type 55): Mounted vertically.
    - Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- O. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

## 3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
  - B. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

- C. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
  - Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
  - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- E. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- F. Fastener System Installation:
  - Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Powder actuated fasteners shall not be used for seismic bracing attachments.
  - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. For anchors resisting seismic loads and/or supporting life-safety systems including fire sprinkler systems, anchors shall have been tested for 'Cracked Concrete' per A.C. 193 and shall have a valid ICC-ES Evaluation Report
- G. Pipe Stand Installation:
  - 1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
  - Curb-Mounting-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. Refer to Division 07 Section "Roof Accessories" for curbs.
- H. Pipe Positioning System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. Refer to Division 22 Section "Plumbing Fixtures" for plumbing fixtures.
- I. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- J. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- K. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- L. Install lateral bracing with pipe hangers and supports to prevent swaying.
- M. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- N. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- O. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.
- P. Insulated Piping: Comply with the following:

- 1. Attach clamps and spacers to piping.
  - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
  - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
  - c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
  - Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
  - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
  - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
  - b. NPS 4: 12 inches long and 0.06 inch thick.
  - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
  - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
  - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood inserts.
- 6. Insert Material: Length at least as long as protective shield.
- 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

# 3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports. For applications where seismic bracing is required, 'Cracked Concrete' expansion anchors or concrete screws tested per A.C. 193 must be provided for seismic bracing anchorage where post-installed anchors are required.

## 3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
  - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
  - 2. Obtain fusion without undercut or overlap.
  - 3. Remove welding flux immediately.

4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

# 3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches .

# 3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
  - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

# **END OF SECTION 22 0529**

# **SECTION 22 0548**

# VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

# 1.2 SUMMARY

- A. This Section includes the following restraints and vibration isolation as defined in Section 230548 "Vibration Isolation and Seismic Controls for HVAC" for the following:
  - 1. Plumbing Piping.
  - 2. Plumbing Equipment.

**PART 2 - PRODUCTS** 

2.1 (NOT USED)

**PART 3 - EXECUTION** 

3.1 (NOT USED)

**END OF SECTION 22 0548** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

#### **SECTION 22 0553**

## IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Equipment labels.
  - 2. Warning signs and labels.
  - 3. Pipe labels.
  - 4. Stencils.
  - 5. Valve tags.
  - 6. Warning tags.
  - 7. Ceiling grid

## 1.3 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. Samples: For color, letter style, and graphic representation required for each identification material and device.
- D. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- E. Valve numbering scheme.
- F. Valve Schedules: For each piping system to include in maintenance manuals.

# 1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

## **PART 2 - PRODUCTS**

# 2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
  - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
  - 2. Letter Color: White.
  - 3. Background Color: Blue.
  - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
  - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
  - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering

- for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

# 2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

# 2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
  - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
  - 2. Lettering Size: At least 1-1/2 inches high.

# 2.4 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.
  - 1. Stencil Material: Fiberboard or metal.

- 2. Stencil Paint: Exterior, gloss, alkyd enamel black unless otherwise indicated. Paint may be in pressurized spray-can form.
- Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

## 2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
  - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
  - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
  - 1. Valve-tag schedule shall be included in operation and maintenance data.

## 2.6 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
  - 1. Size: 3 by 5-1/4 inches minimum.
  - 2. Fasteners: Brass grommet and wire.
  - Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
  - 4. Color: Yellow background with black lettering.

# 2.7 CEILING GRID

A. Provide valve identification for all plumbing valves located above the ceiling on the ceiling grid below the valve.

# **PART 3 - EXECUTION**

## 3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

# 3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

## 3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09.
- B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.
  - 1. Identification Paint: Use for contrasting background.
  - 2. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

- 1. Near each valve and control device.
- 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
- 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
- At access doors, manholes, and similar access points that permit view of concealed piping.
- 5. Near major equipment items and other points of origination and termination.
- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Pipe Label Color Schedule:
  - 1. Low-Pressure, Compressed-Air Piping:
    - a. Background Color: Comply with ASME A13.1.
    - b. Letter Color: Comply with ASME A13.1.
  - 2. Medium-Pressure, Compressed-Air Piping:
    - a. Background Color: Comply with ASME A13.1.
    - b. Letter Color: Comply with ASME A13.1.
  - 3. Domestic Water Piping:
    - a. Background Color: Comply with ASME A13.1.
    - b. Letter Color: Comply with ASME A13.1.
  - 4. Sanitary Waste and Storm Drainage Piping:
    - a. Background Color: Comply with ASME A13.1.
    - b. Letter Color: Comply with ASME A13.1.

# 3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawnwatering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
  - 1. Valve-Tag Size and Shape:
    - a. Cold Water: 1-1/2 inches, round.
    - b. Hot Water: 1-1/2 inches, round.
    - c. Low-Pressure Compressed Air: 1-1/2 inches, round.
    - d. High-Pressure Compressed Air: 1-1/2 inches, round.
  - 2. Valve-Tag Color:
    - a. Cold Water: Comply with ASME A13.1.
    - b. Hot Water: Comply with ASME A13.1.
    - c. Low-Pressure Compressed Air: Comply with ASME A13.1.
    - d. High-Pressure Compressed Air: Comply with ASME A13.1.
  - 3. Letter Color:
    - a. Cold Water: Comply with ASME A13.1.

- b. Hot Water: Comply with ASME A13.1.
- c. Low-Pressure Compressed Air: Comply with ASME A13.1.
- d. High-Pressure Compressed Air: Comply with ASME A13.1.

# 3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

# **END OF SECTION 22 0553**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 0700 PLUMBING INSULATION

## **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - Insulation Materials:
    - a. Flexible elastomeric.
    - b. Mineral fiber.
  - 2. Adhesives.
  - 3. Lagging adhesives.
  - 4. Sealants.
  - 5. Factory-applied jackets.
  - 6. Field-applied fabric-reinforcing mesh.
  - 7. Field-applied jackets.
  - 8. Tapes.
  - 9. Securements.
  - 10. Corner angles.
- B. Related Sections include the following:
  - 1. Division 23 Section "HVAC Insulation."

# 1.3 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
- C. Shop Drawings:
  - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
  - 2. Detail attachment and covering of heat tracing inside insulation.
  - 3. Detail insulation application at pipe expansion joints for each type of insulation.
  - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
  - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
  - 6. Detail application of field-applied jackets.
- D. Qualification Data: For qualified Installer.

- E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- F. Field quality-control reports.

# 1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
  - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
  - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

# 1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

## 1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

## 1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

## **PART 2 - PRODUCTS**

# 2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

- F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
  - Products: Subject to compliance with requirements, provide one of the following:
    - Aeroflex USA Inc.; Aerocel.
    - b. Armacell LLC; AP Armaflex.
    - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. CertainTeed Corp.; Duct Wrap.
    - b. Johns Manville; Microlite.
    - c. Knauf Insulation; Duct Wrap.
    - d. Manson Insulation Inc.; Alley Wrap.
    - e. Owens Corning; All-Service Duct Wrap.
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. CertainTeed Corp.; Commercial Board.
    - b. Fibrex Insulations Inc.; FBX.
    - c. Johns Manville; 800 Series Spin-Glas.
    - d. Knauf Insulation; Insulation Board.
    - e. Manson Insulation Inc.; AK Board.
    - f. Owens Corning; Fiberglass 700 Series.
- I. Mineral-Fiber, Preformed Pipe Insulation:
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. Fibrex Insulations Inc.; Coreplus 1200.
    - b. Johns Manville; Micro-Lok.
    - c. Knauf Insulation; 1000(Pipe Insulation.
    - d. Manson Insulation Inc.; Alley-K.
    - e. Owens Corning; Fiberglas Pipe Insulation.
  - 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- J. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. CertainTeed Corp.; CrimpWrap.

- b. Johns Manville; MicroFlex.
- c. Knauf Insulation; Pipe and Tank Insulation.
- d. Manson Insulation Inc.; AK Flex.
- e. Owens Corning; Fiberglas Pipe and Tank Insulation.

#### 2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. Aeroflex USA Inc.; Aeroseal.
    - b. Armacell LCC; 520 Adhesive.
    - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
    - d. RBX Corporation; Rubatex Contact Adhesive.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Products, Division of ITW; CP-82.
    - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
    - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
    - d. Marathon Industries, Inc.; 225.
    - e. Mon-Eco Industries, Inc.; 22-25.
- D. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
  - Products: Subject to compliance with requirements, provide one of the following:
    - Childers Products, Division of ITW; CP-82.
    - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
    - c. ITW TACC. Division of Illinois Tool Works: S-90/80.
    - d. Marathon Industries, Inc.; 225.
    - e. Mon-Eco Industries, Inc.; 22-25.
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Dow Chemical Company (The); 739, Dow Silicone.
    - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
    - c. P.I.C. Plastics, Inc.; Welding Adhesive.
    - d. Red Devil, Inc.; Celulon Ultra Clear.
    - e. Speedline Corporation; Speedline Vinyl Adhesive.

# 2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
  - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Products, Division of ITW; CP-35.
- b. Foster Products Corporation, H. B. Fuller Company; 30-90.
- c. ITW TACC, Division of Illinois Tool Works; CB-50.
- d. Marathon Industries, Inc.; 590.
- e. Mon-Eco Industries, Inc.; 55-40.
- f. Vimasco Corporation; 749.
- 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Products, Division of ITW; Encacel.
    - b. Foster Products Corporation, H. B. Fuller Company; 60-95/60-96.
    - c. Marathon Industries, Inc.; 570.
    - d. Mon-Eco Industries, Inc.; 55-70.
  - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
  - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
  - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
  - 5. Color: White.

# 2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Products. Division of ITW: CP-52.
    - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
    - c. Marathon Industries, Inc.; 130.
    - d. Mon-Eco Industries, Inc.; 11-30.
    - e. Vimasco Corporation; 136.
  - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment and pipe insulation.
  - 3. Service Temperature Range: Minus 50 to plus 180 deg F.
  - 4. Color: White.

# 2.5 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Products, Division of ITW; CP-76-8.
    - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
    - c. Marathon Industries, Inc.; 405.
    - d. Mon-Eco Industries, Inc.; 44-05.

- e. Vimasco Corporation; 750.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Products, Division of ITW; CP-76.
  - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
  - 3. Fire- and water-resistant, flexible, elastomeric sealant.
  - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
  - 5. Color: White.

# 2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
  - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
  - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
  - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
  - 4. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
    - a. Products: Subject to compliance with requirements, provide the following:
      - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.
  - 5. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
    - a. Products: Subject to compliance with requirements, provide the following:
      - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.
  - 6. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
    - a. Products: Subject to compliance with requirements, provide the following:
      - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

# 2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. Johns Manville; Zeston.
    - b. P.I.C. Plastics, Inc.; FG Series.
    - c. Proto PVC Corporation; LoSmoke.
    - d. Speedline Corporation; SmokeSafe.
  - 2. Adhesive: As recommended by jacket material manufacturer.
  - Color: White.
  - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
    - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
  - 5. Factory-fabricated tank heads and tank side panels.

# C. Metal Jacket:

- 1. Products: Subject to compliance with requirements, provide one of the following:
  - a. Childers Products, Division of ITW; Metal Jacketing Systems.
  - b. PABCO Metals Corporation; Surefit.
  - c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
  - a. Sheet and roll stock ready for shop or field sizing or Factory cut and rolled to size.
  - b. Finish and thickness are indicated in field-applied jacket schedules.
  - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
  - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
  - e. Factory-Fabricated Fitting Covers:
    - 1) Same material, finish, and thickness as jacket.
    - Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
    - Tee covers.
    - Flange and union covers.
    - 5) End caps.
    - Beveled collars.
    - Valve covers.
    - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

# 2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
  - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
- b. Compac Corp.; 104 and 105.
- c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
- d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
- 2. Width: 3 inches.
- 3. Thickness: 11.5 mils.
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
    - b. Compac Corp.; 110 and 111.
    - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
    - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
  - 2. Width: 3 inches.
  - 3. Thickness: 6.5 mils.
  - 4. Adhesion: 90 ounces force/inch in width.
  - 5. Elongation: 2 percent.
  - 6. Tensile Strength: 40 lbf/inch in width.
  - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
    - b. Compac Corp.; 130.
    - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
    - d. Venture Tape; 1506 CW NS.
  - 2. Width: 2 inches.
  - 3. Thickness: 6 mils.
  - 4. Adhesion: 64 ounces force/inch in width.
  - 5. Elongation: 500 percent.
  - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
    - b. Compac Corp.; 120.
    - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
    - d. Venture Tape; 3520 CW.

- 2. Width: 2 inches.
- 3. Thickness: 3.7 mils.
- 4. Adhesion: 100 ounces force/inch in width.
- 5. Elongation: 5 percent.
- 6. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape: White vapor-retarder PVDC tape with acrylic adhesive.
  - 1. Products: Subject to compliance with requirements, provide the following:
    - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Tape.
  - 2. Width: 3 inches.
  - 3. Film Thickness: 4 mils.
  - 4. Adhesive Thickness: 1.5 mils.
  - 5. Elongation at Break: 145 percent.
  - 6. Tensile Strength: 55 lbf/inch in width.

## 2.9 SECUREMENTS

- A. Bands:
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - Childers Products; Bands.
    - b. PABCO Metals Corporation; Bands.
    - c. RPR Products, Inc.; Bands.
  - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
  - 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.
  - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
  - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
    - a. Products: Subject to compliance with requirements, provide one of the following:
      - 1) AGM Industries, Inc.; CWP-1.
      - 2) GEMCO: CD.
      - 3) Midwest Fasteners, Inc.; CD.
      - 4) Nelson Stud Welding; TPA, TPC, and TPS.
  - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
    - a. Products: Subject to compliance with requirements, provide one of the following:
      - 1) AGM Industries, Inc.; CWP-1.
      - 2) GEMCO; Cupped Head Weld Pin.
      - 3) Midwest Fasteners, Inc.; Cupped Head.
      - Nelson Stud Welding; CHP.

- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
  - a. Products: Subject to compliance with requirements, provide one of the following:
    - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
    - 2) GEMCO; Perforated Base.
    - 3) Midwest Fasteners, Inc.; Spindle.
  - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
  - c. Spindle: Aluminum or Stainless steel, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
  - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
  - a. Products: Subject to compliance with requirements, provide one of the following:
    - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
    - 2) GEMCO; Press and Peel.
    - 3) Midwest Fasteners, Inc.; Self Stick.
  - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
  - c. Spindle: Aluminum or Stainless steel], fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
  - d. Adhesive-backed base with a peel-off protective cover.
- 5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, aluminum or stainless-steel] sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
  - a. Products: Subject to compliance with requirements, provide one of the following:
    - 1) AGM Industries, Inc.; RC-150.
    - 2) GEMCO; R-150.
    - 3) Midwest Fasteners, Inc.; WA-150.
    - 4) Nelson Stud Welding; Speed Clips.
  - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy or 0.062-inch soft-annealed, stainless steel.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. C & F Wire.
    - b. Childers Products.
    - c. PABCO Metals Corporation.
    - d. RPR Products, Inc.

# **PART 3 - EXECUTION**

# 3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
  - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
  - 2. Verify that surfaces to be insulated are clean and dry.
  - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

#### 3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

## 3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
  - 1. Install insulation continuously through hangers and around anchor attachments.
  - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
  - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
  - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:

- 1. Draw jacket tight and smooth.
- 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
  - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
  - 1. Vibration-control devices.
  - 2. Testing agency labels and stamps.
  - 3. Nameplates and data plates.
  - 4. Manholes.
  - 5. Handholes.
  - Cleanouts.

# 3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
  - 1. Seal penetrations with flashing sealant.
  - For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
  - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
  - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
  - 1. Seal penetrations with flashing sealant.
  - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation,

- install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
  - 1. Comply with requirements in Division 07 Section "Penetration Firestopping"irestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
  - 1. Pipe: Install insulation continuously through floor penetrations.
  - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

# 3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

- A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
  - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
  - Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
  - 3. Protect exposed corners with secured corner angles.
  - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
    - a. Do not weld anchor pins to ASME-labeled pressure vessels.
    - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
    - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
    - d. Do not overcompress insulation during installation.
    - Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
    - f. Impale insulation over anchor pins and attach speed washers.
    - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
  - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
  - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around

outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.

- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

# B. Insulation Installation on Pumps:

- 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch- diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
- 2. Fabricate boxes from aluminum or stainless steel, at least 0.040 inch thick.
- 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

# 3.6 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
  - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
  - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
  - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
  - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
  - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
  - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
  - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
  - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
  - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
  - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

# 3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
  - 1. Install pipe insulation to outer diameter of pipe flange.
  - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
  - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
  - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

- C. Insulation Installation on Pipe Fittings and Elbows:
  - 1. Install mitered sections of pipe insulation.
  - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
  - Install preformed valve covers manufactured of same material as pipe insulation when available.
  - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
  - 3. Install insulation to flanges as specified for flange insulation application.
  - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

## 3.8 MINERAL-FIBER INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
  - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
  - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
  - 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
  - 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
  - 1. Install preformed pipe insulation to outer diameter of pipe flange.
  - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
  - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
  - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
  - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
  - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
  - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
  - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.

- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

# 3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
  - 1. Draw jacket material smooth and tight.
  - 2. Install lap or joint strips with same material as jacket.
  - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
  - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
  - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
  - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- D. Where PVDC jackets are indicated, install as follows:
  - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
  - 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
  - 3. Continuous jacket can be spiral wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
  - 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
  - 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

## 3.10 FINISHES

- A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
  - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
    - a. Finish Coat Material: Interior, flat, latex-emulsion size.

- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.
- 3.11 Insulation shall have a k value that meets the minimum requirements of the latest International Energy Conservation Code (IECC).

## 3.12 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.
- C. Steam-to-hot-water converter insulation shall be one of the following:
  - 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.
  - 2. Mineral-Fiber Pipe and Tank: 2 inches thick.
- D. Unfired Hot Water Storage Tanks
  - 1. Mineral-Fiber Board: 3.5 inches thick and 2-lb/cu. ft. nominal density.
  - 2. Mineral-Fiber Pipe and Tank: 3.5 inches thick.
- E. Domestic water pump insulation shall be the following:
  - 1. Mineral-Fiber Board: 1 inch thick and 2-lb/cu. ft. nominal density.
- F. Domestic hot-water pump insulation shall be the following:
  - 1. Mineral-Fiber Board: 1 inch thick and 2-lb/cu. ft. nominal density.
- G. Domestic water, domestic chilled-water (potable), and domestic hot-water hydropneumatic tank insulation shall be one of the following:
  - 1. Mineral-Fiber Board: 1 inch thick and 2-lb/cu. ft. nominal density.
  - 2. Mineral-Fiber Pipe and Tank: 1 inch thick.

## 3.13 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
  - 1. Drainage piping located in crawl spaces.
  - 2. Underground piping.
  - Chrome-plated pipes and fittings unless there is a potential for personnel injury.

## 3.14 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
  - 1. NPS 1-1/2 and Smaller: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch
  - 2. NPS 2 and Larger: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch thick.

- B. Domestic Hot and Recirculated Hot Water:
  - 1. NPS 1-1/2 and Smaller: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
  - 2. NPS 2 and Larger: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch thick.
- C. Domestic Chilled Water (Potable):
  - 1. All Pipe Sizes: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
- D. Stormwater and Overflow:
  - All Pipe Sizes: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
- E. Roof Drain and Overflow Drain Bodies:
  - All Pipe Sizes: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.
- F. Condensate and Equipment Drain Water below 60 Deg F:
  - 1. All Pipe Sizes: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.

# 3.15 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Storm Water and Overflow Piping Where Heat Tracing Is Installed:
  - 1. All Pipe Sizes: Insulation shall be the following:
    - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

#### 3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
  - 1. None.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches.
  - 1. Aluminum, Stucco Embossed: 0.016 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
  - 1. Aluminum, Stucco Embossed with 1-1/4-Inch- Deep Corrugations: 0.032 inch thick.
- F. Piping, Concealed:
  - 1. None.
- G. Piping, Exposed:
  - 1. PVC: 20 mils thick.

# 3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

# Logan City School District

- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
  - 1. None.
- D. Piping, Exposed:
  - 1. PVC: 20 mils thick.

**END OF SECTION 22 0700** 

# SECTION 22 0716 PLUMBING EQUIPMENT INSULATION

#### **PART 1 - GENERAL**

#### 1.1 SUMMARY

- A. Section includes insulating the following plumbing equipment:
  - Domestic water heat exchangers.
  - 2. Domestic water converters.
  - 3. Domestic water pumps
  - 4. Domestic water storage tanks.
- B. Related Sections:
  - Division 22 Section "Plumbing Piping Insulation."

#### 1.2 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. LEED Submittals:
  - 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.
  - 2. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that product complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers"
- D. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
  - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
  - 2. Detail attachment and covering of heat tracing inside insulation.
  - 3. Detail removable insulation at equipment connections and access panels.
  - 4. Detail application of field-applied jackets.
  - 5. Detail application at linkages of control devices.
  - 6. Detail field application for each equipment type.

## 1.3 INFORMATIONAL SUBMITTALS

Field quality-control reports.

# 1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
  - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
  - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

## **PART 2 - PRODUCTS**

# 2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Aeroflex USA, Inc.; Aerocel.
    - b. Armacell LLC; AP Armaflex.
    - c. K-Flex USA; Insul-Sheet and K-FLEX LS.
- F. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ or FSK jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. CertainTeed Corp.; CrimpWrap.
    - b. Johns Manville; MicroFlex.
    - c. Knauf Insulation; Pipe and Tank Insulation.
    - d. Manson Insulation Inc.; AK Flex.
    - e. Owens Corning; Fiberglas Pipe and Tank Insulation.
- G. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Armacell LLC; Tubolit.
    - b. Nomaco Insulation; IMCOLOCK, IMCOSHEET, NOMALOCK, and NOMAPLY.

# 2.2 ADHESIVES

В.

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
  - Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
    - 1. Products: Subject to compliance with requirements, provide one of the following:
      - a. Aeroflex USA, Inc.; Aeroseal.
      - b. Armacell LLC; Armaflex 520 Adhesive.
      - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
      - d. K-Flex USA; R-373 Contact Adhesive.
    - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
    - b. Eagle Bridges Marathon Industries; 225.
    - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
    - d. Mon-Eco Industries, Inc.; 22-25.
  - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
    - b. Eagle Bridges Marathon Industries; 225.
    - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
    - d. Mon-Eco Industries, Inc.; 22-25.
  - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. PVC Jacket Adhesive: Compatible with PVC jacket.
  - 1. Products: Subject to compliance with requirements, provide one of the:
    - a. Dow Corning Corporation; 739, Dow Silicone.
    - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
    - c. P.I.C. Plastics, Inc.; Welding Adhesive.
    - d. Speedline Corporation; Polyco VP Adhesive.
  - 2. For indoor applications, use adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

#### 2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

- 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
    - b. Vimasco Corporation; 749.
  - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
  - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
  - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
  - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
    - b. Eagle Bridges Marathon Industries; 550.
    - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
    - d. Mon-Eco Industries, Inc.; 55-50.
    - e. Vimasco Corporation; WC-1/WC-5.
  - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
  - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
  - 4. Solids Content: 60 percent by volume and 66 percent by weight.
  - 5. Color: White.

# 2.4 SEALANTS

- A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
  - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
  - 3. Fire- and water-resistant, flexible, elastomeric sealant.
  - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
  - 5. Color: White.
  - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

# 2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

- 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
- 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
- 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
- 4. PVDC Jacket for Indoor Applications: 4-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
- 5. PVDC Jacket for Outdoor Applications: 6-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
  - a. Products: Subject to compliance with requirements, provide one of the following:
    - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

## 2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Johns Manville; Zeston.
    - b. P.I.C. Plastics, Inc.; FG Series.
    - c. Proto Corporation; LoSmoke.
    - d. Speedline Corporation; SmokeSafe.
  - 2. Adhesive: As recommended by jacket material manufacturer.
  - 3. Color: Color-code jackets based on system. .
  - 4. Factory-fabricated tank heads and tank side panels.

# C. Metal Jacket:

- 1. Products: Subject to compliance with requirements, provide one of the following:
  - a. Childers Products, Division of ITW; Metal Jacketing Systems.
  - b. PABCO Metals Corporation; Surefit.
  - c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
  - a. Sheet and roll stock ready for shop or field sizing or Factory cut and rolled to size.
  - b. Finish and thickness are indicated in field-applied jacket schedules.
  - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
  - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
  - e. Factory-Fabricated Fitting Covers:

- 1) Same material, finish, and thickness as jacket.
- Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
- 3) Tee covers.
- 4) Flange and union covers.
- 5) End caps.
- Beveled collars.
- Valve covers.
- 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

## 2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. ABI, Ideal Tape Division; 428 AWF ASJ.
    - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
    - c. Compac Corporation; 104 and 105.
    - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
  - 2. Width: 3 inches.
  - 3. Thickness: 11.5 mils.
  - 4. Adhesion: 90 ounces force/inch in width.
  - 5. Elongation: 2 percent.
  - 6. Tensile Strength: 40 lbf/inch in width.
  - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
  - 1. Products: Subject to compliance with requirements, provide one of the:
    - a. ABI, Ideal Tape Division; 491 AWF FSK.
    - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
    - c. Compac Corporation; 110 and 111.
    - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
  - 2. Width: 3 inches.
  - 3. Thickness: 6.5 mils.
  - 4. Adhesion: 90 ounces force/inch in width.
  - 5. Elongation: 2 percent.
  - 6. Tensile Strength: 40 lbf/inch in width.
  - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
  - Products: Subject to compliance with requirements, provide one of the following:
    - a. ABI, Ideal Tape Division; 370 White PVC tape.

- b. Compac Corporation; 130.
- c. Venture Tape; 1506 CW NS.
- 2. Width: 2 inches.
- 3. Thickness: 6 mils.
- 4. Adhesion: 64 ounces force/inch in width.
- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. ABI, Ideal Tape Division; 488 AWF.
    - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
    - c. Compac Corporation; 120.
    - d. Venture Tape; 3520 CW.
  - 2. Width: 2 inches.
  - 3. Thickness: 3.7 mils.
  - 4. Adhesion: 100 ounces force/inch in width.
  - 5. Elongation: 5 percent.
  - 6. Tensile Strength: 34 lbf/inch in width.

#### 2.8 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

## PART 3 - EXECUTION

#### 3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

#### 3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.

- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
  - 1. Install insulation continuously through hangers and around anchor attachments.
  - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
  - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
  - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
  - 1. Draw jacket tight and smooth.
  - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
  - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
    - a. For below ambient services, apply vapor-barrier mastic over staples.
  - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
  - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. For above ambient services, do not install insulation to the following:
  - 1. Vibration-control devices.
  - 2. Testing agency labels and stamps.
  - 3. Nameplates and data plates.
  - 4. Manholes.
  - Handholes.
  - Cleanouts.

# 3.3 Insulation shall have a k value that meets the minimum requirements of the latest International Energy Conservation Code (IECC).

# 3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe, and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
  - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
  - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
  - 3. Protect exposed corners with secured corner angles.
  - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
    - a. Do not weld anchor pins to ASME-labeled pressure vessels.
    - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
    - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
    - d. Do not overcompress insulation during installation.
    - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
    - f. Impale insulation over anchor pins and attach speed washers.
    - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
  - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
  - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
  - 7. Stagger joints between insulation layers at least 3 inches.
  - 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
  - 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
  - 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

- Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
- 2. Seal longitudinal seams and end joints.

# 3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

## 3.6 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
  - 1. Draw jacket material smooth and tight.
  - 2. Install lap or joint strips with same material as jacket.
  - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
  - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
  - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
  - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where PVDC jackets are indicated, install as follows:
  - 1. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. 33-1/2-inch-circumference limit allows for 2-inch-overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
  - 2. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

## 3.7 FINISHES

- A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
  - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
    - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

## 3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
  - Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

#### 3.9 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.
- C. Heat-Exchanger (Water-to-Water for Domestic Water Heating Service) Insulation:
  - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- D. Domestic water, domestic chilled-water (potable), and domestic hot-water hydropneumatic tank insulation shall be one of the following:
  - 1. Flexible Elastomeric: 1 inch thick.
  - 2. Mineral-Fiber Pipe and Tank: 1 inch thick.
  - 3. Polyolefin: 1 inch thick.
- E. Domestic Hot-Water Storage Tank Insulation:
  - 1. Mineral-Fiber Pipe and Tank: Of thickness to provide an R-value of 12.5.
- F. Domestic Water Filter-Housing Insulation:
  - 1. Mineral-Fiber Pipe and Tank: 2 inches thick.
- G. Domestic hot-water pump insulation shall be the following:

Mineral-Fiber Board: 1 inch thick and 2-lb/cu. ft. nominal density

# 3.10 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
  - 1. None.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
  - 1. Aluminum, Stucco Embossed: 0.016 inch thick.
- E. Equipment, Exposed, Larger thano 48 Inches in Diameter or with Flat Surfaces up o 72 Inches:
  - Aluminum, Stucco Embossed with 1-1/4-inch –deep corrugations: 0.032 inch thick.
- F. Piping, Concealed:
  - 1. None.

## 3.11 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. If more than one material is listed, selection from materials listed is Contractor's option.
- B. Equipment, Concealed:
  - 1. None.
- C. Piping, Exposed:
  - 1. PVC: 30 mils thick.

# **END OF SECTION 22 0716**

# SECTION 22 1116 DOMESTIC WATER PIPING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
  - 2. Encasement for piping.
- B. Related Requirements:
  - 1. Division 22 Section "Facility Water Distribution Piping" for water-service piping the building from source to the point where water-service piping enters the building.

#### 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All piping systems shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Pipe hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 230548 "Vibration and Seismic Controls for HVAC."
  - 1. For piping with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For piping with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

#### 1.4 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For transition fittings and dielectric fittings.
- C. Delegated-Design Submittal:
  - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
  - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
  - 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.

4. Seismic calculations and detailed analysis: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. Project specific design documentation and calculations shall be prepared and stamped by a registered professional engineer who is responsible for the seismic restraint design and who is licensed in the state where the project is being constructed (ASCE 7, 13.2.1.1).

#### 1.5 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

#### 1.6 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
  - 1. Notify Construction Manager and owner no fewer than seven days in advance of proposed interruption of water service.
  - 2. Do not interrupt water service without **Owner's** written permission.

## **PART 2 - PRODUCTS**

## 2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."
- C. All piping shall be American made and tested; no import pipe will be permitted.
- D. All exposed water supply piping in toilet rooms, custodial rooms and kitchens shall be chromium plated.
- E. All piping installed in or passing through a plenum must be plenum rated, fire wrapped, or installed in a metal conduit.

## 2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: **ASTM B 88, Type K** and **ASTM B 88, Type L** water tube, drawn temper.
- B. Soft Copper Tube: **ASTM B 88, Type K** and **ASTM B 88, Type L** water tube, annealed temper.
- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- F. Copper Unions:
  - 1. MSS SP-123.
  - 2. Cast-copper-alloy, hexagonal-stock body.
  - 3. Ball-and-socket, metal-to-metal seating surfaces.
  - Solder-joint or threaded ends.
- G. Appurtenances for Grooved-End Copper Tubing:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Anvil International.

- b. Shurjoint Piping Products.
- c. Victaulic Company.
- 2. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75copper tube or ASTM B 584 bronze castings.
- 3. Mechanical Couplings for Grooved-End Copper Tubing:
  - a. Copper-tube dimensions and design similar to AWWA C606.
  - b. Ferrous housing sections.
  - c. EPDM-rubber gaskets suitable for hot and cold water.
  - d. Bolts and nuts.
  - e. Minimum Pressure Rating: 300 psig

# 2.3 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe:
  - 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
  - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Standard-Pattern, Mechanical-Joint Fittings:
  - 1. AWWA C110/A21.10, ductile or gray iron.
  - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- C. Compact-Pattern, Mechanical-Joint Fittings:
  - 1. AWWA C153/A21.53, ductile iron.
  - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- D. Plain-End, Ductile-Iron Pipe: AWWA C151/A21.51.
- E. Appurtenances for Grooved-End, Ductile-Iron Pipe:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Shurjoint Piping Products.
    - b. Star Pipe Products.
    - c. Victaulic Company.
  - 2. Fittings for Grooved-End, Ductile-Iron Pipe: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions that match pipe.
  - 3. Mechanical Couplings for Grooved-End, Ductile-Iron-Piping:
    - a. AWWA C606 for ductile-iron-pipe dimensions.
    - b. Ferrous housing sections.
    - c. EPDM-rubber gaskets suitable for hot and cold water.
    - d. Bolts and nuts.
    - e. Minimum Pressure Rating:
      - 1) NPS 14 to NPS 18: 250 psig.
      - 2) NPS 20 to NPS 46: 150 psig.

# 2.4 PP PIPE AND FITTINGS

- A. PP Pipe: ASTM F 2389, **SDR 7.4 and SDR 11**.
- B. PP Socket Fittings: ASTM F 2389.

#### 2.5 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
  - AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
  - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
- F. PP Pipe and Fittings: Manufacturer's recommended fusion-weld system.

#### 2.6 TRANSITION FITTINGS

- A. General Requirements:
  - 1. Same size as pipes to be joined.
  - 2. Pressure rating at least equal to pipes to be joined.
  - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Coupling: AWWA C219.
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - Cascade Waterworks Manufacturing.
    - b. Dresser, Inc.; Piping Specialties Products.
    - c. Ford Meter Box Company, Inc. (The).
    - d. JCM Industries.
    - e. Romac Industries, Inc.
    - f. Smith-Blair, Inc.; a Sensus company.
    - g. Viking Johnson.
- D. Plastic-to-Metal Transition Fittings:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
    - a. Charlotte Pipe and Foundry Company.
    - b. Harvel Plastics, Inc.
    - c. Spears Manufacturing Company.
  - 2. Description:
    - a. CPVC or PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
    - b. One end with threaded brass insert and one solvent-cement-socket or threaded end.

- E. PP-to-Metal Transition Fittings:
  - 1. Description:
    - a. PP one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
    - b. One end with threaded brass insert and one fusion-socket end.
- F. Plastic-to-Metal Transition Unions:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Colonial Engineering, Inc.
    - b. NIBCO Inc.
    - c. Spears Manufacturing Company.
  - 2. Description:
    - a. **CPVC** four-part union.
    - b. **Brass** threaded end.
    - c. Solvent-cement-joint plastic end.
    - d. Rubber O-ring.
    - e. Union nut.

## 2.7 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Nipples and Waterways:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Elster Perfection Corporation.
    - b. Grinnell Mechanical Products; Tyco Fire Products LP.
    - c. Matco-Norca.
    - d. Clearflow/Perfection Corp.
    - e. Precision Plumbing Products, Inc.
    - f. Victaulic Company.
  - 2. Standard: IAPMO PS 66 or ASTM F-1545-97.
  - 3. Electroplated steel nipple or waterway complying with ASTM F 1545 or ANSI/NSF-61 Compliant.
  - 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
  - 5. End Connections: Male threaded or grooved.
  - 6. Lining: Inert and noncorrosive, propylene or LTHS.

#### **PART 3 - EXECUTION**

#### 3.1 EARTHWORK

A. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

#### 3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and

- calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Polypropylene pipe in or passing through plenums must be fire wrapped or installed in a metal conduit.
- C. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- D. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- E. Install underground **copper tube** in PE encasement according to ASTM A 674 or AWWA C105/A21.5.
- F. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Division 22 Section "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Division 22 Section "Domestic Water Piping Specialties."
- G. Install shutoff valve immediately upstream of each dielectric fitting.
- H. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Division 22 Section "Domestic Water Piping Specialties."
- I. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.
  - 1. Piping will be drained seasonally for freeze protection.
- J. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- K. Install seismic restraints on piping. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- L. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- M. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- N. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- O. Install piping to permit valve servicing.
- P. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- Q. Install piping free of sags and bends.
- R. Install fittings for changes in direction and branch connections.
- S. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- T. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Division 22 Section "Meters and Gages for Plumbing Piping."
- U. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Division 22 Section "Domestic Water Pumps."
- V. Install thermometers on **inlet and outlet** piping from each water heater. Comply with requirements for thermometers in Division 22 Section "Meters and Gages for Plumbing Piping."

- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

## 3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
  - 1. Apply appropriate tape or thread compound to external pipe threads.
  - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.
- G. Joint Construction for Grooved-End, Ductile-Iron Piping: Make joints according to AWWA C606. Cut round-bottom grooves in ends of pipe at gasket-seat dimension required for specified (flexible or rigid) joint. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.
- H. Joint Construction for Grooved-End Steel Piping: Make joints according to AWWA C606. Roll groove ends of pipe as specified. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.
- I. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- J. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

## 3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
  - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
  - 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition **fittings**.

## 3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples/waterways.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric nipples/waterways.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric nipples/waterways.

## 3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger, support products, and installation in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
  - 1. Vertical Piping: MSS Type 8 or 42, clamps.
  - 2. Individual, Straight, Horizontal Piping Runs:
    - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
    - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
    - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
  - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
  - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
  - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
  - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
  - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
  - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
  - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
  - 6. NPS 6: 10 feet with 5/8-inch rod.
  - 7. NPS 8: 10 feet with 3/4-inch rod.
- F. Install supports for vertical copper tubing every 10 feet.
- G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
  - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
  - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
  - 3. NPS 2: 10 feet with 3/8-inch rod.
  - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
  - 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
  - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
  - 7. NPS 6: 12 feet with 3/4-inch rod.
  - 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
- H. Install supports for vertical steel piping every 15 feet.

- I. Install supports for vertical PP piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.
- J. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

## 3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
  - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
  - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
  - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code. Comply with requirements for connection sizes in Division 22 plumbing fixture Sections.
  - 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

#### 3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Division 22 Section "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

#### 3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
  - 1. Piping Inspections:
    - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
    - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
      - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
      - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
    - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
    - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

## 2. Piping Tests:

a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.

- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

## 3.10 ADJUSTING

- A. Perform the following adjustments before operation:
  - 1. Close drain valves, hydrants, and hose bibbs.
  - 2. Open shutoff valves to fully open position.
  - 3. Open throttling valves to proper setting.
  - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
    - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
    - b. Adjust calibrated balancing valves to flows indicated.
  - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
  - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
  - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
  - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

#### 3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
  - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
  - Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
    - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
    - b. Fill and isolate system according to either of the following:
      - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
      - Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

- c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
- d. Repeat procedures if biological examination shows contamination.
- e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Clean non-potable domestic water piping as follows:
  - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
  - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
    - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
    - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

#### 3.12 PIPING SCHEDULE

- A. Some piping types and sizes mentioned in this section may not be used on this project.
- B. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- C. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- D. All exposed water supply piping in toilet rooms, custodial rooms and kitchens shall be chromium plated.
- E. Under-building-slab, domestic water, building-service piping, NPS 3and smaller, shall be **one of** the following:
  - 1. Soft copper tube, **ASTM B 88, Type K wrought-copper, solder-joint fittings**; and brazed joints.
  - 2. PP, SDR 7.4; socket fittings; and fusion-welded joints.
- F. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be **one of** the following:
  - 1. Soft copper tube, **ASTM B 88, Type K**; wrought-copper, solder-joint fittings; and brazed joints.
  - 2. Mechanical-joint, ductile-iron pipe; **standard**, mechanical-joint fittings; and mechanical joints.
  - 3. PP, SDR 7.4; socket fittings; and fusion-welded joints.
- G. Under-building-slab, combined domestic water, building-service, and fire-service-main piping, NPS 6 to NPS 12, shall be the following:
  - 1. Mechanical-joint, ductile-iron pipe; **standard**-mechanical-joint fittings; and mechanical joints.
- H. Under-building-slab, domestic water piping, **NPS 2 and smaller**, shall be **one of** the following:
  - 1. Hard copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings; and brazed joints.
  - 2. PP, SDR 7.4 for domestic hot water; socket fittings; and fusion-welded joints.
  - 3. PP, **SDR 7.4** for domestic cold water; socket fittings; and fusion-welded joints.

- I. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
  - 1. Hard copper tube, **ASTM B 88, Type L**; **cast-**copper, solder-joint fittings; and **soldered** joints.
  - 2. PP, SDR 7.4 for domestic hot water; socket fittings; and fusion-welded joints.
  - 3. PP, **SDR 7.4** for domestic cold water; socket fittings; and fusion-welded joints.
- J. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
  - 1. Hard copper tube, **ASTM B 88, Type L**; **cast-**copper, solder-joint fittings; and **soldered** joints.
  - 2. PP, SDR 7.4 for domestic hot water; socket fittings; and fusion-welded joints.
  - 3. PP, **SDR 7.4** for domestic cold water; socket fittings; and fusion-welded joints.
- K. Aboveground domestic water piping, **NPS 5** and larger, shall be one of the following:
  - Hard copper tube, ASTM B 88, Type L; cast-copper, solder-joint fittings; and soldered joints.
  - 2. PP, SDR 7.4 for domestic hot water; socket fittings; and fusion-welded joints.
  - 3. PP, **SDR 7.4** or for domestic cold water; socket fittings; and fusion-welded joints.

## 3.13 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
  - 1. Shutoff Duty: Use **ball** for piping NPS 3 and smaller. Use **butterfly**, with flanged ends for piping NPS 4 and larger.
  - 2. Throttling Duty: Use **ball** valves for piping NPS 2 and smaller. Use **butterfly** valves with flanged ends for piping NPS 2-1/2 and larger.
  - 3. Hot-Water Circulation Piping, Balancing Duty: **Calibrated** balancing valves.
  - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
- C. Iron grooved-end valves may be used with ductile-iron grooved-end piping.

## **END OF SECTION 22 1116**

# SECTION 22 1119 DOMESTIC WATER PIPING SPECIALTIES

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following domestic water piping specialties:
  - 1. Vacuum breakers.
  - 2. Backflow preventers.
  - 3. Water pressure-reducing valves.
  - 4. Balancing valves.
  - 5. Temperature-actuated water mixing valves.
  - 6. Strainers.
  - Outlet boxes.
  - 8. Hose bibbs.
  - 9. Wall hydrants.
  - 10. Drain valves.
  - 11. Water hammer arresters.
  - 12. Trap-seal primer valves.
  - 13. Trap-seal primer systems.

## B. Related Sections include the following:

- 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
- 2. Division 22 Section "Emergency Plumbing Fixtures" for water tempering equipment.
- 3. Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

# 1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

## 1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. Shop Drawings: Diagram power, signal, and control wiring.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

#### 1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. NSF Compliance:

- 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
- 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

## **PART 2 - PRODUCTS**

## 2.1 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Ames Co.
    - b. Cash Acme.
    - c. Conbraco Industries, Inc.
    - d. FEBCO; SPX Valves & Controls.
    - e. Rain Bird Corporation.
    - f. Toro Company (The); Irrigation Div.
    - g. Watts Industries, Inc.; Water Products Div.
    - h. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1001.
  - 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
  - 4. Body: Bronze.
  - 5. Inlet and Outlet Connections: Threaded.
  - 6. Finish: Chrome plated.
- B. Hose-Connection Vacuum Breakers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Arrowhead Brass Products, Inc.
    - b. Cash Acme.
    - c. Conbraco Industries, Inc.
    - d. MIFAB, Inc.
    - e. Prier Products, Inc.
    - f. Watts Industries, Inc.; Water Products Div.
    - Woodford Manufacturing Company.
    - h. Zurn Plumbing Products Group; Light Commercial Operation.
    - i. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1011.
  - 3. Body: Bronze, nonremovable, with manual drain.
  - 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
  - 5. Finish: Chrome or nickel plated.
- C. Pressure Vacuum Breakers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. Ames Co.
  - b. Conbraco Industries, Inc.
  - c. FEBCO; SPX Valves & Controls.
  - d. Flomatic Corporation.
  - e. Toro Company (The); Irrigation Div.
  - f. Watts Industries, Inc.; Water Products Div.
  - g. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1020.
- 3. Operation: Continuous-pressure applications.
- 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
- 5. Accessories:
  - a. Valves: Ball type, on inlet and outlet.
- D. Spill-Resistant Vacuum Breakers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Conbraco Industries, Inc.
    - b. Watts Industries, Inc.; Water Products Div.
  - 2. Standard: ASSE 1056.
  - 3. Operation: Continuous-pressure applications.
  - 4. Accessories:
    - a. Valves: Ball type, on inlet and outlet.

# 2.2 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Ames Co.
    - b. Conbraco Industries, Inc.
    - c. FEBCO; SPX Valves & Controls.
    - d. Flomatic Corporation.
    - e. Watts Industries, Inc.; Water Products Div.
    - f. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1013.
  - 3. Operation: Continuous-pressure applications.
  - 4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
  - 5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved] for NPS 2-1/2 and larger.
  - 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

# 7. Accessories:

- a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
- b. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.
- B. Double-Check Backflow-Prevention Assemblies:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Ames Co.
    - b. Conbraco Industries, Inc.
    - c. FEBCO; SPX Valves & Controls.
    - d. Flomatic Corporation.
    - e. Watts Industries, Inc.; Water Products Div.
    - f. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1015.
  - 3. Operation: Continuous-pressure applications, unless otherwise indicated.
  - 4. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
  - 5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
  - 6. End Connections: Threaded for NPS 2 and smaller; [flanged] <Insert type> for NPS 2-1/2 and larger.
  - 7. Accessories:
    - Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
- C. Beverage-Dispensing-Equipment Backflow Preventers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Conbraco Industries, Inc.
    - b. Watts Industries, Inc.; Water Products Div.
    - c. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1022.
  - 3. Operation: Continuous-pressure applications.
  - 4. Size: NPS 1/4 or NPS 3/8.
  - 5. Body: Stainless steel.
  - 6. End Connections: Threaded.
- D. Dual-Check-Valve Backflow Preventers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Cash Acme.

- b. Conbraco Industries, Inc.
- c. FEBCO; SPX Valves & Controls.
- d. Flomatic Corporation.
- e. Ford Meter Box Company, Inc. (The).
- f. Honeywell Water Controls.
- g. McDonald, A. Y. Mfg. Co.
- h. Mueller Co.; Water Products Div.
- i. Watts Industries, Inc.; Water Products Div.
- j. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1024.
- 3. Operation: Continuous-pressure applications.
- 4. Body: Bronze with union inlet.
- E. Carbonated-Beverage-Dispenser, Dual-Check-Valve Backflow Preventers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Cash Acme.
    - b. Lancer Corporation.
    - c. Watts Industries, Inc.; Water Products Div.
  - 2. Standard: ASSE 1032.
  - 3. Operation: Continuous-pressure applications.
  - 4. Size: NPS 1/4 or NPS 3/8.
  - 5. Body: Stainless steel.
  - End Connections: Threaded.

## 2.3 WATER PRESSURE-REDUCING VALVES

- A. Water Regulators: (Direct Type)
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Cash Acme.
    - b. Conbraco Industries, Inc.
    - c. Honeywell Water Controls.
    - d. Watts Industries, Inc.; Water Products Div.
    - e. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1003.
  - 3. Pressure Rating: Initial working pressure of 150 psig.
  - 4. Body: Bronze, provide chrome-plated finish if connected to chrome plated or stainless steel piping for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.
  - 5. Valves for Booster Heater Water Supply: Include integral bypass.
  - 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

- B. Water Control Valves: (Pilot type)
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - CLA-VAL Automatic Control Valves.
    - b. Mifab Corp; Beeco.
    - c. Watts Industries, Inc.; Ames Fluid Control Systems.
    - d. Watts Industries, Inc.; Watts ACV.
    - e. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Description: Pilot-operation, diaphragm-type, single-seated main water control valve.
  - 3. Pressure Rating: Initial working pressure of 150 psig minimum with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot-control valve, restrictor device, specialty fittings, and sensor piping.
  - 4. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
  - 5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

## 2.4 BALANCING VALVES

- A. Copper-Alloy Calibrated Balancing Valves:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Armstrong International, Inc.
    - b. Flo Fab Inc.
    - c. ITT Industries: Bell & Gossett Div.
    - d. NIBCO INC. Model S/T/PC-1810-LF
    - e. TAC Americas.
    - f. Taco, Inc.
    - g. Victaulic
    - h. Watts Industries, Inc.; Water Products Div.
  - 2. Type: Ball or Y-pattern globe valve with two readout ports and memory setting indicator.
  - Body: bronze,
  - 4. Size: Same as connected piping, but not larger than NPS 2.
  - 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- B. Cast-Iron Calibrated Balancing Valves:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Armstrong International, Inc.
    - b. Flo Fab Inc.
    - c. ITT Industries; Bell & Gossett Div.
    - d. NIBCO INC. (F-737 or F-739)
    - e. TAC Americas.
    - f. Watts Industries, Inc.; Water Products Div.

- Type: Adjustable with Y-pattern globe valve, two readout ports, and memory-setting indicator.
- 3. Size: Same as connected piping, but not smaller than NPS 2-1/2.
- C. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

# 2.5 TEMPERATURE-ACTUATED WATER MIXING VALVES

- A. Water-Temperature Limiting Devices:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Armstrong International, Inc.
    - b. Cash Acme.
    - c. Conbraco Industries, Inc.
    - d. Honeywell Water Controls.
    - e. Leonard Valve Company.
    - f. Powers; a Watts Industries Co.
    - g. Symmons Industries, Inc.
    - h. Taco, Inc.
    - i. Watts Industries, Inc.; Water Products Div.
    - j. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1017.
  - 3. Pressure Rating: 125 psig.
  - 4. Type: Thermostatically controlled water mixing valve.
  - 5. Material: Bronze body with corrosion-resistant interior components.
  - 6. Connections: Threaded union inlets and outlet.
  - 7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
  - 8. Valve Finish: Rough bronze.
- B. Primary, Thermostatic, Water Mixing Valves:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Armstrong International, Inc.
    - b. Lawler Manufacturing Company, Inc.
    - c. Leonard Valve Company.
    - d. Powers; a Watts Industries Co.
    - e. Symmons Industries, Inc.
  - 2. Standard: ASSE 1017.
  - 3. Pressure Rating: 125 psig.
  - 4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
  - 5. Material: Bronze body with corrosion-resistant interior components.
  - 6. Connections: Threaded union inlets and outlet.

- 7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 9. Valve Finish: Chrome plated.
- 10. Piping Finish: Copper.
- C. Individual-Fixture, Water Tempering Valves:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Cash Acme.
    - b. Conbraco Industries, Inc.
    - c. Honeywell Water Controls.
    - d. Lawler Manufacturing Company, Inc.
    - e. Leonard Valve Company.
    - f. Powers; a Watts Industries Co.
    - g. Watts Industries, Inc.; Water Products Div.
    - h. Zurn Plumbing Products Group; Wilkins Div.
  - 2. Standard: ASSE 1016, thermostatically controlled water tempering valve.
  - 3. Pressure Rating: 125 psig minimum, unless otherwise indicated.
  - 4. Body: Bronze body with corrosion-resistant interior components.
  - 5. Temperature Control: Adjustable.
  - 6. Inlets and Outlet: Threaded.
  - 7. Finish: Rough or chrome-plated bronze.

# 2.6 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers:
  - 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
  - 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
  - 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
  - 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
  - Perforation Size:
    - a. Strainers NPS 2 and Smaller: 0.020 inch.
    - b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
    - c. Strainers NPS 5 and Larger: 0.10 inch.
  - 6. Drain: Factory-installed, hose-end drain valve.

# 2.7 HOSE BIBBS

- A. Hose Bibbs HB-1:
  - 1. Standard: ASME A112.18.1 for sediment faucets.
  - 2. Body Material: Bronze.
  - 3. Seat: Bronze, replaceable.
  - 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.

- 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
- 6. Pressure Rating: 125 psig.
- 7. Vacuum Breaker: Integral or field-installation, nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
- 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
- 9. Finish for Service Areas: Chrome or nickel plated.
- 10. Finish for Finished Rooms: Chrome or nickel plated.
- 11. Operation for Equipment Rooms: Wheel handle or operating key.
- 12. Operation for Service Areas: Wheel handle.
- 13. Operation for Finished Rooms: Operating key.
- 14. Include operating key with each operating-key hose bibb.
- 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

# 2.8 WALL HYDRANTS

- A. Nonfreeze Wall Hydrants <u>NFH-1</u>:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Josam Company.
    - b. MIFAB. Inc.
    - c. Prier Products, Inc.
    - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - e. Tyler Pipe; Wade Div.
    - f. Watts Drainage Products Inc.
    - g. Woodford Manufacturing Company.
    - h. Zurn Plumbing Products Group; Light Commercial Operation.
    - i. Zurn Plumbing Products Group; Specification Drainage Operation.
  - 2. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
  - 3. Pressure Rating: 125 psig.
  - 4. Operation: Loose key.
  - 5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
  - 6. Inlet: NPS 3/4 or NPS 1.
  - 7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
  - 8. Box: Deep, flush mounting with cover.
  - 9. Box and Cover Finish: Polished nickel bronze.
  - 10. Operating Keys: Two with each wall hydrant.

#### 2.9 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
  - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
  - 2. Pressure Rating: 400-psig minimum CWP.

- 3. Size: NPS 3/4.
- 4. Body: Copper alloy.
- 5. Ball: Chrome-plated brass.
- 6. Seats and Seals: Replaceable.
- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

## 2.10 WATER HAMMER ARRESTERS

- A. Water Hammer Arresters:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. AMTROL, Inc.
    - b. Josam Company.
    - c. MIFAB, Inc.
    - d. PPP Inc.
    - e. Sioux Chief Manufacturing Company, Inc.
    - f. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - g. Tyler Pipe; Wade Div.
    - h. Watts Drainage Products Inc.
    - i. Zurn Plumbing Products Group; Specification Drainage Operation.
  - 2. Standard: ASSE 1010 or PDI-WH 201.
  - 3. Type: Metal bellows or Copper tube with piston.
  - 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

#### **PART 3 - EXECUTION**

## 3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
  - 1. Locate backflow preventers in same room as connected equipment or system.
  - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
  - 3. Do not install bypass piping around backflow preventers.
- C. Install water control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.
- D. Install balancing valves in locations where they can easily be adjusted.
- E. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

- 1. Install thermometers and water regulators if specified.
- 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- F. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.
- G. Install outlet boxes recessed in wall. Install 2-by-4-inch fire-retardant-treated-wood blocking wall reinforcement between studs. Fire-retardant-treated-wood blocking is specified in Division 06 Section "Rough Carpentry."
- H. Install water hammer arresters in water piping according to PDI-WH 201.
- Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a
  minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for
  proper flow.
- J. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.
- K. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

#### 3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

#### 3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
  - 1. Pressure vacuum breakers.
  - 2. Reduced-pressure-principle backflow preventers.
  - 3. Double-check backflow-prevention assemblies.
  - 4. Carbonated-beverage-machine backflow preventers.
  - 5. Dual-check-valve backflow preventers.
  - 6. Water pressure-reducing valves.
  - 7. Calibrated balancing valves.
  - 8. Primary, thermostatic, water mixing valves.
  - 9. Primary water tempering valves.
  - 10. Outlet boxes.
  - 11. Supply-type, trap-seal primer valves.
  - 12. Trap-seal primer systems.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

# 3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

- Test each backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

# 3.5 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

# **END OF SECTION 22 1119**

# SECTION 22 1123 DOMESTIC WATER PUMPS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following all-bronze and bronze-fitted centrifugal pumps for domestic cold- and hot-water circulation:
  - 1. Separately-coupled, horizontally mounted, in-line centrifugal pumps.

# 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - 1. For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

# 1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type and size of domestic water pump specified. Include certified performance curves with operating points plotted on curves; and rated capacities of selected models, furnished specialties, and accessories.
- C. Shop Drawings: Diagram power, signal, and control wiring.
- D. Operation and Maintenance Data: For domestic water pumps to include in emergency, operation, and maintenance manuals.

#### 1.5 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of domestic water pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. UL Compliance: Comply with UL 778 for motor-operated water pumps.

# 1.6 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written rigging instructions for handling.

#### 1.7 COORDINATION

A. Coordinate size and location of concrete bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

#### **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

## 2.2 SEPARATELY COUPLED, HORIZONTALLY MOUNTED, IN-LINE CENTRIFUGAL PUMPS

- A. Manufacturers:
  - Armstrong.
  - 2. Aurora Pump; Pentair Pump Group (The).
  - 3. Bell & Gossett Domestic Pump; ITT Industries.
  - 4. Grundfos Pumps Corp.
  - 5. Taco, Inc.
  - 6. Thrush Company, Inc.
  - 7. Weinman Div.; Crane Pumps & Systems.
- B. Description: Factory-assembled and -tested, overhung-impeller, single-stage, separately coupled, horizontally mounted, in-line centrifugal pumps as defined in HI 1.1-1.2 and HI 1.3; and designed for installation with pump and motor shafts mounted horizontally.
  - 1. Pump Construction: All bronze.
    - Casing: Radially split, cast iron, with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
    - b. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, closed, and keyed to shaft.
    - c. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve.
    - d. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket. Include water slinger on shaft between motor and seal.
    - e. Bearings: Oil-lubricated; bronze-journal or ball type.
  - 2. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.

3. Motor: Single speed, with grease-lubricated ball bearings; and resiliently mounted to pump casing. Comply with requirements in Division 22 Section "Common Motor Requirements for Plumbing Equipment."

# 2.3 FLEXIBLE CONNECTORS

- A. Manufacturers:
  - 1. Anamet, Inc.
  - 2. Flex-Hose Co., Inc.
  - 3. Flexicraft Industries.
  - 4. Flex-Pression, Ltd.
  - 5. Flex-Weld, Inc.
  - 6. Fugate
  - 7. Hyspan Precision Products, Inc.
  - 8. Mercer Rubber.
  - 9. Metraflex, Inc.
  - 10. Proco Products, Inc.
  - 11. Tozen America Corporation.
  - 12. Twin City Hose.
  - 13. Unaflex Inc.
- B. Description: Corrugated, bronze inner tubing covered with bronze wire braid. Include coppertube ends or bronze flanged ends, braze-welded to tubing. Include 125-psig minimum workingpressure rating and ends matching pump connections.

## 2.4 BUILDING-AUTOMATION-SYSTEM INTERFACE

- A. Provide auxiliary contacts in pump controllers for interface to building automation system. Include the following:
  - 1. On-off status of each pump.
  - 2. Alarm status.

# **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

## 3.2 PUMP INSTALLATION

- A. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with HI 1.4.
- C. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.
- D. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- E. Install separately coupled, horizontally mounted, in-line centrifugal pumps with motor and pump shafts horizontal.
- F. Install continuous-thread hanger rods and spring hangers with vertical-limit stop of sufficient size to support pump weight. Vibration isolation devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Fabricate brackets or

supports as required. Hanger and support materials are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

## 3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to pumps to allow service and maintenance.
- C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles. Refer to Division 22 Section "Domestic Water Piping."
  - 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
    - a. Separately coupled, horizontally mounted, in-line centrifugal pumps.
  - Install shutoff valve and strainer on suction side of pumps, and check valve and throttling valve on discharge side of pumps. Install valves same size as connected piping. Refer to Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty valves for domestic water piping and Division 22 Section "Domestic Water Piping Specialties" for strainers.
  - 3. Install pressure gages at suction and discharge of pumps. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and gage connectors.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- F. Interlock pump with water heater burner and time delay relay.

# 3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
  - 1. Complete installation and startup checks according to manufacturer's written instructions.
  - 2. Check piping connections for tightness.
  - 3. Clean strainers on suction piping.
  - 4. Perform the following startup checks for each pump before starting:
    - a. Verify bearing lubrication.
    - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
    - c. Verify that pump is rotating in the correct direction.
  - 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
  - 6. Start motor.
  - 7. Open discharge valve slowly.
  - 8. Adjust temperature settings on thermostats.
  - 9. Adjust timer settings.

# 3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain pumps. Refer to Division 01 Section "Demonstration and Training."

**END OF SECTION 22 1123** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 1316 SANITARY WASTE AND VENT PIPING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Pipe, tube, and fittings.
  - 2. Specialty pipe fittings.

## 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor: All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.

# 1.4 **DEFINITIONS**

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. PVC: Polyvinyl chloride plastic.

# 1.5 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
  - 1. Soil, Waste, and Vent Piping: **10-foot head of water**.
- B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to **SEI/ASCE 7** and with the requirements specified in Section 230548 "Vibration and Seismic Controls for HVAC."
  - 1. For piping with a seismic importance factor of 1.0 the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
  - 2. For piping with a seismic importance factor of 1.5 the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

# 1.6 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. Shop Drawings: For sovent drainage system. Include plans, elevations, sections, and details.
- D. Delegated-Design Submittal:
  - 1. Design calculations and detailed fabrication and assembly of hangers and supports for multiple pipes, and attachments of the same to the building structure.

- Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
- 3. Seismic calculations and detailed analysis: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. Project specific design documentation and calculations shall be prepared and stamped by a registered professional engineer who is responsible for the seismic restraint design and who is licensed in the state where the project is being constructed (ASCE 7, 13.2.1.1).

# 1.7 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.

## 1.8 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; "NSF-sewer" for plastic sewer piping; "NSF-drain" for plastic drain piping, and "NSF-tubular" for plastic continuous waste piping.

## 1.9 PROJECT CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
  - 1. Notify **Construction Manager** & **Owner** no fewer than seven days in advance of proposed interruption of sanitary waste service.
  - 2. Do not proceed with interruption of sanitary waste service without **Owner's** written permission.

# **PART 2 - PRODUCTS**

# 2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

# 2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: All cast-iron waste, vent and sewer pipe and fittings shall conform to the requirements of CISPI Standard 301 and ASTM A 888. All products shall be marked with the collective trademark of the Cast Soil Pipe Institute and shall be listed by NSF International or receive prior approval of the engineer. All cast-iron pipe and fittings shall be American made and tested. Non-compliant import cast-iron products will not be permitted. Any non-compliant cast-iron product installed by the contractor on this project will be replaced at the contractor's expense and shall include all repairs, patching, painting and other incidental work required to return the project to its pre-remediation state.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. AB&I Foundry
- b. Charoltte Pipe
- c. Tyler Pipe
- B. CISPI, Hubless-Piping Couplings:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. ANACO.
    - b. Ideal
    - c. Mission Rubber Company; a division of MCP Industries, Inc.
    - d. Tyler Pipe.
  - 2. Standards: ASTM C 1277 and CISPI 310.
  - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
  - 4. Listing: Couplings shall be listed by NSF International. Each coupling shall be embossed with the NSF seal.
- C. Heavy-Duty, Hubless-Piping Couplings:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Husky SD 4000.
    - b. Clamp-All Corp HI-TORQ 125.
  - 2. Standards: ASTM C 1277 and ASTM C 1540.
  - 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

## 2.3 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
  - 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Solvent Cement: ASTM D 2564.
  - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

#### **PART 3 - EXECUTION**

#### 3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Division 31 Section "Earth Moving."

#### 3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction

- loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Install seismic restraints on piping. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- L. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- M. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
  - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping.
  - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
  - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
  - Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.
- O. Install underground **PVC** piping according to ASTM D 2321.
- P. Install engineered soil and waste drainage and vent piping systems as follows:
  - 1. Combination Waste and Vent: Comply with standards of authorities having jurisdiction.
- Q. Plumbing Specialties:
  - Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."

- 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
- 3. Install cleanout fitting with closure plug inside the building in sanitary force-main piping.
- R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

## 3.3 JOINT CONSTRUCTION

- A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- B. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
  - Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
  - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

## 3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger and support devices and installation specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
  - 1. Install **carbon-s**teel pipe hangers for horizontal piping in noncorrosive environments.
  - 2. Install **stainless-steel** pipe hangers for horizontal piping in corrosive environments.
  - 3. Install **carbon-steel** pipe support clamps for vertical piping in noncorrosive environments.
  - 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
  - 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
  - 6. Install individual, straight, horizontal piping runs:
    - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
    - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
    - Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
  - 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
  - 8. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Support horizontal piping and tubing within 12 inches of each **fitting and coupling or valve** and coupling.
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

- 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
- 2. NPS 3: 60 inches with 1/2-inch rod.
- 3. NPS 4 and NPS 5: 60 inches with 5/8-inchod.
- 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
- 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
- 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

# 3.5 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
  - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
  - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
  - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
  - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
  - 5. Comply with requirements for **cleanouts and drains** specified in Division 22 Section "Sanitary Waste Piping Specialties."
  - 6. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make fixture and equipment connections according to the following unless otherwise indicated:
  - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
  - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

## 3.6 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

# 3.7 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
  - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
  - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
  - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
  - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
  - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than **10-foot head of water**. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
  - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
  - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
  - 6. Prepare reports for tests and required corrective action.

#### 3.8 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

## 3.9 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping **NPS 3** and smaller shall be **any of** the following:
  - 1. Hubless, cast-iron soil pipe and fittings **CISPI** hubless-piping couplings; and coupled joints.
  - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- C. Aboveground, soil and waste piping **NPS 4** and larger shall be **any of** the following:
  - 1. Hubless, cast-iron soil pipe and fittings **heavy-duty** hubless-piping couplings; and coupled joints.
  - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- D. Aboveground, vent piping **NPS 3** and smaller shall be **any of** the following:
  - 1. Hubless, cast-iron soil pipe and fittings **CISPI** hubless-piping couplings; and coupled joints.
  - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.

- E. Aboveground, vent piping **NPS 4** and larger shall be **any of** the following:
  - 1. Hubless, cast-iron soil pipe and fittings **CISPI** hubless-piping couplings; and coupled joints.
  - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- F. Underground, soil, waste, and vent piping **NPS 3** and smaller shall be **any of** the following:
  - 1. Hubless, cast-iron soil pipe and fittings **CISPI** hubless-piping couplings; and coupled joints.
  - 2. **Solid-wall** PVC pipe, PVC socket fittings, and solvent-cemented joints.
  - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- G. Underground, soil and waste piping **NPS 4** and larger shall be **any of** the following:
  - 1. Hubless, cast-iron soil pipe and fittings **heavy-duty** hubless-piping couplings; and coupled joints.
  - 2. **Solid-wall** PVC pipe, PVC socket fittings, and solvent-cemented joints.
  - 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
  - Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- H. Mechanical Rooms & Kitchen Underground soil, waste, and vent piping any size shall be the following:
  - 1. NPS 3 and smaller: Hubless, cast-iron soil pipe and fittings CISPI hubless-piping couplings; and coupled joints.
  - 2. NPS 4 and larger: Hubless, cast-iron soil pipe and fittings heavy-duty hubless-piping couplings; and coupled joints.

#### **END OF SECTION 22 1316**

# SECTION 22 1319 SANITARY WASTE PIPING SPECIALTIES

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following sanitary drainage piping specialties:
  - 1. Cleanouts.
  - 2. Floor drains.
  - Channel drainage systems.
  - 4. Roof flashing assemblies.
  - 5. Through-penetration firestop assemblies.
  - 6. Miscellaneous sanitary drainage piping specialties.
  - 7. Flashing materials.
  - 8. Grease removal devices.
  - 9. Barrier type floor drain trap seal protection devices.
- B. Related Sections include the following:
  - Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.

# 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.

# 1.4 **DEFINITIONS**

- A. FOG: Fats, oils, and greases.
- B. FRP: Fiberglass-reinforced plastic.
- C. HDPE: High-density polyethylene plastic.
- D. PE: Polyethylene plastic.
- E. PP: Polypropylene plastic.
- F. PVC: Polyvinyl chloride plastic.

## 1.5 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
  - 1. FOG disposal systems.
  - 2. Grease removal devices.
- C. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.
  - 1. Wiring Diagrams: Power, signal, and control wiring.
- D. Manufacturer Seismic Qualification Certification: Submit certification that FOG disposal systems, grease interceptors, grease removal devices, oil interceptors, accessories, and components will withstand seismic forces defined in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment." Include the following:
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
    - a. For components with a seismic importance factor of 1.0 the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
    - b. For components with a seismic importance factor of 1.5 the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

#### 1.6 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

## 1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate size and location of roof penetrations.

## **PART 2 - PRODUCTS**

#### 2.1 CLEANOUTS

A. Exposed Metal Cleanouts:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. Josam Company; Josam Div.
  - b. MIFAB, Inc.
  - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
  - d. Tyler Pipe; Wade Div.
  - e. Watts Drainage Products Inc.
  - f. Zurn Plumbing Products Group; Specification Drainage Operation.
  - g. Sun Drainage Products
- 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
- 3. Size: Same as connected drainage piping
- 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
- 5. Closure: Countersunk, brass plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Closure: Stainless-steel plug with seal.
- B. Metal Floor Cleanouts:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Josam Company; Josam Div.
    - b. Oatey.
    - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - d. Tyler Pipe; Wade Div.
    - e. Watts Drainage Products Inc.
    - f. Zurn Plumbing Products Group; Light Commercial Operation.
    - g. Zurn Plumbing Products Group; Specification Drainage Operation.
    - h. Sun Drainage Products
  - 2. Standard: ASME A112.36.2M for adjustable housing cleanout.
  - 3. Size: Same as connected branch.
  - 4. Type: Adjustable housing.
  - 5. Body or Ferrule: Cast iron.
  - 6. Clamping Device: Required.
  - 7. Outlet Connection: Inside calk.
  - 8. Closure: Brass plug with tapered threads.
  - 9. Adjustable Housing Material: Cast iron with threads.
  - 10. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
  - 11. Frame and Cover Shape: Round.
  - 12. Top Loading Classification: Heavy Duty.
  - 13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
  - 14. Standard: ASME A112.3.1.

- 15. Size: Same as connected branch.
- 16. Housing: Stainless steel.
- 17. Closure: Stainless steel with seal.
- 18. Riser: Stainless-steel drainage pipe fitting to cleanout.
- C. Cast-Iron Wall Cleanouts:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Josam Company; Josam Div.
    - b. MIFAB, Inc.
    - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - d. Tyler Pipe; Wade Div.
    - e. Watts Drainage Products Inc.
    - f. Zurn Plumbing Products Group; Specification Drainage Operation.
    - g. Sun Drainage Products
  - 2. Standard: ASME A112.36.2M. Include wall access.
  - 3. Size: Same as connected drainage piping.
  - 4. Body: Hub-and-spigot, cast-iron soil pipe T-branch as required to match connected piping.
  - 5. Closure: Countersunk, brass plug.
  - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
  - 7. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.
  - 8. Wall Access: Round, stainless-steel wall-installation frame and cover.

# 2.2 FLOOR DRAINS

- A. Cast-Iron Floor Drains:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 2. Basis-of-Design Product: See Schedule at end of this Section:
    - a. Josam Company; Josam Div.
    - b. MIFAB, Inc.
    - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - d. Tyler Pipe; Wade Div.
    - e. Watts Drainage Products Inc.
    - f. Zurn Plumbing Products Group; Specification Drainage Operation.
    - g. Sun Drainage Products
  - 3. Standard: ASME A112.6.3.
  - 4. Body Material: Gray iron.
  - 5. Seepage Flange: Required.
  - 6. Anchor Flange: Not required.
  - 7. Outlet: Bottom.

- 8. Trap Material: Cast iron>.
- 9. Trap Pattern: Deep-seal P-trap>.
- 10. Trap Features: Trap-seal primer valve drain connection>.

#### 2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
  - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
  - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. ProSet Systems Inc.
  - 3. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
  - 4. Size: Same as connected soil, waste, or vent stack.
  - 5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
  - 6. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
  - 7. Special Coating: Corrosion resistant on interior of fittings.

# 2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Deep-Seal Traps:
  - 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
  - 2. Size: Same as connected waste piping.
    - a. NPS 2: 4-inch- minimum water seal.
    - b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.
- B. Floor-Drain, Trap-Seal Primer Fittings:
  - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
  - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- C. Barrier Type Floor Drain Trap Seal Protection Devices:
  - 1. Manufacturer: Subject to compliance with requirements, provide products by one of the following:
    - a. Green Drain
    - b. Rector Seal
    - c. Jay R Smith; Quad Close Stink Stopper
    - d. IPS Corp; Trap-Tite
    - e. Provent System; Proset
    - f. Zurn; Z-Shield
  - 2. Description: Device consisting of a membrane that allows the flow of drainage to enter the plumbing drainage system. The device shall close when there is no flow.
  - 3. Standard: ASSE 1072, Performance Requirements for Barrier Type Seal Protection for Floor Drains.

- 4. Size: The device shall be sized according to the nominal pipe size of the device it installs into, except for the 3-1/2-in device which installs into the inside of a floor drain fitting that complies with ASME A112.6.3. Sizes shall include 1-1/2 NPS through 6 NPS.
- 5. Flow Capacity: The device shall permit the flow of drainage as stipulated in Std ASSE-1072. Minimum flow rates shall be equivalent to drainage piping flowing one half full flow with a roughness coefficient of 0.011 and a pitch of ¼-inch per foot.

# D. Air-Gap Fittings:

- 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
- 2. Body: Bronze or cast iron.
- 3. Inlet: Opening in top of body.
- 4. Outlet: Larger than inlet.
- 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

# E. Sleeve Flashing Device:

- 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch > above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
- 2. Size: As required for close fit to riser or stack piping.

# F. Stack Flashing Fittings:

- 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
- 2. Size: Same as connected stack vent or vent stack.

# G. Vent Cap Filters:

- 1. Description: Activated carbon filter in housing for installation at vent terminal as manufactured by Sweet Filter.
- 2. Size: Same as connected stack vent or vent stack.

# 2.5 FLASHING MATERIALS

- A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
  - 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
  - 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.
  - 3. Burning: 6-lb/sq. ft., 0.0938-inch thickness.
- B. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- C. Fasteners: Metal compatible with material and substrate being fastened.
- D. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- E. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

## 2.6 GREASE REMOVAL DEVICES

A. Grease Removal Devices:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide ECH2O grease removal system as manufactured by API Industries or a comparable product by one of the following:
  - a. Applied Chemical Technology, Incorporated.
  - b. Grease Removal Systems.
  - c. G K & L, Inc.
  - d. International Grease Recovery Device.
  - e. Josam Company; Blucher-Josam Div.
  - f. Lowe Engineering; a division of Highland Tank & Manufacturing Co., Inc.
  - g. Thermaco, Inc.
  - h. Town and Country
- 3. Provide system complete with in-line fixture filters, sump and lift station, and grease/oil removal unit.

## 2.7 MOTORS

- A. General requirements for motors are specified in Division 22 Section "Common Motor Requirements for Plumbing Equipment."
  - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
  - 2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

## **PART 3 - EXECUTION**

# 3.1 CONCRETE BASES

- A. Anchor grease removal devices to concrete bases.
  - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 19-inch centers around full perimeter of base.
  - 2. For installed equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
  - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be imbedded.
  - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
  - 5. Concrete base construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
  - 6. Cast-in-place concrete materials and placement requirements are specified in Division 03.

#### 3.2 INSTALLATION

- A. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- C. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

- D. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
  - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
  - 2. Locate at each change in direction of piping greater than 45 degrees.
  - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
  - 4. Locate at base of each vertical soil and waste stack.
- E. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- F. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- G. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
  - 1. Position floor drains for easy access and maintenance.
  - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
    - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
    - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
    - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
  - 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
  - 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- H. Assemble plastic channel drainage system components according to manufacturer's written instructions. Install on support devices so that top will be flush with adjacent surface.
- I. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- J. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
  - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
  - 2. Size: Same as floor drain inlet.
- K. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- M. Install vent cap filters on each vent pipe passing through roof.
- N. Install grease removal devices on floor as required by the manufacturer complete with all controls and power wiring.
- O. Install wood-blocking reinforcement for wall-mounting-type specialties.
- P. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

Q. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

## 3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Grease Removal Devices: Connect controls, electrical power, factory-furnished accessories, and inlet, outlet, and vent piping to unit.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

## 3.4 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
  - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
  - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
  - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
  - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."
- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
- G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

## 3.5 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
  - 1. Grease removal devices.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

# 3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
  - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled grease removal devices and their installation, including piping and electrical connections, and to assist in testing.

# B. Tests and Inspections:

- 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

## 3.7 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

## 3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain grease removal devices. Refer to Division 01 Section "Demonstration and Training."

**END OF SECTION 22 1319** 

# SECTION 22 1413 FACILITY STORM DRAINAGE PIPING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following storm drainage piping inside the building:
  - 1. Pipe, tube, and fittings.
  - 2. Special pipe fittings.
- B. Related Sections include the following:
  - Division 22 Section "Sump Pumps."

#### 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, *Ip*, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.

# 1.4 **DEFINITIONS**

- A. LLDPE: Linear, low-density polyethylene plastic.
- B. PE: Polyethylene plastic.
- C. PVC: Polyvinyl chloride plastic.
- D. TPE: Thermoplastic elastomer.

## 1.5 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working-pressure, unless otherwise indicated:
  - 1. Storm Drainage Piping: 10-foot head of water.
- B. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

## 1.6 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For pipe, tube, fittings, and couplings.
- C. Shop Drawings:
  - 1. Design Calculations: Signed and sealed by a qualified professional engineer for selecting seismic restraints.
  - 2. Controlled-Flow Storm Drainage System: Include calculations, plans, and details.
- D. Field quality-control inspection and test reports.
- E. Delegated-Design Submittal:
  - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
  - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
  - 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
  - 4. Seismic calculations and detailed analysis: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. Project specific design documentation and calculations shall be prepared and stamped by a registered professional engineer who is responsible for the seismic restraint design and who is licensed in the state where the project is being constructed (ASCE 7, 13.2.1.1).

#### 1.7 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer" for plastic sewer piping.

## **PART 2 - PRODUCTS**

## 2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

#### 2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

#### 2.3 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

**A.** Pipe and Fittings: ASTM A 888 or CISPI 301. All waste, vent, sewer and storm lines shall be soil pipe and fittings that conform to the requirements of CISPI Standard 301, ASTM A \*\* and shall be marked with the collective trademark of the Cast Soil Pipe Institute or Receive Prior approval of the engineer and manufactured by AB&I Foundry, Tyler Pipe, or Charlotte Pipe. In addition all Cast iron shall be American made and tested, no "non compliant" import cast iron will be permitted.

- A. CISPI, Hubless-Piping Couplings:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. ANACO.
    - b. Ideal
    - c. Mission Rubber Company; a division of MCP Industries, Inc.
    - d. Tyler Pipe.
  - 2. Standards: ASTM C 1277 and CISPI 310.
  - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
  - 4. Listing: Couplings shall be listed by NSF International. Each coupling shall be embossed with the NSF seal.
- B. Heavy-Duty, Hubless-Piping Couplings:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Husky HD 2000.
    - b. Clamp-All Corp HI-TORQ 80.
    - c. Ideal HD
    - d. Mission HW.
    - e. Tyler Pipe Widebody.
  - 2. Standards: ASTM C 1277 and ASTM C 1540.
  - 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

# 2.4 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

## 2.5 SPECIAL PIPE FITTINGS

- A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
  - 1. Manufacturers:
    - a. Dallas Specialty & Mfg. Co.
    - b. Fernco, Inc.
    - c. Logan Clay Products Company (The).
    - d. Mission Rubber Co.
    - e. NDS, Inc.
    - f. Plastic Oddities, Inc.
  - 2. Sleeve Materials:
    - a. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
    - b. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
    - c. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

- B. Shielded Nonpressure Pipe Couplings: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
  - 1. Manufacturers:
    - a. Cascade Waterworks Mfg. Co.
    - b. Mission Rubber Co.

## **PART 3 - EXECUTION**

#### 3.1 EXCAVATION

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

#### 3.2 PIPING APPLICATIONS

- A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.
- B. Aboveground storm drainage piping shall be the following:
  - 1. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.
- C. Underground storm drainage piping shall be the following ( to 6" above finished floor):
  - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
  - 2. Hub-and spigot cast-iron soil pipe, hub-and spigot cast-iron soil pipe fittings, neoprene rubber gasket, and compression joints.

#### 3.3 PIPING INSTALLATION

- A. Storm sewer and drainage piping outside the building are specified in Division 33 Section "Storm Utility Drainage Piping."
- B. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- C. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- D. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers. Cleanouts are specified in Division 22 Section "Storm Drainage Piping Specialties."
- E. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping.
- F. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Fire Plumbing."
- G. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
  - Install encasement on underground piping according to ASTM A 674 or AWWA C105.
- H. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- J. Install storm drainage piping at the following minimum slopes, unless otherwise indicated:

- 1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
- 2. Horizontal Storm-Drainage Piping: 1 percent downward in direction of flow.
- K. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.
- L. Install underground PVC storm drainage piping according to ASTM D 2321.
- M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

#### 3.4 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results Plumbing."
- B. Hubless Cast-Iron Soil Piping Coupled Joints: Join according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.
- C. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

#### 3.5 HANGER AND SUPPORT INSTALLATION

- A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
  - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
  - 2. Individual, Straight, Horizontal Piping Runs: According to the following:
    - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
    - b. Longer than 100 Feet: MSS Type 43, adjustable roller hangers.
    - c. Longer than 100 Feet, if indicated: MSS Type 49, spring cushion rolls.
  - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
  - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
  - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
  - 2. NPS 3: 60 inches with 1/2-inch rod.
  - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
  - 4. NPS 6: 60 inches with 3/4-inch rod.
  - 5. NPS 8 to NPS 12: 60 inches with 7/8-inch rod.
  - 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

## 3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect storm drainage piping to roof drains and storm drainage specialties.

#### 3.7 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
  - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
  - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
  - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
  - 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
  - 3. Test Procedure: Test storm drainage piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
  - 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
  - 5. Prepare reports for tests and required corrective action.

# 3.8 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

# **END OF SECTION 22 1413**

#### **SECTION 22 1423**

#### STORM DRAINAGE PIPING SPECIALTIES

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following storm drainage piping specialties:
  - 1. Cleanouts.
  - 2. Roof drains.
  - 3. Miscellaneous storm drainage piping specialties.
  - 4. Flashing materials.
- B. Related Sections include the following:
  - 1. Division 22 Section "Sanitary Waste Piping Specialties" for backwater valves, floor drains, trench drains and channel drainage systems connected to sanitary sewer, air admittance valves, FOG disposal systems, grease interceptors and removal devices, oil interceptors, and solid interceptors.

#### 1.3 DEFINITIONS

- A. PUR: Polyurethane plastic.
- B. PVC: Polyvinyl chloride plastic.

## 1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.

## 1.5 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

## 1.6 COORDINATION

A. Coordinate size and location of roof penetrations.

# **PART 2 - PRODUCTS**

# 2.1 CLEANOUTS

- A. Exposed Metal Cleanouts:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Josam Company; Josam Div.
    - b. MIFAB, Inc.
    - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - d. Sioux Chief Manufacturing Company, Inc
    - e. Tyler Pipe; Wade Div.
    - f. Watts Drainage Products Inc.

- g. Zurn Plumbing Products Group; Specification Drainage Operation.
- h. Sun Drainage Products
- 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
- 3. Size: Same as connected drainage piping
- 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
- 5. Closure: Countersunk, brass plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Closure: Stainless-steel plug with seal.
- B. Metal Floor Cleanouts:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Josam Company; Josam Div.
    - b. Oatey.
    - c. Sioux Chief Manufacturing Company, Inc.
    - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - e. Tyler Pipe; Wade Div.
    - f. Watts Drainage Products Inc.
    - g. Zurn Plumbing Products Group; Light Commercial Operation.
    - h. Zurn Plumbing Products Group; Specification Drainage Operation.
    - Sun Drainage Products
  - 2. Standard: ASME A112.36.2M for adjustable housing cleanout.
  - 3. Size: Same as connected branch.
  - 4. Type: Adjustable housing.
  - 5. Body or Ferrule: Cast iron.
  - 6. Clamping Device: Required.
  - 7. Outlet Connection: Inside calk.
  - 8. Closure: [Brass plug with tapered threads.
  - 9. Adjustable Housing Material: Cast iron with threads.
  - 10. Frame and Cover Material and Finish: Stainless steel.
  - 11. Frame and Cover Shape: Round.
  - 12. Top Loading Classification: Heavy Duty.
  - 13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
  - 14. Standard: ASME A112.3.1.
  - 15. Size: Same as connected branch.
  - 16. Housing: Stainless steel.
  - 17. Closure: Stainless steel with seal.
  - 18. Riser: Stainless-steel drainage pipe fitting to cleanout.
- C. Cast-Iron Wall Cleanouts:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. Josam Company; Josam Div.
  - b. MIFAB, Inc.
  - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
  - d. Sioux Chief Manufacturing Company, Inc
  - e. Tyler Pipe; Wade Div.
  - f. Watts Drainage Products Inc.
  - g. Zurn Plumbing Products Group; Specification Drainage Operation.
  - h. Sun Drainage Products
- 2. Standard: ASME A112.36.2M. Include wall access.
- 3. Size: Same as connected drainage piping.
- 4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
- 5. Closure: Countersunk, brass plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.

# 2.2 ROOF DRAINS

- A. Metal Roof Drains:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 2. Basis-of-Design Product: See Schedule at end of this section for drain descriptions:
    - a. Josam Company; Josam Div.
    - b. MIFAB, Inc.
    - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
    - d. Sioux Chief Manufacturing Company, Inc.
    - e. Tyler Pipe; Wade Div.
    - f. Watts Drainage Products Inc.
    - g. Zurn Plumbing Products Group; Specification Drainage Operation.
    - h. Sun Drainage Products
  - 3. Standard: ASME A112.21.2M.
  - 4. Body Material Cast iron.
  - 5. Combination Flashing Ring and Gravel Stop: Required.
  - 6. Dome Material: Cast iron.
  - 7. Extension Collars: Required.
  - 8. Underdeck Clamp Required.
  - 9. Sump Receiver: Required.
- B. Conductor Nozzles <u>DSN-1</u>:
  - 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
  - 2. Size: Same as connected conductor.

## 2.3 FLASHING MATERIALS

- A. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- B. Fasteners: Metal compatible with material and substrate being fastened.
- C. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- D. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

#### **PART 3 - EXECUTION**

#### 3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
  - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
  - 2. Locate at each change in direction of piping greater than 45 degrees.
  - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
  - 4. Locate at base of each vertical soil and waste stack.
- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions. Roofing materials are specified in Division 07.
  - 1. Install roof-drain flashing collar or flange so that there will be no leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
  - 2. Position roof drains for easy access and maintenance.
- F. Install manufactured, gray-iron downspout boots at grade with top [6 inches] [12 inches] [18 inches] above grade. Secure to building wall.
- G. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.
- H. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

# 3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

# 3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
  - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

- 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
- 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
- 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Fabricate and install flashing and pans, sumps, and other drainage shapes.

#### 3.4 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

# **END OF SECTION 22 1423**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 3100 DOMESTIC WATER SOFTENERS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes commercial water softeners.
  - 1. Chemicals.
  - 2. Water testing kits.

#### 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor. All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

#### 1.4 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. FRP: Fiberglass-reinforced plastic.
- C. PE: Polyethylene plastic.
- D. PVC: Polyvinyl chloride plastic.

# 1.5 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For the following:
  - 1. Water Softeners. Include rated capacities, operating characteristics, furnished specialties, and accessories.
  - 2. Water testing kits.
- C. Shop Drawings: For water softeners. Include plans, elevations, sections, details, and connections to piping systems.
  - 1. Wiring Diagrams: Power, signal, and control wiring.

- A. Manufacturer Seismic Qualification Certification: Submit certification that plumbing equipment and components will withstand seismic forces defined in Division 22 Section "Mechanical Vibration and Seismic Controls." Include the following:
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Manufacturer Certificates: Signed by manufacturers certifying that water softeners comply with requirements.
- C. Source quality-control test reports.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For water softeners to include in emergency, operation, and maintenance manuals.
- F. Warranty: Special warranty specified in this Section.
- G. Maintenance service agreement.

#### 1.6 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of water softeners and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. ASME Compliance for Steel Tanks: Fabricate and label mineral tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01, where indicated.
- D. ASME Compliance for FRP Tanks: Fabricate and label mineral tanks to comply with ASME Boiler and Pressure Vessel Code: Section X, where indicated.

#### 1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

# 1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of water softener that fail in materials or workmanship within specified warranty period.
  - 1. Failures include, but are not limited to, the following:
    - a. Structural failures of mineral and brine tanks.
    - b. Faulty operation of controls.
    - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
    - d. Attrition loss of resin exceeding 3 percent per year.
    - e. Mineral washed out of system during service run or backwashing period.
    - f. Effluent turbidity greater and color darker than incoming water.
    - g. Fouling of underdrain system, gravel, and resin, with turbidity or by dirt, rust, or scale from softener equipment or soft water, while operating according to manufacturer's written operating instructions.
  - 2. Commercial Water Softener, Warranty Period: From date of Substantial Completion.

- a. Mineral Tanks: 10 years.
- b. Brine Tanks: Five years.
- c. Controls: 10 years.
- d. Underdrain Systems: Five years.

#### 1.9 MAINTENANCE SERVICE

A. Maintenance: Submit four copies of manufacturer's "Agreement for Continued Service and Maintenance," before Substantial Completion, for Owner's acceptance. Offer terms and conditions for furnishing chemicals and providing continued testing and servicing to include replacing materials and equipment. Include one-year term of agreement with option for one-year renewal.

#### **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

#### 2.2 COMMERCIAL WATER SOFTENERS

- A. Description: Factory-assembled, pressure-type water softener.
  - 1. Manufacturers:
    - a. Culligan International Company.
    - b. Kinetico Incorporated.
    - c. Marlo, Inc.
    - d. Water & Power Technologies, Inc.
    - e. Northstar
    - f. CSI Water Treatment Systems, Inc.
    - g. ECI
    - h. Pacific
  - 2. Comply with NSF 61, "Drinking Water System Components--Health Effects."
  - 3. Configuration: Twin unit with two mineral tanks and one brine tank, factory mounted on skid.
  - 4. Mineral Tanks: Steel, electric welded; pressure-vessel quality.
    - a. Fabricate supports and attachments to tank with reinforcement strong enough to resist tank movement during seismic event when tank supports are anchored to building structure.
    - b. Construction: Fabricated and stamped to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels."
    - c. Pressure Rating125 psig > minimum.
    - d. Wetted Components: Suitable for water temperatures from 40 to at least 100 deg F.
    - e. Freeboard: 50 percent minimum for backwash expansion above normal resin bed level.

- f. Handholes: 4 inches round or 4 by 6 inches elliptical, in top head and lower sidewall of tanks 30 inches and smaller in diameter.
- g. Manhole: 11 by 15 inches in top head of tanks larger than 30 inches in diameter.
- h. Support Legs or Skirt: Constructed of structural steel, welded to tank before testing and labeling.
- i. Finish: Hot-dip galvanized on exterior and interior of tank after fabrication unless tank is stainless steel.
- j. Finish: Exterior of tank spray painted with rust-resistant prime coat, 2- to 3-mil dry film thickness. Interior sandblasted and lined with epoxy-polyamide coating, 8- to 10-mil dry film thickness.
- k. Upper Distribution System: Single, point type, fabricated from galvanized-steel pipe and fittings.
- I. Lower Distribution System: Hub and radial-arm or header-lateral type; fabricated from PVC pipe and fittings with individual, fine-slotted, nonclogging PE strainers; arranged for even flow distribution through resin bed.
- m. Liner: PE, ABS, or other material suitable for potable water.
- 5. Controls: Fully automatic; factory mounted on unit and factory wired.
  - a. Adjustable duration of various regeneration steps.
  - b. Push-button start and complete manual operation.
  - c. Electric time clock and switch for fully automatic operation, adjustable to initiate regeneration at any hour of day and any day of week or at fixed intervals.
  - d. Sequence of Operation: Program multiport pilot-control valve to automatically pressure-actuate main operating valve through steps of regeneration and return to service.
  - e. Pointer on pilot-control valve shall indicate cycle of operation.
  - f. Means of manual operation of pilot-control valve if power fails.
  - g. Main Operating Valves: Industrial, automatic, multiport, diaphragm type with the following features:
    - 1) Slow opening and closing, nonslam operation.
    - 2) Diaphragm guiding on full perimeter from fully open to fully closed.
    - 3) Isolated dissimilar metals within valve.
    - 4) Self-adjusting, internal, automatic brine injector that draws brine and rinses at constant rate independent of pressure.
    - 5) Valve for single mineral-tank unit with internal automatic bypass of raw water during regeneration.
    - 6) Sampling cocks for soft water.
    - 7) Special tools are not required for service.
  - h. Flow Control: Automatic, to control backwash and flush rates over wide variations in operating pressures, and that does not require field adjustments.
    - 1) Meter Control: Equip each mineral tank with signal-register-head water meter that will produce electrical signal indicating need for regeneration on reaching hand-set total in gallons. Design so signal will continue until reset.
    - 2) Demand-Initiated Control: Equip single mineral-tank units with automaticreset-head water meter that electrically activates cycle controller to initiate regeneration at preset total in gallons. Design so head automatically resets to preset total in gallons for next service run.

- 3) Demand-Initiated Control: Equip each mineral tank of twin mineral-tank units with automatic-reset-head water meters that electrically activate cycle controllers to initiate regeneration at preset total in gallons. Design so heads automatically reset to preset total in gallons for next service run. Include electrical lockout to prevent simultaneous regeneration of both tanks.
- 4) Demand-Initiated Control: Equip each mineral tank of twin mineral-tank units with automatic-reset-head water meter in common outlet header that electrically activates cycle controller to automatically regenerate one mineral tank at preset total in gallons and divert flow to other tank. Set to repeat with other tank. Include electrical lockout to prevent simultaneous regeneration of both tanks.
- 5) Demand-Initiated Control: Equip each mineral tank of multiple mineral-tank units with automatic-reset-head water meters that electrically activate cycle controllers to automatically regenerate at preset total in gallons. Design so heads automatically reset to preset total in gallons for next service run. Include electrical lockouts to prevent simultaneous regeneration of more than one tank.
- 6) Demand-Initiated Control: Equip each mineral tank of multiple mineral-tank units with automatic-reset-head water meter in common outlet header that electrically activates cycle controller to automatically regenerate one mineral tank at preset total in gallons and divert flow to other tanks. Set to repeat with other tanks. Include electrical lockouts to prevent simultaneous regeneration of more than one tank.
- 6. Brine Tank: Combination measuring and wet-salt storing system.
  - a. Tank and Cover Material: Fiberglass, 3/16 inch thick; or molded PE, 3/8 inch thick.
  - b. Brine Valve: Float operated and plastic fitted for automatic control of brine withdrawn and freshwater refill.
  - c. Size: Large enough for at least four regenerations at full salting.
- 7. Factory-Installed Accessories:
  - a. Piping, valves, tubing, and drains.
  - b. Sampling cocks.
  - c. Main-operating-valve position indicators.
  - d. Water meters.

#### 2.3 WATER TESTING SETS

A. Description: Manufacturer's standard water-hardness testing apparatus and chemicals with testing procedure instructions. Include metal container suitable for wall mounting.

#### 2.4 SOURCE QUALITY CONTROL

- A. Hydrostatically test mineral tanks before shipment to minimum of one and one-half times pressure rating.
- B. Prepare test reports.

# **PART 3 - EXECUTION**

#### 3.1 CONCRETE BASES

- A. Install concrete bases of dimensions indicated for commercial water softeners. Refer to Division 22 Section "Common Work Results for Plumbing."
  - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of base.

- 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevation required for proper attachment to supported equipment.
- B. Cast-in-place concrete materials and placement requirements are specified in Division 03.

#### 3.2 WATER SOFTENER INSTALLATION

- A. Install commercial water softener equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor mineral and brine tanks and floor-mounting accessories to substrate.
- B. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- C. Install brine lines and fittings furnished by equipment manufacturer but not specified to be factory installed.
- D. Prepare mineral-tank distribution system and underbed for minerals and place specified mineral into mineral tanks.
- E. Install water testing sets mounted on wall, unless otherwise indicated, and near water softeners.

#### 3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Make piping connections between water-softener-unit headers and dissimilar-metal water piping with dielectric fittings. Dielectric fittings are specified in Division 22 Section "Common Work Results for Plumbing."
- D. Install shutoff valves on raw-water inlet and soft-water outlet piping of each mineral tank, and on inlet and outlet headers.
  - 1. Metal general-duty valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
  - 2. Plastic valves are specified in Division 22 Section "Domestic Water Piping."
  - 3. Exception: Water softeners with factory-installed shutoff valves at locations indicated.
- E. Install pressure gages on raw-water inlet and soft-water outlet piping of each mineral tank. Pressure gages are specified in Division 22 Section "Meters and Gages for Plumbing Piping."
  - 1. Exception: Water softeners with factory-installed pressure gages at locations indicated.
  - 2. Exception: Water softeners in hot-water service.
- F. Install valved bypass water piping around water softeners.
  - 1. Metal general-duty valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
  - 2. Water piping is specified in Division 22 Section "Domestic Water Piping."
  - 3. Exception: Household water softeners.
  - 4. Exception: Water softeners in hot-water service.
- G. Install drains as indirect wastes to spill into open drains or over floor drains.
- H. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

 Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

#### 3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
  - Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
  - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
  - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning water softeners that do not pass tests and inspections and retest as specified above.

#### 3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
  - 1. Complete installation and startup checks according to manufacturer's written instructions.
- B. Add water to brine tanks and fill with salt.
  - 1. Commercial Water Softeners: Food-grade salt pellets.
- C. Sample water softener effluent after startup and at three consecutive seven-day intervals (total of four samples), and prepare certified test reports for required water performance characteristics. Comply with the following:
  - 1. ASTM D 859, "Test Method for Silica in Water."
  - 2. ASTM D 1067, "Test Methods for Acidity or Alkalinity of Water."
  - 3. ASTM D 1068, "Test Methods for Iron in Water."
  - 4. ASTM D 1126, "Test Method for Hardness in Water."
  - 5. ASTM D 1129, "Terminology Relating to Water."
  - 6. ASTM D 3370, "Practices for Sampling Water from Closed Conduits."

# 3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water softeners. Refer to Division 01 "Demonstration and Training" Section

#### **END OF SECTION 22 3100**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 3400 FUEL-FIRED, DOMESTIC-WATER HEATERS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Commercial, atmospheric, gas-fired, storage, domestic-water heaters.
  - 2. Commercial, gas-fired, high-efficiency direct vent, storage, domestic-water heaters.
  - Domestic-water heater accessories.
  - Water heaters to come with orifice sized for the site elevation.

#### 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor: All plumbing components shall be assigned a component importance factor. The component importance factor, *Ip*, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.

# 1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

#### 1.5 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- C. LEED Submittals:
  - 1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with applicable requirements in ASHRAE/IESNA 90.1, Section 7, "Service Water Heating."
- D. Shop Drawings:
  - 1. Wiring Diagrams: For power, signal, and control wiring.

## 1.6 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For fuel-fired, domestic-water heaters, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Product Certificates: For each type of domestic-water heater, from manufacturer.
- C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Warranty: Sample of special warranty.

#### 1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

## 1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
- C. ASME Compliance:
  - 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
  - 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
- D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components Health Effects."

## 1.9 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

# 1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.
  - 1. Failures include, but are not limited to, the following:
    - a. Structural failures including storage tank and supports.
    - b. Faulty operation of controls.
    - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
  - 2. Warranty Periods: From date of Substantial Completion.
    - a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:

- 1) Storage Tank: Five years.
- 2) Controls and Other Components: Two year(s).
- b. Compression Tanks: Five years.

#### **PART 2 - PRODUCTS**

## 2.1 COMMERCIAL, GAS-Fired, STORAGE, domestic-WATER HEATERS

- A. Commercial, Gas-Fired, High-Efficiency Direct Vent, Storage, Domestic-Water Heaters:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. AERCO International, Inc.
    - b. Lochinvar Corporation.
    - c. PVI Industries, LLC.
    - d. RBI Water Heaters; a Mestek company.
    - e. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
    - f. State Industries.
    - g. Weben-Jarco, Inc.
  - 2. Standard: ANSI Z21.10.3/CSA 4.3.
  - 3. Description: Manufacturer's proprietary design to provide at least 88 percent combustion efficiency at optimum operating conditions.
  - 4. Storage-Tank Construction: ASME-code steel with 150-psig minimum working-pressure rating.
    - a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
      - 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
      - 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
    - b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
    - c. Lining: Glass complying with NSF 61 barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.
  - 5. Factory-Installed Storage-Tank Appurtenances:
    - a. Anode Rod: Replaceable magnesium.
    - b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
    - c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
    - d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
    - e. Jacket: Steel with enameled finish.
    - f. Burner or Heat Exchanger: Comply with UL 795 or approved testing agency requirements for gas-fired, high-efficiency, domestic-water heaters and natural-gas fuel.
    - g. Temperature Control: Adjustable thermostat.
    - h. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.

- i. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.
- Direct-vent System: Manufacture's standard through-wall or roof, double channel vent assembly with outside intake/exhaust screen. See drawings on vent locations room or wall.
- B. Capacity and Characteristics: See drawings.

# 2.2 WATER HEATER ACCESSORIES

- A. Domestic-Water Compression Tanks:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Amtrol Inc.
    - b. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
    - c. State Industries.
    - d. Taco, Inc.
    - e. Zilmet
    - f. Bell & Gossett
  - 2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
  - 3. Construction:
    - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
    - b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
    - c. Air-Charging Valve: Factory installed.
  - 4. Capacity and Characteristics: See drawings
    - a. Working-Pressure Rating: 150 psig.
    - b. Capacity Acceptable: See drawings 4 gallon minimum.
    - c. Air Precharge Pressure:
- B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.
- C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1 or ASHRAE 90.2.
- D. Heat-Trap Fittings: ASHRAE 90.2.
- E. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and calibrated balancing valves to provide balanced flow through each domestic-water heater.
  - Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

- 2. Comply with requirements for balancing valves specified in Division 22 Section "Domestic Water Piping Specialties."
- F. Gas Shutoff Valves: ANSI Z21.15/CSA 9.1-M, manually operated. Furnish for installation in piping.
- G. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include required pressure regulators as required to match gas supply and equipment being served.
- H. Automatic Gas Valves: ANSI Z21.21/CSA 6.5, appliance, electrically operated, on-off automatic valve.
- I. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
  - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
- J. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.
  - Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
- K. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.
- L. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.
- M. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

#### 2.3 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.
- C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.
- D. Prepare test and inspection reports.

# **PART 3 - EXECUTION**

# 3.1 WATER HEATER INSTALLATION

- A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Division 03 Section "Miscellaneous Cast-in-Place Concrete."
  - 1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
  - 2. Maintain manufacturer's recommended clearances.
  - 3. Arrange units so controls and devices that require servicing are accessible.
  - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
  - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

- 6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 7. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 8. Anchor domestic-water heaters to substrate.
- B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
  - Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- C. Install gas-fired, domestic-water heaters according to NFPA 54.
  - 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
  - 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
  - 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
  - 4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Division 23 Section "Facility Natural-Gas Piping."
- D. Install commercial domestic-water heaters with seismic-restraint devices. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- E. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- F. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- G. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Division 22 Section "Domestic Water Piping Specialties."
- H. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Division 22 Section "Meters and Gages for Plumbing Piping."
- I. Assemble and install inlet and outlet piping manifold kits for multiple domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each domestic-water heater outlet. Comply with requirements for valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping," and comply with requirements for thermometers specified in Division 22 Section "Meters and Gages for Plumbing Piping."
- J. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.
- K. Fill domestic-water heaters with water.
- L. Charge domestic-water compression tanks with air.

## 3.2 CONNECTIONS

- A. Comply with requirements for domestic-water piping specified in Division 22 Section "Domestic Water Piping."
- B. Comply with requirements for gas piping specified in Division 23 Section "Facility Natural-Gas Piping."
- C. Drawings indicate general arrangement of piping, fittings, and specialties.
- D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.
- E. Install a brass nipple fitting on the inlet and outlet of all water heaters.

#### 3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

#### 3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
  - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
  - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
  - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
  - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.
- C. Prepare test and inspection reports.

## 3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain domestic-water heaters.

#### **END OF SECTION 22 3400**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 4000 PLUMBING FIXTURES

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following conventional plumbing fixtures and related components:
  - Faucets for lavatories bathtub/showers showers and sinks.
  - 2. Flushometers.
  - Toilet seats.
  - 4. Protective shielding guards.
  - 5. Fixture supports.
  - 6. Water closets.
  - 7. Urinals.
  - 8. Lavatories.
  - 9. Commercial sinks.
  - 10. Shampoo bowls.
  - 11. Bathtubs.
  - 12. Kitchen sinks.
  - 13. Service sinks.
  - 14. Owner-furnished fixtures.
- B. Related Sections include the following:
  - 1. Division 10 Section "Toilet, Bath, and Laundry Accessories."
  - 2. Division 22 Section "Domestic Water Piping Specialties" for backflow preventers, floor drains, and specialty fixtures not included in this Section.
  - 3. Division 22 Section "Emergency Plumbing Fixtures."
  - 4. Division 22 Section "Drinking Fountains and Water Coolers."

# 1.3 **DEFINITIONS**

- A. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
- B. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.
- C. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.
- D. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.
- E. FRP: Fiberglass-reinforced plastic.
- F. PMMA: Polymethyl methacrylate (acrylic) plastic.
- G. PVC: Polyvinyl chloride plastic.

H. Solid Surface: Nonporous, homogeneous, cast-polymer-plastic material with heat-, impact-, scratch-, and stain-resistance qualities.

#### 1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.
- C. Shop Drawings: Diagram power, signal, and control wiring.
- D. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.
- E. Warranty: Special warranty specified in this Section.

#### 1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
  - 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act"; for plumbing fixtures for people with disabilities.
- D. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
- G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
  - 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
  - 2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
  - 3. Slip-Resistant Bathing Surfaces: ASTM F 462.
  - 4. Solid-Surface-Material Lavatories and Sinks: ANSI/ICPA SS-1.
  - 5. Stainless-Steel Residential Sinks: ASME A112.19.3.
  - 6. Vitreous-China Fixtures: ASME A112.19.2M.
  - 7. Water-Closet, Flushometer Tank Trim: ASSE 1037.
  - 8. Whirlpool Bathtub Fittings: ASME A112.19.8M.
- H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
  - 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
  - 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
  - 3. Diverter Valves for Faucets with Hose Spray: ASSE 1025.
  - 4. Faucets: ASME A112.18.1.

- 5. Hose-Connection Vacuum Breakers: ASSE 1011.
- 6. Hose-Coupling Threads: ASME B1.20.7.
- 7. Integral, Atmospheric Vacuum Breakers: ASSE 1001.
- 8. NSF Potable-Water Materials: NSF 61.
- 9. Pipe Threads: ASME B1.20.1.
- 10. Sensor-Actuated Faucets and Electrical Devices: UL 1951.
- 11. Supply Fittings: ASME A112.18.1.
- 12. Brass Waste Fittings: ASME A112.18.2.
- 13. NSF61 Appendage G-AB 1953. Lead free potable drinking faucets.
- I. Comply with the following applicable standards and other requirements specified for bathtub/shower and shower faucets:
  - 1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
  - 2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.
  - 3. Deck-Mounted Bath/Shower Transfer Valves: ASME 18.7.
  - 4. Faucets: ASME A112.18.1.
  - 5. Hand-Held Showers: ASSE 1014.
  - 6. High-Temperature-Limit Controls for Thermal-Shock-Preventing Devices: ASTM F 445.
  - 7. Hose-Coupling Threads: ASME B1.20.7.
  - 8. Manual-Control Antiscald Faucets: ASTM F 444.
  - 9. Pipe Threads: ASME B1.20.1.
  - Pressure-Equalizing-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
  - 11. Sensor-Actuated Faucets and Electrical Devices: UL 1951.
  - 12. Thermostatic-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
- J. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
  - 1. Atmospheric Vacuum Breakers: ASSE 1001.
  - 2. Brass and Copper Supplies: ASME A112.18.1.
  - Dishwasher Air-Gap Fittings: ASSE 1021.
  - 4. Manual-Operation Flushometers: ASSE 1037.
  - 5. Plastic Tubular Fittings: ASTM F 409.
  - 6. Brass Waste Fittings: ASME A112.18.2.
  - 7. Sensor-Operation Flushometers: ASSE 1037 and UL 1951.
  - 8. NSF61 Appendage G-AB 1953. Lead free potable drinking faucets.
- K. Comply with the following applicable standards and other requirements specified for miscellaneous components:
  - 1. Disposers: ASSE 1008 and UL 430.
  - 2. Dishwasher Air-Gap Fittings: ASSE 1021.
  - 3. Flexible Water Connectors: ASME A112.18.6.
  - 4. Floor Drains: ASME A112.6.3.
  - 5. Grab Bars: ASTM F 446.

- 6. Hose-Coupling Threads: ASME B1.20.7.
- 7. Off-Floor Fixture Supports: ASME A112.6.1M.
- 8. Pipe Threads: ASME B1.20.1.
- 9. Plastic Toilet Seats: ANSI Z124.5.
- 10. Supply and Drain Protective Shielding Guards: ICC A117.1.

## 1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
  - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
  - 3. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than 12 of each type.
  - 4. Provide hinged-top wood or metal box, or individual metal boxes, with separate compartments for each type and size of extra materials listed above.
  - 5. Toilet Seats: Equal to 5 percent of amount of each type installed.

#### **PART 2 - PRODUCTS**

#### 2.1 LAVATORY FAUCETS

- A. Lavatory Faucets:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Chicago Faucets.
    - b. T & S Brass and Bronze Works, Inc.
    - c. Moen, Inc.
    - d. AMTC
    - e. Mac Faucets

# 2.2 SINK FAUCETS

- A. Sink Faucets:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Chicago Faucets.
    - b. T & S Brass and Bronze Works, Inc.
    - c. Moen, Inc.

# 2.3 FLUSHOMETERS

A. Flushometers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. Sloan Valve Company.
  - b. Zurn Plumbing Products Group; Commercial Brass Operation.
  - c. Moen, Inc.
  - d. AMTC

# 2.4 TOILET SEATS

- A. Toilet Seats:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Bemis Manufacturing Company.
    - b. Centoco Manufacturing Corp.
    - c. Church Seats.
    - d. Olsonite Corp.
    - e. Sperzel.
  - 2. Description: Toilet seat for water-closet-type fixture.
    - a. Material: Molded, solid plastic with antimicrobial agent.
    - b. Configuration: Open front without cover.
    - c. Size: Elongated.
    - d. Hinge Type: CK, check.
    - e. Class: Heavy-duty commercial.
    - f. Color: White.

#### 2.5 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Engineered Brass Co.
    - b. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
    - c. McGuire Manufacturing Co., Inc.
    - d. Plumberex Specialty Products Inc.
    - e. TCI Products.
    - f. TRUEBRO, Inc.
    - g. Zurn Plumbing Products Group; Tubular Brass Plumbing Products Operation.
  - Description: Manufactured plastic wraps for covering plumbing fixture hot- and coldwater supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements. Product shall also meet the ASTM E 84 25/450 smoke and flame rating.
- B. Protective Shielding Piping Enclosures:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. TRUEBRO, Inc.
- 2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

#### 2.6 FIXTURE SUPPORTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Josam Company.
  - 2. MIFAB Manufacturing Inc.
  - 3. Smith, Jay R. Mfg. Co.
  - 4. Tyler Pipe; Wade Div.
  - 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
  - 6. Zurn Plumbing Products Group; Specification Drainage Operation.
  - 7. Sun Drainage Products
- B. Urinal Supports:
  - 1. Description: Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture for wall-mounting, urinal-type fixture. Include steel uprights with feet.
  - 2. Accessible-Fixture Support: Include rectangular steel uprights.
- C. Lavatory Supports:
  - 1. Description: Type II, lavatory carrier with concealed arms and tie rod for wall-mounting, lavatory-type fixture. Include steel uprights with feet.
  - 2. Accessible-Fixture Support: Include rectangular steel uprights.

## 2.7 WATER CLOSETS

- A. Water Closets:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Standard Companies, Inc.
    - b. Kohler Co.
    - c. Sloan.

# 2.8 URINALS

- A. Urinals:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Standard Companies, Inc.
    - b. Briggs Plumbing Products, Inc.
    - c. Kohler Co.

## 2.9 LAVATORIES

- A. Lavatories:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Standard Companies, Inc.
    - b. Briggs Plumbing Products, Inc.
    - c. Kohler Co.

## 2.10 COMMERCIAL SINKS

- A. Commercial Sinks:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Elkay Manufacturing Co.
    - b. Just Manufacturing Company.

#### 2.11 SERVICE SINKS

- A. Service Sinks:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Standard Companies, Inc.
    - b. Commercial Enameling Company.
    - c. Kohler Co.

#### **PART 3 - EXECUTION**

# 3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
- B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

#### 3.2 INSTALLATION

- A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
  - 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
  - 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
  - 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
- C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
- D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
- E. Install wall-mounting fixtures with tubular waste piping attached to supports.

- F. Install counter-mounting fixtures in and attached to casework.
- G. Install fixtures level and plumb according to roughing-in drawings.
- H. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
  - 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- I. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- J. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- K. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
- L. Install toilet seats on water closets.
- M. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- N. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
- O. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- P. Install shower flow-control fittings with specified maximum flow rates in shower arms.
- Q. Install traps on fixture outlets.
  - 1. Exception: Omit trap on fixtures with integral traps.
  - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- R. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- S. Set bathtubs and service basins in leveling bed of cement grout. Grout is specified in Division 22 Section "Common Work Results for Plumbing."
- T. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."
- U. All plumbing fixtures are to be mounted at the height specified on the Architectural drawings.

# 3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

## 3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.
- E. Install fresh batteries in sensor-operated mechanisms.

# 3.5 ADJUSTING

- A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.
- C. Replace washers and seals of leaking and dripping faucets and stops.
- D. Install fresh batteries in sensor-operated mechanisms.

#### 3.6 CLEANING

- A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
  - 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
  - 2. Remove sediment and debris from drains.
- B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

# 3.7 PROTECTION

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

# **END OF SECTION 22 4000**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 22 4700 DRINKING FOUNTAINS AND WATER COOLERS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following drinking fountains and water coolers and related components:
  - 1. Drinking fountains.
  - 2. Remote water coolers.
  - Fixture supports.

# 1.3 SEISMIC REQUIREMENTS

- A. Component Importance Factor: All plumbing components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. Seismic Performance: Plumbing equipment, hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 220548 " Vibration and Seismic Controls for Plumbing Piping and Equipment.
  - 1. For components with a seismic importance factor of 1.0 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. For components with a seismic importance factor of 1.5 the term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

3.

#### 1.4 **DEFINITIONS**

- A. Accessible Drinking Fountain or Water Cooler: Fixture that can be approached and used by people with disabilities.
- B. Cast Polymer: Dense, cast-filled-polymer plastic.
- C. Drinking Fountain: Fixture with nozzle for delivering stream of water for drinking.
- D. Fitting: Device that controls flow of water into or out of fixture.
- E. Fixture: Drinking fountain or water cooler unless one is specifically indicated.
- F. Remote Water Cooler: Electrically powered equipment for generating cooled drinking water.
- G. Water Cooler: Electrically powered fixture for generating and delivering cooled drinking water.

# 1.5 SUBMITTALS

A. See Section 01 3000 – Administrative Requirements, for submittal procedures.

- B. Product Data: For each fixture indicated. Include rated capacities, furnished specialties, and accessories.
- C. Shop Drawings: Diagram power, signal, and control wiring.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For fixtures to include in emergency, operation, and maintenance manuals.
- F. Manufacturer Seismic Qualification Certification: Submit certification that plumbing equipment and components will withstand seismic forces defined in Division 22 Section "Mechanical Vibration and Seismic Controls." Include the following:
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

# 1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act"; for fixtures for people with disabilities.
- C. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- D. ARI Standard: Comply with ARI's "Directory of Certified Drinking Water Coolers" for style classifications.
- E. ARI Standard: Comply with ARI 1010, "Self-Contained, Mechanically Refrigerated Drinking-Water Coolers," for water coolers and with ARI's "Directory of Certified Drinking Water Coolers" for type and style classifications.
- F. ASHRAE Standard: Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants," for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant, unless otherwise indicated.

## **PART 2 - PRODUCTS**

#### 2.1 DRINKING FOUNTAINS

- A. Drinking Fountains, EWC-1:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 2. Basis-of-Design Product: Subject to compliance with requirements, provide Elkay model LZSTLG8WS wall mounted dual level stainless steel drinking fountain complete with bottle filler or a comparable product by one of the following:
    - a. Filtrine Manufacturing Company; Drinking Water Division.
    - b. Halsey Taylor.
    - c. Haws Corporation.
    - d. Most Dependable Fountains, Inc.
    - e. Murdock, Inc.
    - f. Oasis Corporation.
    - g. Stern-Williams Co., Inc.
    - h. Sunroc Corp.

# B. Drinking Fountains, EWC-2:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide Elkay model LRPBM28RAK Reverse dual level stainless steel drinking fountain with mounting frame or a comparable product by one of the following:
  - a. Filtrine Manufacturing Company; Drinking Water Division.
  - b. Halsey Taylor.
  - c. Haws Corporation.
  - d. Most Dependable Fountains, Inc.
  - e. Murdock, Inc.
  - f. Oasis Corporation.
  - g. Stern-Williams Co., Inc.
  - h. Sunroc Corp.

# 2.2 FIXTURE SUPPORTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Josam Co.
  - 2. MIFAB Manufacturing, Inc.
  - 3. Smith, Jay R. Mfg. Co.
  - 4. Tyler Pipe; Wade Div.
  - 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
  - 6. Zurn Plumbing Products Group; Specification Drainage Operation.
- B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.
  - 1. Type I: Hanger-type carrier with two vertical uprights.
  - 2. Type II: Bilevel, hanger-type carrier with three vertical uprights.
  - 3. Supports for Accessible Fixtures: Include rectangular, vertical, steel uprights instead of steel pipe uprights.

# **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

- A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before fixture installation. Verify that sizes and locations of piping and types of supports match those indicated.
- B. Examine walls and floors for suitable conditions where fixtures are to be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

# 3.2 APPLICATIONS

- A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.
- B. Use mounting frames for recessed water coolers, unless otherwise indicated.
- C. Set freestanding and pedestal drinking fountains on floor.
- D. Set remote water coolers on floor, unless otherwise indicated.

E. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view. Plain copper tube, fittings, and valves may be used in concealed locations.

## 3.3 INSTALLATION

- A. Install off-floor supports affixed to building substrate and attach wall-mounting fixtures, unless otherwise indicated.
- B. Install mounting frames affixed to building construction and attach recessed water coolers to mounting frames, unless otherwise indicated.
- C. Install fixtures level and plumb. For fixtures indicated for children, install at height required by authorities having jurisdiction.
- D. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- E. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
- F. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- G. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."
- H. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

# 3.4 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

# 3.5 FIELD QUALITY CONTROL

- A. Water Cooler Testing: After electrical circuitry has been energized, test for compliance with requirements. Test and adjust controls and safeties.
  - 1. Remove and replace malfunctioning units and retest as specified above.
  - 2. Report test results in writing.

#### 3.6 ADJUSTING

- A. Adjust fixture flow regulators for proper flow and stream height.
- B. Adjust water cooler temperature settings.

# 3.7 CLEANING

- A. After completing fixture installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
- B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

#### **END OF SECTION 22 4700**

# SECTION 23 0100 MECHANICAL REQUIREMENTS

#### **PART 1 - GENERAL**

#### 1.1 GENERAL CONDITIONS

- A. The General Conditions of the Contract, with the amendments, supplements, forms and requirements in Division 1, and herewith made a part of this Division.
- B. All sections of Division 21, 22, & 23 shall comply with the Mechanical General Requirements. The standards established in this section as to quality of materials and equipment, the type and quality of workmanship, mode of operations, safety rules, code requirements, etc., shall apply to all sections of this Division as though they were repeated in each Division.
- C. Mechanical equipment that is pre-purchased if any will be assigned to the Mechanical Contractor. By assignment to the Mechanical Contractor, the Mechanical Contractor shall accept and installed the equipment and provide all warrantees and guarantees as if the Mechanical Contractor had purchased the equipment.
- D. Construction Indoor-Air Quality Management
  - Comply with SMACNA's "SMACNA IAQ Guideline for Occupied Buildings under Construction."
    - a. If Owner authorizes use of permanent heating, cooling, and ventilating systems during construction period as specified in Division 01 Section "Temporary Facilities and Controls," install filter media having a MERV 8 according to ASHRAE 52.2 at each return-air inlet for the air-handling system used during construction.
    - b. Replace all air filters immediately prior to occupancy.

# 1.2 SCOPE OF WORK

- A. The project described herein is the Logan City School District Early Childhood Center Addition. This work shall include all labor, materials, equipment, fixtures, and devices for the entire mechanical work and a complete operating and tested installation as required for this project.
- B. This Division will schedule the boiler inspection and pay for all costs associated with certifying the boiler with the state.

#### 1.3 CODES & ORDINANCES

A. All work shall be executed in accordance with all underwriters, public utilities, local and state rules and regulations applicable to the trade affected. Should any change in the plans and Specifications be required to comply with these regulations, the Contractor shall notify the Architect before the time of submitting his bid. After entering into contract, the Contractor will be held to complete all work necessary to meet these requirements without extra expense to the Owner. Where work required by drawings or specifications is above the standard required, it shall be done as shown or specified.

# B. Applicable codes:

- Utah Boiler and Pressure Vessel Rules and Regulations-2019 Edition
- 2. International Building code- 2018 Edition
- 3. International Mechanical Code- 2018 Edition
- 4. International Plumbing Code- 2018 Edition
- International Fire Code- 2018 Edition
- 6. International Energy Code- 2018 Edition
- 7. International Fuel Gas Code- 2018 Edition
- 8. National Electrical Code- 2017 Edition

## 1.4 INDUSTRY STANDARDS

- A. All work shall comply with the following standards.
  - 1. Associated Air Balance council (AABC)
  - 2. Air Conditioning and Refrigeration Institute (ARI)
  - 3. Air Diffusion council (ADC)
  - 4. Air Movement and Control Association (AMCA)
  - 5. American Gas Association (AGA)
  - 6. American National Standards Institute (ANSI)
  - 7. American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE)
  - 8. American Society of Mechanical Engineers (ASME)
  - 9. American Society of Testing Materials (ASTM)
  - 10. American Water Works Association (AWWA)
  - 11. Cooling Tower Institute (CTI)
  - 12. ETL Testing Laboratories (ETL)
  - 13. Institute of Electrical and Electronic Engineers (IEEE)
  - 14. Hydronics Institute (HI)
  - 15. Manufacturers Standardization Society of the Valve and Fitting Industry (MSS)
  - 16. National Fire Protection Association (NFPA)
  - 17. National Electrical Code (NEC)
  - 18. National Electrical Manufacturers Association (NEMA)
  - 19. National Electrical Safety code (NESC)
  - 20. Utah safety Standard (OSHA), Utah State Industrial Council.
  - 21. Sheet Metal and Air Conditioning Contractor's National Association (SMACNA)
  - 22. Underwriters Laboratories (UL)
  - 23. Tubular Exchanger Manufacturers Association, Inc. (TEMA)
  - 24. Heat Exchanger Institute (HEI)
  - 25. Hydraulic Institute (HI)
  - 26. Thermal Insulation Manufacturer=s Association (TIMA)
  - 27. Scientific Apparatus Makers Association (SAMA)

## B. Compliance Verification:

- 1. All items required by code or specified to conform to the ASME code shall be stamped with the ASME seal.
- 2. Form U-1, the manufacturer=s data report for pressure vessels, is to be included in the Operation and Maintenance Manuals. National Board Register (NBR) numbers shall be provided where required by code.
- 3. Manufactured equipment which is represented by a UL classification and/or listing, shall bear the UL or equivalent ETL label.

#### 1.5 UTILITIES & FEES

A. All fees for permits required by this work will be paid by this division. The contractor shall obtain the necessary permits to perform this work. Unless noted otherwise, all systems furnished and or installed by this Contractor, shall be complete with all utilities, components, commodities and accessories required for a fully functioning system. This Contractor shall furnish smoke generators

when required for testing, furnish glycol for glycol piping systems, full load of salt to fill brine tank for water softening system, furnish cleaners and water treatment additives.

## 1.6 SUBMITTALS AND SHOP DRAWINGS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. General: As soon as possible after the contract is awarded, but in no case more than 45 calendar days thereafter, the Contractor shall submit to the Architect manufacturer's data on products and materials to be used in the installation of mechanical systems for this project. The review of the submitted data will require a minimum of 14 days. The first day starts after the day they are received in the engineer's office to which the project is being constructed from. If the Contractors schedule requires return of submitted literature in less than the allotted time, the Contractor shall accelerate his submittal delivery date. The Contractor shall resubmit all items requiring re-review within 14 days of returned submittals. Refer to each specification section for items requiring submittal review. If the re-submittal is returned a 2<sup>nd</sup> time for correction the Contractor will provide the specific equipment that is specified on the drawings and/or the specifications. Written approval of the Owner's Representative shall be obtained before installing any such equipment or materials for the project.
- C. Review by the Owner's Representative is for general conformance of the submitted equipment to the project specification. In no way does such review relieve this Contractor of his obligation to furnish equipment and materials that comply in detail to the specification nor does it relieve the Contractor of his obligation to determine actual field dimensions and conditions that may affect his work. Regardless of any items overlooked by the submittal review, the requirements of the contract drawings and specifications must be followed and are not waived or superseded in any way by the review.
- D. By description, catalog number, and manufacturer's names, standards of quality have been established by the Architect and the Engineer for certain manufactured equipment items and specialties that are to be furnished by this Division. Alternate products and equipment may be proposed for use only if specifically named in the specifications or if given written prior approval in published addenda. Design equipment is the equipment listed on the drawings or if not listed on the drawings is the equipment first named in the specifications.
- E. If the Engineer is required to do additional design work to incorporate changes caused by submitting equipment or products, different than the design equipment specified, as defined above, the contractor shall reimburse the engineer for additional time and expenses at the engineer's current, recognized, hourly rates.
- F. Submittal Format: At the contractor's discretion, project submittals may be in either of the formats described in the following paragraphs, but mixing the two formats is not acceptable.
  - 1. Hardcopy Submittal Format: Six (6) copies of the descriptive literature covering products and materials to be used in the installation of mechanical systems for this project will be provided for review. The submittals shall be prepared in an orderly manner, contained in a 3-ring loose-leaf binder with index and identification tab for each item or group of items and for each specification section. All items shall be submitted at one time except automatic temperature control drawings and seismic restraint drawings which may be submitted separately within 120 days of the contract award date. Partial submittals will not be reviewed until the complete submittal is received.
    - a. Submitted literature shall bear the Contractor's stamp, indicating that he has checked all equipment being submitted; that each item will fit into the available space with the accesses shown on the drawings; and, further, that each item conforms to the capacity and quality standards given in the contract documents.
    - b. Submitted literature shall clearly indicate performance, quality, and utility requirements; shall show dimension and size of connection points; and shall include derating factors that were applied for each item of equipment to provide capacity at job site elevation. Temperature control submittals shall include piping and wiring diagrams, sequence of operation and equipment. Equipment must fit into the

- available space with allowance for operation, maintenance, etc. Factory piped and wired equipment shall include shop drawings for all internal wiring and piping furnished with the unit.
- Submitted literature shall clearly show all required field install wiring, piping, and accessory installations required by the Contractor to provide a complete operating system.
- 2. Electronic Submittal Format: Identify and incorporate information in each electronic submittal file as follows:
  - All items shall be submitted at one time except automatic temperature control drawings and seismic restraint drawings which may be submitted separately within 120 days of the contract award date. Partial submittals will not be reviewed until the complete submittal is received.
  - b. Submitted electronic file shall bear the Contractor's stamp, indicating that he has checked all equipment being submitted; that each item will fit into the available space with the accesses shown on the drawings; and, further, that each item conforms to the capacity and quality standards given in the contract documents.
  - c. Submitted electronic file shall clearly indicate performance, quality, and utility requirements; shall show dimension and size of connection points; and shall include derating factors that were applied for each item of equipment to provide capacity at job site elevation. Temperature control submittals shall include piping and wiring diagrams, sequence of operation and equipment. Equipment must fit into the available space with allowance for operation, maintenance, etc. Factory piped and wired equipment shall include shop drawings for all internal wiring and piping furnished with the unit.
  - d. Submitted electronic file shall clearly show all required field install wiring, piping, and accessory installations required by the Contractor to provide a complete operating system.
  - e. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
  - f. Name file with submittal number or other unique identifier, including revision identifier.
  - g. Electronic file shall be completely electronically searchable or it will be rejected.
  - h. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by:
    - 1) Architect.
  - i. Transmittal Form for Electronic Submittals:
    - 1) Use one of the following options acceptable to the Owner;
      - a) Software-generated form from electronic project management software.
      - b) Electronic form.
    - 2) The Electronic Submittal shall contain the following information:
      - a) Project name.
      - b) Date.
      - c) Name and address of Architect.
      - d) Name of Construction Manager.
      - e) Name of Contractor.
      - f) Name of firm or entity that prepared submittal.

- g) Names of subcontractor, manufacturer, and supplier.
- h) Category and type of submittal.
- i) Submittal purpose and description.
- j) Specification Section number and title.
- k) Specification paragraph number or drawing designation and generic name for each of multiple items.
- I) Drawing number and detail references, as appropriate.
- m) Location(s) where product is to be installed, as appropriate.
- n) Related physical samples submitted directly.
- o) Indication of full or partial submittal.
- p) Transmittal number[, numbered consecutively].
- q) Submittal and transmittal distribution record.
- r) Other necessary identification.
- s) Remarks.
- j. Metadata: Include the following information as keywords in the electronic submittal file metadata:
  - 1) Project name.
  - 2) Number and title of appropriate Specification Section.
  - Manufacturer name.
  - 4) Product name.

## 1.7 DRAWINGS AND MEASUREMENTS

- A. Construction Drawings: The contract document drawings show the general design, arrangements, and extent of the system. In certain cases, the drawings may include details that show more nearly exact locations and arrangements; however, the locations, as shown diagrammatically, are to be regarded as general.
- B. It shall be the work of this Section to make such slight alterations as may be necessary to make adjustable parts fit to fixed parts, leaving all complete and in proper shape when done. All dimensions given on the drawings shall be verified as related to this work and with the Architect's office before work is started.
- C. This Section shall carefully study building sections, space, clearances, etc., and then provide offsets in piping or ductwork as required to accommodate the building structure without additional cost to the Owner. In any case and at any time during the construction process, a change in location required by obstacles or the installation of other trades not shown on the mechanical plans shall be made without charge.
- D. The drawings shall not be scaled for roughing in measurements, nor shall they be used as shop drawings. Where drawings are required for these purposes or where drawings must be made from field measurements, the Contractor shall take the necessary measurements and prepare the drawings. Shop drawings of the various subcontractors shall be coordinated to eliminate all interferences and to provide sufficient space for the installation of all equipment, piping, ductwork, etc.
- E. The drawings and specifications have been prepared to supplement each other and they shall be interpreted as an integral unit with items shown on one and not the other being furnished and installed as though shown and called out on both.
- F. Coordination Drawings: The contractor shall provide coordination drawings for mechanical rooms, fan rooms, equipment rooms, and congested areas to eliminate conflicts with equipment, piping, or work of other trades. The drawings shall be a minimum scale of 1/4 inch= 1 foot and of such detail

- as may be required by the Engineer to fully illustrate the work. These drawings shall include all piping, conduit, valves, equipment, and ductwork.
- G. Sheet-metal shop drawings will be required for all ductwork in the entire building. These drawings will show all ductwork in the entire building and shall be coordinated with architectural, structural and electrical portions of the project. The contractor shall specifically obtain copies of the structural shop drawings and shall coordinate the ductwork shop drawings with approved structural members. These drawings shall be submitted to the engineer for review prior to any fabrication. The contractor is responsible for all modifications necessary to accommodate duct installation within the structural, architectural and electrical restrictions. These drawings, once reviewed by the engineer, will be made available to all mechanical, electrical, and fire sprinkler subcontractors to coordinate installation of their work.

## 1.8 CONTRACTOR'S USE OF BUILDING EQUIPMENT

A. The Contractor may use equipment such as electric motors, fans, heat exchangers, filters, etc., with the written permission of the Owner. As each piece of equipment is used (such as electric motors and fans), maintenance procedures approved by the manufacturer are to be followed. A careful record is to be kept of the length of the time the equipment is used, maintenance procedures followed, and any difficulty encountered. The record is to be submitted to the Owner upon acceptance. All fan belts and filter media (such as bearings) shall be carefully inspected just prior to acceptance. Any excessive wear noted shall require replacement. New filter media shall be installed in air handlers at the time systems are turned over to the owner.

#### 1.9 EXISTING CONDITIONS

- A. The Contractor shall carefully examine all existing conditions that might affect the mechanical system and shall compare these conditions with all drawings and specifications for work included under this contract. He shall, at such time, ascertain and check all conditions that may affect his work. No allowance shall subsequently be made in his behalf for an extra expense incurred as a result of his failure or neglect to make such examination. This Contractor shall include in his bid proposal all necessary allowances to repair or replace any item that will remain or will be removed, and any item that will be damaged or destroyed by new construction.
- B. The Contractor shall remove all abandoned piping, etc., required by new construction and cap or plug openings. No capping, etc., shall be exposed in occupied areas. All openings of items removed shall be sealed to match adjacent surfaces.
- C. The Contractor shall verify the exact location of all existing services, utilities, piping, etc., and make connections to existing systems as required or as shown on the drawings. The exact location of each utility line, together with size and elevation, shall be established before any on-site lines are installed. Should elevation or size of existing main utility lines make connections to them impossible as shown on drawings, then notification of such shall immediately be given to the Owners Representative for a decision.

## 1.10 EQUIPMENT CAPACITIES

- A. Capacities shown for equipment in the specifications and on the drawings are the minimum acceptable. No equipment shall be considered as an alternate that has capacities or performance less than that of design equipment.
- B. All equipment shall give the specified capacity and performance at the job-site elevation. Manufacturers' standard ratings shall be adjusted accordingly. All capacities and performances listed on drawings or in specifications are for job-site conditions.

# 1.11 SEISMIC REQUIREMENTS FOR EQUIPMENT

A. All equipment shall be furnished structurally adequate to withstand seismic forces as outlined in the International Building Code. Refer to section Mechanical Vibration Controls and Seismic Restraints. Equipment bases shall be designed for direct attachment of seismic snubbers and/or seismic anchors.

## 1.12 COOPERATION WITH OTHER TRADES

- A. The Contractor shall refer to other drawings and parts of this specification that cover work of other trades that is carried on in conjunction with the mechanical work such that all work can proceed without interference resulting from lack of coordination.
- B. The Contractor shall properly size and locate all openings, chases, sleeves, equipment bases, and accesses. He shall provide accurate wiring diagrams to the Electrical Contractor for all equipment furnished under this Division.
- C. The ceiling cavity must be carefully reviewed and coordinated with all trades. In the event of conflict, the installation of the mechanical equipment and piping shall be in the following order: plumbing, waste, and soil lines; supply, return, and exhaust ductwork; water piping; medical gases; fire protection piping; and pneumatic control piping.
- D. The mechanical Contractor shall insure that the installation of all piping, ducts and equipment is in compliance with Articles 110-16 and 384-4 of the National Electrical Code relative to proper clearances in front of and over all electrical panels and equipment. No piping or ductwork will be allowed to run over electrical panel.

## 1.13 RESPONSIBILITY OF CONTRACTOR

- A. The Contractor is responsible for the installation of a satisfactory piece of work in accordance with the true intent of the drawings and specifications. He shall provide, as a part of his work and without expense, all incidental items required even though these items are not particularly specified or indicated. The installation shall be made so that its several component parts will function together as a workable system and shall be left with all equipment properly adjusted and in working order. The Contractor shall familiarize the Owner's Representative with maintenance and lubrication instructions as prepared by the Contractor and shall explain and fully instruct him relative to operating, servicing, and maintenance of them.
- B. If a conflict arises between the drawings and the specifications the most stringent procedure/action shall be followed. A clarification to the engineer will help to determine the course of action to be taken. If a conflict arises between specification sections, the engineer will determine which course of action is to be followed.

## 1.14 PIPE AND DUCT OPENINGS AND EQUIPMENT RECESSES

- A. Pipe and duct chases, openings, and equipment recesses shall be provided by others only if shown on architectural or structural drawings. All openings for the mechanical work, except where plans and specifications indicate otherwise, shall be provided as work of this Division. Include openings information with coordination drawings.
- B. Whether chases, recesses, and openings are provided as work of this Division or by others, this Contractor shall supervise their construction and be responsible for the correct size and location even though detailed and dimensioned on the drawings. This Contractor shall pay for all necessary cutting, repairing, and finishing if any are left out or incorrectly made. All necessary openings thru existing walls, ceilings, floors, roofs, etc. shall be provided by this Contractor unless indicated otherwise by the drawing and/or specifications.

## 1.15 UNFIT OR DAMAGED WORK

A. Any part of this installation that fails, is unfit, or becomes damaged during construction, shall be replaced or otherwise made good. The cost of such remedy shall be the responsibility of this Division.

## 1.16 WORKMANSHIP

A. Workmanship shall be the best quality of its kind for the respective industries, trades, crafts, and practices, and shall be acceptable in every respect to the Owner's representative. Nothing contained herein shall relieve the Contractor from making good and perfect work in all details in construction.

## 1.17 SAFETY REGULATION

A. The Contractor shall comply with all local, Federal, and OSHA safety requirements in performance with this work. (See General Conditions). This Contractor shall be required to provide equipment, supervision, construction, procedures, and all other necessary items to assure safety to life and property.

## 1.18 ELECTRICAL SERVICES

- A. All equipment control wiring and all automatic temperature control wiring including all necessary contacts, relays, and interlocks, whether low or line voltage, except power wiring, shall be furnished and installed as work of this Division unless shown to be furnished by Division 26. All such wiring shall be in conduit as required by electrical codes. Wiring in the mechanical rooms, fans rooms and inaccessible ceilings and walls shall be installed in conduit as well. Installation of any and all wiring done under Division 21, 22 and 23 shall be in accordance with the requirements of Division 26, Electrical.
- B. All equipment that requires an electrical connection shall be furnished so that it will operate properly and deliver full capacity on the electrical service available.
- C. Refer to the electrical control equipment and wiring shown on the diagrams. Any changes or additions required by specific equipment furnished shall be the complete responsibility of the Contractor furnishing the equipment.
- D. The Mechanical Contractor must coordinate with the Electrical Contractor to insure that all required components of control work are included and fully understood. No additional cost shall accrue to the Owner as a result of lack of such coordination.

## 1.19 WORK, MATERIALS, AND QUALITY OF EQUIPMENT

- A. Unless otherwise specified, all materials shall be new and of the best quality of their respective kinds and all labor shall be done in a most thorough and workmanlike manner.
- B. Products or equipment of any of the manufacturers cited herein or any of the products approved by the Addenda may be used. However, where lists of products are cited herein, the one first listed in the design equipment used in drawings and schedules to establish size, quality, function, and capacity standards. If other than design equipment is used, it shall be carefully checked for access to equipment, electrical and control requirements, valving, and piping. Should changes or additions occur in piping, valving, electrical work, etc., or if the work of other Contractors would be revised by the alternate equipment, the cost of all changes shall be borne as work of this Division.
- C. The Execution portions of the specifications specify what products and materials may be used. Any products listed in the Product section of the specification that are not listed in the Execution portion of the specification may not be used without written approval by the Engineer.
- D. The access to equipment shown on the drawings is the minimum acceptable space requirements. No equipment that reduces or restricts accessibility to this or any other equipment will be considered.
- E. All major items of equipment are specified in the equipment schedules on the drawings or in these specifications and shall be furnished complete with all accessories normally supplied with the catalog item listed and all other accessories necessary for a complete and satisfactory installation.
- F. All welders shall be certified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code, latest Edition.

## 1.20 PROTECTION AGAINST WEATHER AND STORING OF MATERIALS

- A. All equipment and materials shall be properly stored and protected against moisture, dust, and wind. Coverings or other protection shall be used on all items that may be damaged or rusted or may have performance impaired by adverse weather or moisture conditions. Damage or defect developing before acceptance of the work shall be made good at the Contractor's expense.
- B. All open duct and pipe openings shall be adequately covered at all times.

## 1.21 INSTALLATION CHECK

- A. An experienced, competent, and authorized representative of the manufacturer or supplier of each item of equipment indicated in the equipment schedule and the seismic supplier shall visit the site of the work and inspect, check, adjust if necessary, and approve the equipment installation. In each case, the equipment supplier's representative shall be present when the equipment is placed in operation. The equipment supplier's representative shall revisit the job site as often as necessary until all trouble is corrected and the equipment installation and operation is satisfactory to the Engineer.
- B. Each equipment supplier's representative shall furnish to the Owner, through the Engineer, a written report certifying that the equipment (1) has been properly installed and lubricated; (2) is in accurate alignment; (3) is free from any undue stress imposed by connecting piping or anchor bolts; and, (4) has been operated under full load conditions and that it operated satisfactorily.
- C. All costs for this work shall be included in the prices quoted by equipment suppliers.

#### 1.22 EQUIPMENT LUBRICATION

- A. The Contractor shall properly lubricate all pieces of equipment before turning the building over to the Owner. A linen tag shall be attached to each piece of equipment, showing the date of lubrication and the lubricant used. No equipment shall be started until it is properly lubricated.
- B. Necessary time shall be spent with the Owner's Representative to thoroughly familiarize him with all necessary lubrications and maintenance that will be required of him.
- C. Detergent oil as used for automotive purposes shall not be used for this work.

## 1.23 CUTTING AND PATCHING

- A. No cutting or drilling in structural members shall be done without written approval of the Architect. The work shall be carefully laid out in advance, and cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings, or other surfaces necessary for the mechanical work shall be carefully done. Any damage to building, piping, or equipment shall be repaired by professional plasterers, masons, concrete workers, etc., and all such work shall be paid for as work of this Division.
- B. When concrete, grading, etc., is disturbed, it shall be restored to original condition as described in the applicable Division of this Specification.

## 1.24 EXCAVATION AND BACKFILLING

- A. All necessary excavations and backfilling for the Mechanical phase of this project shall be provided as work of this Division. Trenches for all underground pipelines shall be excavated to the required depths. The bottom of trenches shall be compacted hard and graded to obtain required fall. Backfill shall be placed in horizontal layers, not exceeding 12 inches in thickness, and properly moistened. Each layer shall be compacted, by suitable equipment, to a density of not less than 95 percent as determined by ASTM D-1557. After pipelines have been tested, inspected, and approved, the trench shall be backfilled with selected material. Excess earth shall be hauled from the job site. Fill materials approved by the Architect shall be provided as work of this Division.
- B. No trenches shall be cut near or under any footings without consultation first with the Architect's office. Any trenches or excavations more than 30 inches deep shall be tapered, shored, covered, or otherwise made absolutely safe so that no vehicle or persons can be injured by falling into such excavations, or in any way be harmed by cave-ins, shifting earth, rolling rocks, or by drowning. This protection shall be extended to all persons approaching excavation related to this work whether or not such persons are authorized to be in the vicinity of the construction.

## 1.25 ACCESS

A. Provide access doors in walls, ceilings and floors by this division unless otherwise noted. For access to mechanical equipment such as valves, dampers, VAV boxes, fans, controls, etc. Refer to Division 8 for door specifications. All access doors shall be 24" x 24" unless otherwise indicated or required. Coordinate location of doors with the Architect prior to installation. If doors are not specified in Division 8, provide the following: Doors in ceilings and wall shall be equal to JR Smith

- No. 4760 bonderized and painted. Doors in tile walls shall be equal to JR Smith No. 4730 chrome plated. Doors in floors shall be equal to JR Smith No. 4910
- B. Valves: Valve must be installed in locations where access is readily available. If access is compromised, as judged by the Mechanical Engineer, these valves shall be relocated where directed at the Contractors expense.
- C. Equipment: Equipment must be installed in locations and orientations so that access to all components requiring service or maintenance will not be compromised. If access is compromised, as judged by the Mechanical Engineer, the contractor shall modify the installation as directed by the Engineer at the Contractors expense.
- D. It is the responsibility of this division to install terminal boxes, valves and all other equipment and devices so they can be accessed. If any equipment or devices are installed so they cannot be accessed on a ladder a catwalk and ladder system shall be installed above the ceiling to access and service this equipment.

#### 1.26 CONCRETE BASES AND INSERTS

- A. Bases: The concrete bases shall be provided and installed as work by this division. This Division shall be responsible for the proper size and location of bases and shall furnish all required anchor bolts and sleeves with templates to be installed as work of Division 3, Concrete.
- B. All floor-mounted mechanical equipment shall be set on 6-inch high concrete bases, unless otherwise noted or shown on drawings. Such bases shall extend 6 inches beyond equipment or mounting rails on all sides or as shown on the drawings and shall have a 1-inch beveled edge all around.
- C. Inserts: Where slotted or other types of inserts required for this work are to be cast into concrete, they shall be furnished as work of this Division
- D. Concrete inserts and pipe support systems shall be equal to Unistrut P3200 series for all piping where more than one pipe is suspended at a common location. Spacing of the inserts shall match the size and type of pipe and of ductwork being supported. The Unistrut insert and pipe support system shall include all inserts, vertical supports, horizontal support members, clamps, hangers, rollers, bolts, nuts, and any other accessory items for a complete pipe-supporting system.

## 1.27 CLEANING AND PAINTING

- A. Cleaning: After all tests and adjustments have been made and all systems pronounced satisfactory for permanent operation, this Contractor shall clean all exposed piping, ductwork, insulated members, fixture, and equipment installed under this Section and leave them ready for painting. He shall refinish any damaged finish and leave everything in proper working order. The Contractor shall remove all stains or grease marks on walls, floors, glass, hardware, fixtures, or elsewhere, caused by his workman or for which he is responsible. He shall remove all stickers on plumbing fixtures, do all required patching up and repair all work of others damaged by this division of the work, and leave the premises in a clean and orderly condition.
- B. Painting: Painting of exposed pipe, insulated pipe, ducts, or equipment is work of Division 9, Painting.
- C. Mechanical Contractor: All equipment which is to be furnished in factory prefinished conditions by the mechanical Contractor shall be left without mark, scratch, or impairment to finish upon completion of job. Any necessary refinishing to match original shall be done. Do not paint over nameplates, serial numbers, or other identifying marks.
- D. Removal of Debris, Etc: Upon completion of this division of the work, remove all surplus material and rubbish resulting from this work, and leave the premises in a clean and orderly condition.

## 1.28 CONTRACT COMPLETION

A. Incomplete and Unacceptable Work: If additional site visits or design work is required by the Engineer or Architect because of the use of incomplete or unacceptable work by the Contractor, then the Contractor shall reimburse the Engineer and Architect for all additional time and expenses involved.

- B. Maintenance Instructions: The Contractor shall furnish the Owner complete printed and illustrated operating and maintenance instructions covering all units of mechanical equipment, together with parts lists.
- C. Instructions To Owner's Representatives: In addition to any detailed instructions called for, the mechanical Contractor must provide, without expense to the Owner, competent instructors to train the Owner's representatives who will be in charge of the apparatus and equipment, in the care, adjustment, and operation of all parts on the heating, air conditioning, ventilating, plumbing, fire protection, and automatic temperature control equipment. Instruction dates shall be scheduled at time of final inspection. A written report specifying times, dates, and name of personnel instructed shall be forwarded to the Architect. A minimum of four 8-hour instruction periods shall be provided. The instruction periods will be broken down to shorter periods when requested by the Owner. The total instruction hours shall not reduced. The ATC Contractor shall provide 4 hours of instructions. The remaining hours shall be divided between the mechanical and sheet metal Contractor.
- D. Guarantee: By the acceptance of any contract award for the work herein described or shown on the drawings, the Contractor assumes the full responsibility imposed by the guarantee as set forth herein and in the General Conditions, and should protect himself through proper guarantees from equipment and special equipment Contractors and from subcontractors as their interests may appear.
- E. The guarantee so assumed by the Contractor and as work of this Section is as follows:
  - 1. That the entire mechanical system, including plumbing, heating, and air-conditioning system shall be quiet in operation.
  - 2. That the circulation of water shall be complete and even.
  - 3. That all pipes, conduit, and connections shall be perfectly free from foreign matter and pockets and that all other obstructions to the free passage of air, water, liquid, sewage, and vent shall be removed.
  - 4. That he shall make promptly and free of charge, upon notice from the Owner, any necessary repairs due to defective workmanship or materials that may occur during a period of one year from date of Substantial Completion.
  - 5. That all specialties, mechanical, and patent devices incorporated in these systems shall be adjusted in a manner that each shall develop its maximum efficiency in the operation of the system; i.e., diffusers shall deliver the designed amount of air shown on drawings, thermostats shall operate to the specified limits, etc.
  - 6. All equipment and the complete mechanical, ductwork, piping and plumbing systems shall be guaranteed for a period of one year from the date of the Architect's Certificate of Substantial Completion, this includes all mechanical, ductwork, piping and plumbing equipment and products and is not limited to boiler, chillers, coils, fans, filters etc. Any equipment supplier not willing to comply with this guarantee period shall not submit a bid price for this project. The Contractor shall be responsible for a 100-percent guarantee for the system and all items of equipment for this period. If the contractor needs to provide temporary heating or cooling to the building and or needs to insure systems are installed properly and or to meet the project schedule the guaranteed of all systems and equipment shall be as indicated above, on year from the date of the Architect's Certificate of Substantial Completion.
  - 7. All filters used during construction shall be replaced just before equipment is turned over to the Owner, and all required equipment and parts shall be oiled. Any worn parts shall also be replaced.
  - 8. If any systems or equipment is used for temporary heating or cooling the systems shall be protected so they remain clean. I.e. if the ductwork systems are used temporary filters and a filter holder (not duct-taped to ducts or grilles) shall be installed to insure the systems and the equipment remain clean.

## 1.29 **CURBS**

A. Unless otherwise noted in these specifications or on the documents all roof curbs for all equipment are to be provided by Division 22 and 23.

## 1.30 TEST RUN

A. The Mechanical Contractor shall operate the mechanical system for a minimum of 30 days to prove the operation of the system.

#### 1.31 EQUIPMENT STARTUP AND CHECKOUT:

- A. Each major piece of equipment shall be started and checked out by an authorized representative of the equipment manufacturer. A certificate indicating the equipment is operating to the satisfaction of the manufacturer shall be provided and shall be included in the commissioning report.
- B. This contractor shall coordinate commissioning procedures and activities with the commissioning agent.

#### 1.32 **DEMOLITION**

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
- B. Proceed with demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
- C. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
- D. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
- E. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
- F. Maintain adequate ventilation when using cutting torches.
- G. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
- H. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
- I. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
- J. Dispose of demolished items and materials promptly.
- K. Return elements of construction and surfaces that are to remain to condition existing before selective demolition operations began.
- L. Existing Facilities: Comply with building manager's requirements for using and protecting elevators, stairs, walkways, loading docks, building entries, and other building facilities during selective demolition operations.
- M. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals, using power-driven saw, then remove concrete between saw cuts.
- N. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.
- O. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.
- P. Air-Conditioning Equipment: Remove equipment without releasing refrigerants.

## **END OF SECTION 23 0100**

# SECTION 23 0150 TEMPORARY USE OF EQUIPMENT AND SYSTEMS

#### **PART 1 - GENERAL**

#### 1.1 SUMMARY

A. This section includes requirements for temporary us of equipment and systems and any other items that are used during the construction of the project.

#### 1.2 EQUIPMENT OR SYSTEMS NEEDED TO OPERATE BEFORE CONTRACT COMPLETION

A. If the contractor needs to provide temporary heating or cooling to the building and or needs to insure systems are installed properly for start up and or to meet the project schedule the guaranteed of all systems and equipment shall be for one year from the date of the Architect's Certificate of Substantial Completion.

All equipment and the complete mechanical, ductwork, piping and plumbing systems shall be guaranteed for a period of one year from the date of the Architect's Certificate of Substantial Completion, this includes all mechanical, ductwork, piping and plumbing equipment and products and is not limited to boiler, chillers, coils, fans, filters etc. Any contractor or equipment supplier who is not willing to comply with this guarantee period shall not submit a bid price for this project. The Contractor shall be responsible for a 100-percent guarantee for the systems and all items of equipment for this period.

All filters used during construction shall be replaced just before equipment is turned over to the Owner, and all required equipment and parts shall be oiled. Any worn parts shall also be replaced.

If any systems or equipment is used for temporary heating or cooling the systems shall be protected so they remain clean. I.e. if the ductwork systems are used temporary filters and a filter holder (not duct-taped to ducts or grilles) shall be installed to insure the systems and the equipment remain clean. All return air openings shall be protected with a metal filter frame and filters.

## 1.3 TEMPORARY EQUIPMENT OR SYSTEM SUBMITTALS

A. If it is determined by the project or contractor that equipment or systems are needed to operate to provide heating, cooling or other needed services this division shall submit a document indicating what measures will be taken to insure the safe and proper operation of the equipment, systems and personal associated with the operation, this document shall be submitted to the engineer for approval. This plan shall show connections of equipment, utility hookups (if required) staging areas etc.

## 1.4 QUALITY ASSURANCE

- A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.
- B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.
- C. Accessible Temporary Egress: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines.
- D. SMACNA: The latest standard from SSMACNA shall apply.

## 1.5 PROJECT CONDITIONS

A. Temporary Use of equipment or systems: Engage installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service

during its use until the facility has been accepted by the owner regardless of previously assigned responsibilities.

## **PART 2 - PRODUCTS**

## 2.1 EQUIPMENT

- A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.
- B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters and cooling units if required with individual space thermostatic control.
  - 1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.
  - 2. Heating Units: Listed and labeled for type of fuel being consumed, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
  - 3. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filters with MERV of 8 at each return air opening in system and remove at end of construction. These filters are to be installed in a filter housing frame and are not to be duct taped. Clean HVAC system as required in Division 01 Section "Closeout Procedures.

#### **PART 3 - EXECUTION**

## 3.1 INSTALLATION, GENERAL

- A. Locate equipment where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify equipment and systems as required by progress of the Work.
  - 1. Locate equipment to limit site disturbance as specified in Division 01 Section "Summary."

## 3.2 TEMPORARY UTILITY INSTALLATION

- A. General: Install temporary service or connect to existing service.
  - 1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.
- B. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction.
- C. Heating and Cooling: Provide temporary heating and cooling required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.
- D. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption.

## 3.3 OPERATION, TERMINATION, AND REMOVAL

- A. Maintenance: Maintain equipment and systems in good operating condition until removal.
  - 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar equipment and systems on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.
- B. Termination and Removal: Remove each temporary facility or equipment when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility.

Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.

- 1. Materials equipment that constitute temporary equipment are property of Contractor.
- 2. At Substantial Completion, repair, renovate, and clean permanent equipment and systems used during construction period. Comply with final cleaning requirements specified in Division 01 Section "Closeout Procedures."

# 3.4 EQUIPMENT STARTUP AND CHECKOUT:

A. Each major piece of equipment shall be started and checked out by an authorized representative of the equipment manufacturer at substantial completion. A certificate indicating the equipment is operating to the satisfaction of the manufacturer shall be provided and shall be included in the commissioning report.

**END OF SECTION 23 0150** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 0500 COMMON WORK RESULTS FOR HVAC

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This Section includes the following:
  - 1. Piping materials and installation instructions common to most piping systems.
  - 2. Transition fittings.
  - 3. Dielectric fittings.
  - Mechanical sleeve seals.
  - Sleeves.
  - 6. Escutcheons.
  - 7. Grout.
  - 8. Equipment installation requirements common to equipment sections.
  - 9. Painting and finishing.
  - 10. Concrete bases.
  - 11. Supports and anchorages.
  - 12. Link-Seal

#### 1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, and crawlspaces.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces, mechanical equipment rooms, accessible pipe shafts, accessible plumbing chases, and accessible tunnels.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
  - 1. CPVC: Chlorinated polyvinyl chloride plastic.
  - PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
  - EPDM: Ethylene-propylene-diene terpolymer rubber.
  - 2. NBR: Acrylonitrile-butadiene rubber.

## 1.4 SUBMITTALS

A. See Section 01 3000 – Administrative Requirements, for submittal procedures.

- B. Product Data: For the following:
  - 1. Transition fittings.
  - 2. Dielectric fittings.
  - 3. Mechanical sleeve seals.
  - 4. Escutcheons.
- C. Welding certificates.

#### 1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
  - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
  - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

## 1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

#### 1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

## **PART 2 - PRODUCTS**

## 2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

## 2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

## 2.3 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
  - ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
    - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
    - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
  - 2. AWWA C110, rubber, flat face, **1/8 inch** thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

#### 2.4 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
  - 1. Manufacturers:
    - Eslon Thermoplastics.
- B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
  - 1. Manufacturers:
    - a. Thompson Plastics, Inc.

## 2.5 DIELECTRIC FITTINGS

- A. General: Assembly or fitting with insulating material isolating joined dissimilar metals, to prevent galvanic action and stop corrosion.
- B. Description: Combination of copper alloy and ferrous; threaded, solder, plain, and weld-neck end types and matching piping system materials.
- C. Insulating Material: Suitable for system fluid, pressure, and temperature.
- D. Dielectric Unions: Factory-fabricated, union assembly, for **250-psig** minimum working pressure at **180 deg F**.
- E. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for **150-** or **300-psig** minimum working pressure as required to suit system pressures.
- F. Dielectric-Flange Insulation Kits: Field-assembled, companion-flange assembly, full-face or ring type. Components include neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
  - Provide separate companion flanges and steel bolts and nuts for 150- or 300-psig minimum working pressure as required to suit system pressures.
- G. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and **300-psig** minimum working pressure at **225 deg F**.
- H. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and **300-psig** minimum working pressure at **225 deg F**.

- 1. Manufacturers:
  - a. Capitol Manufacturing Co.
  - b. Central Plastics Company.
  - c. Watts Industries, Inc.; Water Products Div

## 2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
  - 1. Manufacturers:
    - Advance Products & Systems, Inc.
    - b. Calpico, Inc.
    - c. Metraflex Co.
    - d. Pipeline Seal and Insulator, Inc.
  - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
  - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
  - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

#### 2.7 SLEEVES

- A. Galvanized-Steel Sheet: **0.0239-inch** minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
  - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.

## 2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
  - 1. Finish: Polished chrome-plated and rough brass.
- D. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.
- E. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.

#### 2.9 GROUT

- A. Description: ASTM C 1107, Grade B, non-shrink and nonmetallic, dry hydraulic-cement grout.
  - 1. Characteristics: Post-hardening, volume-adjusting, non-staining, noncorrosive, nongaseous, and recommended for interior and exterior applications.

- 2. Design Mix: **5000-psi**, 28-day compressive strength.
- 3. Packaging: Premixed and factory packaged.

## 2.10 LINK-SEAL MODULAR SEAL PRESSURE PLATES

- A. Link-Seal® modular seal pressure plates shall be molded of glass reinforced Nylon Polymer with the following properties:
  - 1. Izod Impact Notched = **2.05ft-lb/in.** per ASTM D-256
  - 2. Flexural Strength @ Yield = **30,750 psi** per ASTM D-790
  - 3. Flexural Modulus = **1,124,000 psi** per ASTM D-790
  - 4. Elongation Break = 11.07% per ASTM D-638
  - 5. Specific Gravity = 1.38 per ASTM D-792
- B. Models LS200-275-300-315 shall incorporate the most current Link-Seal® Modular Seal design modifications and shall include an integrally molded compression assist boss on the top (bolt entry side) of the pressure plate, which permits increased compressive loading of the rubber sealing element. Models 315-325-340-360-400-410-425-475-500-525-575-600 shall incorporate an integral recess known as a "Hex Nut Interlock" designed to accommodate commercially available fasteners to insure proper thread engagement for the class and service of metal hardware. All pressure plates shall have a permanent identification of the manufacturer's name molded into it.
- C. For fire service, pressure plates shall be steel with 2-part Zinc Dichromate Coating.
- D. Link-Seal® Modular Seal Hardware: All fasteners shall be sized according to latest Link-Seal® modular seal technical data. Bolts, flange hex nuts shall be:
  - 1. 316 Stainless Steel per ASTM F593-95, with a **85,000 psi** average tensile strength.

# **PART 3 - EXECUTION**

## 3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
  - 1. New Pipina:

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
- b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
- c. Insulated Piping: One-piece, stamped-steel type with spring clips.
- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
- e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
- g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
- M. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- N. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
  - 1. Cut sleeves to length for mounting flush with both surfaces.
    - Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
  - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
  - 3. Install sleeves that are large enough to provide **1/4-inch** annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
    - a. PVC Steel Pipe Sleeves: For pipes smaller than NPS 6.
    - b. Steel Sheet Sleeves: For pipes **NPS 6** and larger, penetrating gypsum-board partitions.
    - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to **2 inches** above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
      - 1) Seal space outside of sleeve fittings with grout.
  - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- O. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
  - 1. Install steel pipe for sleeves smaller than **6 inches** in diameter.
  - 2. Install cast-iron "wall pipes" for sleeves **6 inches** and larger in diameter.
  - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for **1-inch** annular clear space between pipe and sleeve for installing mechanical sleeve seals.

- Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- Q. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- R. Verify final equipment locations for roughing-in.
- S. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

#### 3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
  - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
  - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

## 3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
  - 1. Install unions, in piping **NPS 2** and smaller, adjacent to each valve and at final connection to each piece of equipment.
  - 2. Install flanges, in piping **NPS 2-1/2** and larger, adjacent to flanged valves and at final connection to each piece of equipment.
  - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
  - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

#### 3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

## 3.5 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

## 3.6 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
  - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
  - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on **18-inch** centers around the full perimeter of the base.
  - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
  - Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
  - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
  - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
  - 7. Use **3000-psi**, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Miscellaneous Cast-in-Place Concrete."

#### 3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 5 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

## 3.8 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

#### 3.9 LINK SEAL

A. Provide Link Seal at all piping penetrations from the outside.

# **END OF SECTION 23 0500**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

#### **SECTION 23 0513**

#### COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

#### 1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
  - 1. Motor controllers.
  - 2. Torque, speed, and horsepower requirements of the load.
  - 3. Ratings and characteristics of supply circuit and required control sequence.
  - 4. Ambient and environmental conditions of installation location.

# **PART 2 - PRODUCTS**

## 2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when the requirements in equipment schedules, other specification sections, drawing notes or in other contract documents are more stringent.
- B. Comply with NEMA MG 1 unless otherwise indicated.

#### 2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of **3300 feet** above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
- C. Motors **3/4 HP** and larger: Polyphase.
- D. Motors smaller than 3/4 HP: Single phase.
- E. All motors shall have ASTM Grade 5 hardware that is Yellow Zinc-dichromate plated.

## 2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Rotor: Random-wound, squirrel cage.
- E. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- F. Temperature Rise: Match insulation rating.
- G. Insulation: Class F.
- H. Code Letter Designation:
  - 1. Motors **15 HP** and Larger: NEMA starting Code F or Code G.

- 2. Motors smaller than **15 HP**: Manufacturer's standard starting characteristic.
- I. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

## 2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
  - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
  - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
  - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
  - Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
  - 5. Shaft Grounding Ring: Microfiber type.
    - a. Provide grounded discharge path for VFD induced voltage in the shaft to prevent arching in the motor bearings.
- C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

# 2.5 Electronically Commutated Motor (ECM)

- 1. Motor enclosures: Open type
- 2. Motor to be a DC electronic commutation type motor (ECM).
  - a. AC induction type motors are not acceptable.
- 3. Permanently lubricated motor with heavy duty ball bearing
- 4. Internal motor circuitry to convert AC power supplied to the fan to DC power to operate the motor.
- 5. Speed controllable to 20% of full speed (80% turndown).
  - a. Potentiometer dial mounted at the motor speed controller
  - b. 0-10 VDC signal.
- 6. 85% efficient at all speeds minimum.
- 7. Motors smaller than 2.0 hp.

## 2.6 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
  - 1. Permanent-split capacitor.
  - 2. Split phase.
  - 3. Capacitor start, inductor run.
  - 4. Capacitor start, capacitor run.
- B. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- C. Motors **1/20 HP** and Smaller: Shaded-pole type.
- D. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor

insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range, unless otherwise indicated.

# **PART 3 - EXECUTION (Not Applicable)**

**END OF SECTION 23 0513** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 0519 METERS AND GAUGES FOR HVAC

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Liquid-in-glass thermometers.
  - 2. Thermowells.
  - 3. Pressure gauges.
  - Gauge attachments.
  - Test plugs.
  - 6. Test-plug kits.
  - 7. Flowmeters.
- B. Related Sections:
  - 1. Division 23 Section "Facility Natural-Gas Piping" for gas meters.
  - 2. Division 23 Section "Steam and Condensate Heating Piping" for steam and condensate meters.

## 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. Wiring Diagrams: For power, signal, and control wiring.

## 1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gauge, from manufacturer.

## 1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gauges to include in operation and maintenance manuals.

## **PART 2 - PRODUCTS**

## 2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Palmer Wahl Instrumentation Group.
    - b. Trerice, H. O. Co.
    - c. Weiss Instruments, Inc.
    - d. Weksler.
  - 2. Standard: ASME B40.200.
  - 3. Case: Die Cast aluminum or brass; nominal size unless otherwise indicated.
  - 4. Case Form: **Adjustable angle** type unless otherwise indicated, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
  - 5. **Tube**: Glass with magnifying lens and **blue** organic liquid.

- 6. Tube Background: Satin faced, nonreflective aluminum with permanently etched scale markings graduated in **deg F.**
- 7. Window: Glass.
- 8. **Stem:** Copper-plated steel, aluminum, stainless steel, or brass designed for thermowell installation. Stem shall be of length to match thermowell insertion length.
  - a. **Design for** Thermowell Installation: Bare stem.
- 9. Connector: **1-1/4 inches**, with ASME B1.1 screw threads.
- 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

#### 2.2 THERMOWELLS

#### A. Thermowells:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. AMETEK, Inc.; U.S. Gauge Div.
  - b. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
  - c. Ernst Gauge Co.
  - d. Marsh Bellofram.
  - e. Miljoco Corp.
  - f. NANMAC Corporation.
  - g. Noshok, Inc.
  - h. Palmer Wahl Instruments Inc.
  - i. REO TEMP Instrument Corporation.
  - j. Tel-Tru Manufacturing Company.
  - k. Trerice, H. O. Co.
  - I. Weiss Instruments, Inc.
  - m. Weksler
  - n. WIKA Instrument Corporation.
  - o. Winters Instruments.
- 2. Manufacturers: Same as manufacturer of thermometer being used.
- 3. Standard: ASME B40.200.
- 4. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
- 5. Material for Use with Copper Tubing: Brass.
- 6. Material for Use with Steel Piping: Brass.
- 7. Type: Stepped shank unless straight or tapered shank is indicated.
- 8. External Threads: NPS 1/2, NPS 3/4, NPS 1 or NPS 1-1/4 ASME B1.20.1 pipe threads.
- 9. Internal Threads: 1/2, 3/4, and 1 inch with ASME B1.1 screw threads.
- 10. Bore: Diameter required to match thermometer bulb or stem.
- 11. Insertion Length: Length required to match thermometer bulb or stem.
- 12. Lagging Extension: Include on thermowells for insulated piping and tubing.
- 13. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

## 2.3 PRESSURE GAUGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gauges:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. AMETEK, Inc.; U.S. Gauge.
    - b. Ashcroft Inc.
    - c. Ernst Flow Industries.
    - d. KOBOLD Instruments, Inc.
    - e. Marsh Bellofram.
    - f. Miljoco Corporation.
    - g. Noshok.
    - h. Palmer Wahl Instrumentation Group.
    - i. REOTEMP Instrument Corporation.
    - j. Trerice, H. O. Co.
    - k. Weiss Instruments, Inc.
    - Weksler
    - m. WIKA Instrument Corporation.
    - n. Winters Instruments U.S.
  - 2. Standard: ASME B40.100.
  - 3. Case: Liquid-filled type; cast aluminum or drawn steel; 4-1/2-inchnominal diameter.
  - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
  - 5. Pressure Connection: Brass, with ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated. **NPS 1/4 or NPS 1/2.**
  - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
  - 7. Dial: Satin faced, nonreflective aluminum with permanently etched scale markings graduated in **psi**.
  - 8. Pointer: Dark-colored metal.
  - 9. Window: Glass.
  - 10. Ring: Stainless steel.
  - 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.
- B. Remote-Mounted, Metal-Case, Dial-Type Pressure Gauges:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. AMETEK, Inc.; U.S. Gauge.
    - b. Ashcroft Inc.
    - c. Ernst Flow Industries.
    - d. KOBOLD Instruments, Inc.
    - e. Marsh Bellofram.
    - f. Miljoco Corporation.
    - g. Noshok.
    - h. Palmer Wahl Instrumentation Group.
    - i. REOTEMP Instrument Corporation.

- j. Trerice, H. O. Co.
- k. Weiss Instruments, Inc.
- I. Weksler
- m. WIKA Instrument Corporation.
- n. Winters Instruments U.S.
- 2. Standard: ASME B40.100.
- Case: Liquid-filled, cast aluminum or drawn steel; diameter with back flange for panel surface mounting or front flange for panel recessed mounting. Flanges to include pre-drilled screw holes.
- 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
- 5. Pressure Connection: Brass, with ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated. **NPS 1/4 or NPS 1/2.**
- 6. Movement: Mechanical, with link to pressure element and connection to pointer.
- 7. Dial: Satin faced, nonreflective aluminum with permanently etched scale markings graduated in **psi**.
- 8. Pointer: Dark-colored metal.
- 9. Window: Glass.
- 10. Ring: Stainless steel.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

#### 2.4 GAUGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with ASME B1.20.1 pipe threads. Include extension for use on insulated piping. NPS 1/4 or NPS 1/2.
  - 1. Surge-dampening device: porous-metal-type.
- B. Siphons:
  - 1. Loop-shaped section: Brass pipe with pipe threads. NPS 1/4 or NPS 1/2.
- C. Valves:
  - 1. **Needle: Brass**, with **NPS 1/4 or NPS 1/2** ASME B1.20.1 pipe threads.

#### 2.5 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Flow Design, Inc.
  - 2. MG Piping Products Co.
  - 3. National Meter, Inc.
  - 4. Peterson Equipment Co., Inc.
  - 5. Sisco Manufacturing Company, Inc.
  - 6. Trerice, H. O. Co.
  - 7. Twin City Hose.
  - 8. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
  - 9. Welsler.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

- D. Thread Size: or , ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating:
- F. Core Inserts: Self-sealing synthetic rubber;
  - EPDM (Nordel) for air, water or glycol operation between 30 and 275 deg F.
  - 2. CR (Neoprene) for air, water, glycol, oil, or gas operation between -30 to 200 deg F.

#### 2.6 TEST-PLUG KITS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Flow Design, Inc.
  - 2. MG Piping Products Co.
  - 3. National Meter, Inc.
  - 4. Peterson Equipment Co., Inc.
  - 5. Sisco Manufacturing Company, Inc.
  - 6. Trerice, H. O. Co.
  - 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
  - 8. Weiss Instruments, Inc.
- B. Furnish the number of test-plug kits given below with the number of thermometers given below, with each kit having one pressure gauge and adapter, and carrying case. Thermometer sensing elements, pressure gauge, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
  - 1. Low-Range Thermometer: Small, bimetallic insertion type with **1- to 2-inch** diameter dial and tapered-end sensing element. Dial range shall be at least **25 to 125 deg F**.
  - 2. High-Range Thermometer: Small, bimetallic insertion type with **1- to 2-inch** diameter dial and tapered-end sensing element. Dial range shall be at least **0 to 220 deg F**.
  - 3. Pressure Gauge: Small, Bourdon-tube insertion type with **2- to 3-inch** diameter dial and probe. Dial range shall be at least **to 200 psig.**
  - 4. Carrying Case: Metal or plastic, with formed instrument padding.
  - 5. One test-plug kit with:
    - a. **Two** thermometers.

## 2.7 FLOWMETERS

- A. Orifice Flowmeters:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. ABB; Instrumentation and Analytical.
    - b. Armstrong Pumps Inc.; S. A. Armstrong Limited.
    - Badger Meter, Inc.; Industrial Div.
    - d. Bell & Gossett; ITT Industries.
    - e. Meriam Process Technologies.
    - f. Spirax Sarco
  - 2. Description: Flowmeter with sensor, hoses or tubing, quick connect hose fittings, valves, indicator, and conversion chart.
  - 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.

- 4. Sensor: Wafer-orifice-type, calibrated, flow-measuring element; for installation between pipe flanges.
  - a. Design: Differential-pressure-type measurement:
    - 1) For HVAC hot and chilled water.
  - b. Construction: Cast-iron body, brass valves with integral check valves and caps, and calibrated nameplate.
  - c. Minimum Pressure Rating: 300 psig.
  - d. Minimum Temperature Rating: 250 deg F.
- 5. Portable Indicators: Hand-held, differential-pressure type, calibrated for connected sensor and having two **12-foot** hoses, with carrying case.
  - a. Scale: Gallons per minute.
  - b. Accuracy: Plus or minus 2 percent between 20 and 80 percent of scale range
- 6. Conversion Chart: Flow rate data compatible with sensor and indicator.
- 7. Operating Instructions: Include complete instructions with each flowmeter.
- B. Venturi Flowmeters:
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Armstrong Pump
    - b. Badger Meter, Inc.; Industrial Division
    - c. Bailey-Fischer & Porter Co.
    - d. Flow Design, Inc.
    - e. Gerand Engineering Co.
    - f. Hyspan Precision Products, Inc.
    - g. Leeds & Northrup.
    - h. McCrometer, Inc.
    - i. Preso Meters; a division of Racine Federated Inc.
    - j. Victaulic Company.
    - k. Spirax Sarco
  - 2. Description: Flowmeter with calibrated flow-measuring element, hoses or tubing, quick connect hose fittings, valves, indicator, and conversion chart.
  - 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
  - 4. Sensor: Venturi-type, calibrated, flow-measuring element; for installation in piping.
    - a. Design: Differential-pressure-type measurement for water.
    - b. Construction: Bronze, brass, or factory-primed steel, with brass fittings and attached tag with flow conversion data.
    - c. Minimum Pressure Rating: 250 psig .
    - d. Minimum Temperature Rating: 250 deg F .
    - e. End Connections for NPS 2 and Smaller: Threaded.
    - f. End Connections for **NPS 2-1/2** and Larger: Flanged or welded.
    - g. Flow Range: Flow-measuring element and flowmeter shall cover operating range of equipment or system served.

## **PART 3 - EXECUTION**

## 3.1 INSTALLATION

- A. **Install thermowells**: with socket extending **one-third of pipe diameter** and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions to most readable position.
- F. Install direct-mounted pressure gauges in piping tees with pressure gauge located on pipe at the most readable position.
- G. Install needle-valve and snubber in piping for each pressure gauge for fluids. Exception: Steam.
- H. Install test plugs in piping tees.
- I. Install thermometers in the following locations:
  - 1. Inlet and outlet of each hydronic boiler.
  - 2. Two inlets and two outlets of each chiller.
  - 3. Inlet and outlet of each hydronic coil in air-handling units.
  - 4. Two inlets and two outlets of each hydronic heat exchanger.
  - 5. Inlet and outlet of each thermal-storage tank.
  - 6. Inlet and outlet of each piece of steam equipment.
- J. Install pressure gauges in the following locations:
  - 1. Inlet and discharge of each pressure-reducing valve.
  - 2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
  - Suction and discharge of each pump.

#### 3.2 CONNECTIONS

A. Install meters and gauges adjacent to machines and equipment to allow service and maintenance of meters, gauges, machines, and equipment.

## 3.3 ADJUSTING

A. Adjust faces of meters and gauges to proper angle for best visibility.

#### 3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each hydronic zone shall be **one of** the following:
  - 1. **Test plug:** With EPDM self-sealing rubber inserts.
- B. Thermometers at inlet and outlet of each hydronic boiler shall be one of the following:
  - Industrial-style, liquid-in-glass type.
- C. Thermometers at inlets and outlets of each chiller shall be **one of** the following:
  - 1. **Industrial**-style, liquid-in-glass type.
- D. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be **one of** the following:
  - 1. **Industrial**-style, liquid-in-glass type.
- E. Thermometers at inlet and outlet of each hydronic coil at fan coils, cabinet heaters, unit heaters and reheat coils and as shown on details shall be the following:

- 1. **Industrial**-style, liquid-in-glass type.
- 2. Test plug with self-sealing rubber inserts.
- 3. Test plug with **EPDM** self-sealing rubber inserts.
- F. Thermometers at inlets and outlets of each hydronic heat exchanger shall be the **one of** following:
  - 1. **Industrial**-style, liquid-in-glass type.
- G. Thermometers at inlet and outlet of each hydronic heat-recovery unit shall be the **one of** following:
  - 1. **Industrial**-style, liquid-in-glass type.
- H. Thermometers at inlet and outlet of each thermal-storage tank shall be **one of** the following:
  - Industrial-style, liquid-in-glass type.
- I. Thermometer stems shall be of length to match thermowell insertion length.

### 3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: **0 to 100 deg F**.
- B. Scale Range for Condenser-Water Piping: 0 to 150 deg F.
- C. Scale Range for Heating, Hot-Water Piping: **30 to 240 deg F**.
- D. Scale Range for Steam and Steam-Condensate Piping: 30 to 240 deg F.
- E. Scale Range for Air Ducts: Minus 40 to plus 110 deg F.

#### 3.6 PRESSURE-GAUGE SCHEDULE

- A. Pressure gauges at inlet and discharge of each pressure-reducing valve shall be the **one of** following:
  - 1. Dry-case type, direct-mounted, metal case.
- B. Pressure gauges at inlet and outlet of each chiller chilled-water and condenser-water connection shall be **one of** the following:
  - 1. Liquid-filled, **direct**-mounted, metal case.
- C. Pressure gauges at suction and discharge of each pump shall be **one of** the following:
  - 1. **Liquid-filled**, direct-mounted, metal case.

### 3.7 PRESSURE-GAUGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water, Condenser-Water, Heating, Hot-Water, Steam and Condensate Piping shall be twice the normal operating pressure of the measured system with gauge ranges as follows:
  - 1. 30 in. Hg to 15 psi.
  - 2. 0 to 30 psi.
  - 3. 0 to 100 psi.
  - 4. 0 to 160 psi.
  - 5. 0 to 200 psi.
  - 6. 0 to 300 psi.
  - 7. 0 to 600 psi.

### 3.8 FLOWMETER SCHEDULE

- A. Flowmeters for Chilled-Water Piping: **Venturi** type.
- B. Flowmeters for Condenser-Water Piping: **Venturi** type.
- C. Flowmeters for Heating, Hot-Water Piping: **Venturi** type.

# **END OF SECTION 23 0519**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

#### **SECTION 23 0529**

#### HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

### A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Metal framing systems.
- 4. Pipe stands.
- 5. Equipment supports.

#### B. Related Sections:

- 1. **Division 05** for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
- Section 230516 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
- 3. Section 230548 "Vibration and Seismic Controls for HVAC" for vibration isolation devices.
- Section 233113 "Metal Ducts" for duct hangers and supports.

### 1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

## 1.4 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to **ASCE/SEI 7**.
  - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
  - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
  - 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

## 1.5 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. Shop Drawings: **Signed and sealed by a qualified professional engineer**. Show fabrication and installation details and include calculations for the following; include Product Data for components:
  - 1. Trapeze pipe hangers.
  - Metal framing systems.
  - 3. Pipe stands.
  - 4. Equipment supports.

## 1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

### **PART 2 - PRODUCTS**

### 2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
  - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
  - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
  - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
  - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
  - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

## 2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

### 2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Anvil International.
    - b. Cooper B-Line, Inc.; a division of Cooper Industries.
    - c. ERICO/Michigan Hanger Co.; ERISTRUT Div.
    - d. FNW/Ferguson Enterprises
    - e. GS Metals Corp.
    - f. Hilti, Inc.insert manufacturer's name.
    - g. Power-Strut Div. Tyco International.
    - h. Thomas & Betts Corporation.
    - i. Tolco Inc.
    - j. Unistrut; an Atkore International company.
  - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
  - 3. Standard: MFMA-4.
  - 4. Channels: Continuous slotted steel channel with inturned lips.
  - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
  - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
  - 7. Metallic Coating:

### a. Electroplated zinc.

- B. Non-MFMA Manufacturer Metal Framing Systems:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
    - b. Empire Industries, Inc.

- c. ERICO International Corporation.
- d. FNW/Ferguson Enterprises
- e. Haydon Corporation.
- f. NIBCO INC.
- g. PHD Manufacturing, Inc.
- h. PHS Industries, Inc.
- 2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
- 3. Standard: Comply with MFMA-4.
- 4. Channels: Continuous slotted steel channel with inturned lips.
- 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- 7. Coating:
  - a. Zinc.

#### 2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Carpenter & Paterson, Inc.
  - 2. Clement Support Services.
  - 3. ERICO International Corporation.
  - 4. National Pipe Hanger Corporation.
  - 5. PHS Industries, Inc.
  - 6. Pipe Shields Inc.
  - 7. Piping Technology & Products, Inc.
  - 8. Rilco Manufacturing Co., Inc.
  - 9. Value Engineered Products, Inc.
- B. Insulation-Insert Material for Cold Piping:
  - 1. Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- C. Insulation-Insert Material for Hot Piping:
  - 1. Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

### 2.5 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

- C. Low-Type, Single-Pipe Stand: One-piece [plastic] [stainless-steel] base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
  - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
  - 2. Base: Stainless steel.
  - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
  - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand:
  - Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
  - 2. Bases: One or more; plastic.
  - 3. Vertical Members: Two or more protective-coated-steel channels.
  - 4. Horizontal Member: Protective-coated-steel channel.
  - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

### 2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbonsteel shapes.

### 2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
  - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
  - 2. Design Mix: **5000-psi**, 28-day compressive strength.

### **PART 3 - EXECUTION**

### 3.1 HANGER AND SUPPORT INSTALLATION

- A. Comply with SEI/ASCE 7 and with requirements for seismic-restraint devices in Section 230548 "Vibration and Seismic Controls for HVAC."
- B. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- C. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
  - Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
  - Field fabricate from ASTM A 36, carbon-steel shapes selected for loads being supported.
     Weld steel according to AWS D1.1.
- D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

# E. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

## M. Insulated Piping:

- 1. Attach clamps and spacers to piping.
  - Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
  - b. Piping Operating **below** Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
  - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
  - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
  - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
  - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
  - b. NPS 4: 12 inches long and 0.06 inch thick.
  - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
  - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
  - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

### 3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

#### 3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
  - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
  - 2. Obtain fusion without undercut or overlap.
  - 3. Remove welding flux immediately.
  - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

### 3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to **1-1/2 inches**.

### 3.5 PAINTING

- A. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in **Division 09**.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

#### 3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel **pipe hangers and supports** and attachments for general service applications.
- F. Use padded hangers for piping that is subject to scratching.
- G. Use thermal-hanger shield inserts for insulated piping and tubing.
- H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.

- 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
- 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes **NPS 1/2 to NPS 24** if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes **NPS 1/2 to NPS 4**, to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes **NPS 3/4 to NPS 8**.
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes **NPS 1/2 to NPS 8**.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes **NPS 3/8 to NPS 8**.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes **NPS 3/8 to NPS 3**.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes **NPS 4 to NPS 36**, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes **NPS 4 to NPS 36**, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes **NPS 1 to NPS 30**, from two rods if longitudinal movement caused by expansion and contraction might occur.
- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes **NPS 2 to NPS 42** if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes **NPS 2 to NPS 24** if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes **NPS 2 to NPS 30** if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
- 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers **NPS 3/4 to NPS 24** if longer ends are required for riser clamps.
- J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
  - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
  - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
  - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
  - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
  - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
  - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
  - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
  - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
  - 6. C-Clamps (MSS Type 23): For structural shapes.
  - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
  - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
  - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
  - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
  - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
  - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
    - a. Light (MSS Type 31): **750 lb**.
    - b. Medium (MSS Type 32): 1500 lb.
    - c. Heavy (MSS Type 33): 3000 lb.
  - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
  - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
  - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
- 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
  - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
  - Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
  - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
  - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
  - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to **25 percent** to allow expansion and contraction of piping system from hanger.
  - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to **25 percent** to allow expansion and contraction of piping system from base support.
  - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to **25 percent** to allow expansion and contraction of piping system from trapeze support.
  - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
    - a. Horizontal (MSS Type 54): Mounted horizontally.
    - b. Vertical (MSS Type 55): Mounted vertically.
    - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- P. Use **powder-actuated fasteners** instead of building attachments where required in concrete construction.

#### **END OF SECTION 23 0529**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

### **SECTION 23 0548**

### VIBRATION AND SEISMIC CONTROLS FOR HVAC

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SCOPE

- A. Provide engineered vibration isolation and restraint systems in accordance with the requirements of this section including design, engineering, materials, testing, inspections and reports.
- B. Mechanical equipment with moving parts shall be mounted on or suspended from vibration isolators to reduce the transmission of vibration and mechanically transmitted sound to the building structure.
- C. Piping and ductwork in mechanical rooms shall be mounted on or suspended from vibration isolators to reduce the transmission of vibration and mechanically transmitted sound to the building structure.
- D. All mechanical equipment, piping and ductwork shall be restrained as required by Federal, State and Local building codes to preserve the integrity of nonstructural building components during **seismic** events to minimize hazards to occupants and reduce property damage.

### 1.3 SUMMARY

- A. This Section includes the following:
  - 1. Elastomeric isolation pads.
  - 2. Elastomeric isolation mounts.
  - 3. Restrained elastomeric isolation mounts.
  - 4. Open-spring isolators.
  - 5. Housed-spring isolators.
  - 6. Restrained-spring isolators.
  - 7. Housed-restrained-spring isolators.
  - 8. Pipe-riser resilient supports.
  - 9. Resilient pipe guides.
  - 10. Air-spring isolators.
  - 11. Restrained-air-spring isolators.
  - 12. Elastomeric hangers.
  - 13. Spring hangers.
  - 14. Snubbers.
  - Restraint channel bracings.
  - 16. Restraint cables.
  - 17. Seismic-restraint accessories.
  - 18. Mechanical anchor bolts.
  - 19. Adhesive anchor bolts.
  - 20. Vibration isolation equipment bases.
  - 21. Restrained isolation roof-curb rails.

- 22. Certification of seismic restraint designs.
- 23. Installation supervision.
- 24. Design of attachment of housekeeping pads.
- 25. All components requiring IBC compliance and certification.
- 26. All inspection and test procedures for components requiring IBC compliance.
- 27. Restraint of all mechanical equipment, pipe and ductwork, within, on, or outdoors of the building and entry of services to the building, up to but not including, the utility connection, is part of this Specification.
- 28. Seismic certification of equipment

### B. Related Requirements:

 Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for devices for plumbing equipment and systems.

#### 1.4 **DEFINITIONS**

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. ASCE: American Society of Civil Engineers
- D. OSHPD: Office of Statewide Health Planning and Development for the State of California.
- E. Ip: Importance Factor.
- F. ESSENTIAL FACILITIES, (Occupancy Category IV, IBC-2018)
  - 1. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.

#### G. LIFE SAFETY

- 1. All systems involved with fire protection, including sprinkler piping, jockey pumps, fire pumps, control panels, service water supply piping, water tanks, fire dampers, smoke exhaust systems and fire alarm panels.
- 2. All mechanical, electrical, plumbing or fire protection systems that support the operation of, or are connected to, emergency power equipment, including all lighting, generators, transfer switches and transformers.
- 3. All medical and life support systems.
- 4. Hospital heating systems and air conditioning systems for maintaining normal ambient temperature.
- 5. Automated supply, exhaust, fresh air and relief air systems on emergency control sequence, including air handlers, duct, dampers, etc., or manually-operated systems used for smoke evacuation, purge or fresh air relief by the fire department.
- 6. Heating systems in any facility with Occupancy Category IV, IBC-2009 where the ambient temperature can fall below 32 degrees Fahrenheit.

### H. HIGH HAZARD

1. All gases or fluids that must be contained in a closed system which are flammable or combustible. Any gas that poses a health hazard if released into the environment and vented Fuel Cells.

## 1.5 REFERENCE CODES AND STANDARDS

A. Codes and Standards: The following shall apply and conform to good engineering practices unless otherwise directed by the Federal, State or Local authorities having jurisdiction.

- 1. IBC
- 2. ASCE 7
- 3. NFPA 13 (National Fire Protection Association)
- 4. IBC 2018 replaces all references to IBC 2006, 2009, 2012.
- B. The following guides may be used for supplemental information on typical seismic installation practices. Where a conflict exists between the guides and these construction documents, the construction documents will preside.
  - 1. FEMA (Federal Emergency Management Agency) manuals 412, Installing Seismic Restraints for Mechanical Equipment and 414, Installing Seismic Restraints for Ductwork and Pipe.
  - 2. SMACNA (Sheet Metal and Air-conditioning Contractors' National Association) Seismic Restraint Manual Guidelines for Mechanical Systems, 3rd ed.
  - ASHRAE (American Society for Heating, Refrigerating and Air-conditioning Engineers) A
    Practical Guide to Seismic Restraint
  - 4. MSS (Manufacturers Standardization Society of the Valve and Fittings Industry) MSS SP-127, Bracing for Piping Systems, Seismic – Wind – Dynamic, Design, Selection, Application.

#### 1.6 ISOLATOR AND RESTRAINT MANUFACTURER'S RESPONSIBILITIES:

- A. Provide project specific vibration isolation and seismic restraint design prepared by a registered design professional in the state were the project is being constructed, and manufacturer certifications that the components are seismically qualified.
  - 1. Provide calculations to determine restraint loads resulting from seismic forces as required by IBC, Chapter 16 and ASCE 7, latest editions. Seismic calculations shall be certified by an engineer licensed in the state where the project is being constructed.
- B. Provide installation instructions and shop drawings for all materials supplied under this section of the specifications.
  - Provide seismic restraint details with specific information relating to the materials, type, size, and locations of anchorages; materials used for bracing; attachment requirements of bracing to structure and component; and locations of transverse and longitudinal sway bracing and rod stiffeners.
  - 2. Provide seismic bracing layout drawings indicating the location of all seismic restraints.
    - a. Each piece of rotating isolated equipment shall be tagged to clearly identify quantity and size of vibration isolators and seismic restraints.
- C. Provide, in writing, the special inspection requirements for all Designated Seismic Systems as indicated in Chapter 17 of the IBC.
- D. Provide training for installation, operation and maintenance of isolation and restraint systems.

### 1.7 PERFORMANCE REQUIREMENTS

- A. Flood-Restraint Loading: Per the structural drawings and specifications.
- B. Seismic-Restraint Loading:
  - 1. Site Class as Defined in the IBC: Per the structural drawings and specifications.
  - 2. Assigned Occupancy Category as Defined in the IBC: Per the structural drawings and specifications.
    - a. Component Importance Factor: 1.5.

- 1) Life safety components required to function after an earthquake.
- 2) Components containing hazardous or flammable materials in quantities that exceed the exempted amounts for an open system listed in Chapter 4.
- 3) For structures with an Occupancy Category IV, components needed for continued operation of the facility or whose failure could impair the continued operation of the facility.
- 4) Storage racks in occupancies open to the general public (e.g., warehouse retail stores).
- b. Component Importance Factor: 1.0.
  - 1) All other components
- c. Component Response Modification Factor: Per the structural drawings and specifications.
- d. Component Amplification Factor: Per the structural drawings and specifications.
- 3. Design Spectral Response Acceleration at Short Periods: Per the structural drawings and specifications.
- 4. Design Spectral Response Acceleration at 1-Second Period: Per the structural drawings and specifications.

### 1.8 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For the following:
  - Submittals shall include catalog cut sheets and installation instructions for each type of anchor and seismic restraint used on equipment or components being isolated and/or restrained.
  - 2. Submittals for mountings and hangers incorporating springs shall include spring diameter and free height, rated load, rated deflection, and overload capacity for each vibration isolation device.
  - 3. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
    - Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
    - b. Annotate to indicate application of each product submitted and compliance with requirements.
  - 4. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

### C. Shop Drawings:

- 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- D. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
  - 1. "Basis for Design" report: Statement from the registered design professional that the design complies with the requirements of the ASCE 7-10 Chapter 13, IBC 2018 chapter

1908 and ACI 318. In addition, the basis for compliance must also be noted, as listed below:

- a. Project specific design documentation prepared and submitted by a registered design professional (ASCE 7, 13.2.1.1)
- b. Submittal of the manufacturer's certification that the isolation equipment is seismically qualified by:
- c. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
- d. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
- e. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
- Seismic restraint load ratings must be certified and substantiated by testing or calculations under direct control of a registered professional engineer. Copies of testing and calculations must be submitted as part of submittal documents. OSHPD preapproved restraint systems are exempt from this requirement if their pre-approval is current and based upon the IBC 2009 (i.e. OPA-07 pre-approval numbers).
- 3. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- 4. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, **seismic** forces required to select vibration isolators, **seismic** restraints, and for designing vibration isolation bases.
  - Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 23 Sections for equipment mounted outdoors.
- 5. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist.
- Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
- 7. **Seismic-**Restraint Details:
  - a. Design Analysis: To support selection and arrangement of **seismic** restraints. Include calculations of combined tensile and shear loads.
  - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
  - c. Preapproval and Evaluation Documentation: By **an evaluation service member of ICC-ES**, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

### 1.9 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints.
  - 1. Submittal drawings and calculations must be stamped by a registered professional engineer in the State where the project is being constructed who is responsible for the seismic restraint design.
  - Calculations and restraint device submittal drawings shall specify anchor bolt type, embedment, concrete compressive strength, minimum spacing between anchors, and minimum distances of anchors from concrete edges. Concrete anchor locations shall not be near edges, stress joints, or an existing fracture. All bolts shall be ASTM A307 or better.
- B. Qualification Data: For professional engineer and testing agency.
- C. Welding certificates.
- D. Field quality-control test reports.

### 1.10 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

### 1.11 SEISMIC CERTIFICATION OF EQUIPMENT

- A. Component Importance Factor. All plumbing and mechanical components shall be assigned a component importance factor. The component importance factor, Ip, shall be taken as 1.5 if any of the following conditions apply:
  - 1. The component is required to function for life-safety purposes after an earthquake.
  - 2. The component contains hazardous materials.
  - 3. The component is in or attached to an Occupancy Category IV structure and it is needed for continued operation of the facility or its failure could impair the continued operation of the facility.
- B. All other components shall be assigned a component importance factor, Ip, equal to 1.0.
- C. For equipment or components where Ip = 1.0.
  - 1. Submit manufacturer's certification that the equipment is seismically qualified by:
    - a. An engineered analysis conforming to the requirements of Chapter 13 of ASCE 7.
    - b. Testing by a nationally recognized testing standard procedure such as ICC-ES AC 156. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.

- c. Experience data conforming to a nationally recognized procedure. The substantiated seismic design capacities shall exceed the seismic demands determined by Section 13.3 of ASCE 7.
- 2. The equipment and components listed below are considered rugged and shall not require Special Seismic Certification:
  - a. Valves (not in cast-iron housings, except for ductile cast iron).
  - b. Pneumatic operators.
  - c. Hydraulic operators.
  - d. Motors and motor operators.
  - e. Horizontal and vertical pumps (including vacuum pumps).
  - f. Air compressors
  - g. Refrigerators and freezers.
  - h. Elevator cabs.
  - i. Underground tanks.
  - j. Equipment and components weighing not more than 20 lbs. supported directly on structures (and not mounted on other equipment or components) with supports and attachments in accordance with Chapter 13, ASCE 7.
- 3. Rugged equipment and components in this section are for factory assembled discrete equipment and components only and do not apply to site assembled or field assembled equipment or equipment anchorage. The list is based in part on OSHPD Code Application Notice 2-1708A.5.
- D. Special Certification requirements for Designated Seismic Systems (i.e. Ip = 1.5): Seismic Certificates of Compliance supplied by manufacturers shall be submitted for all components that are part of Designated Seismic Systems. In accordance with the ASCE 7, certification shall be via one of the following methods:
  - 1. For active mechanical and electrical equipment that must remain operable following the design earthquake:
    - a. Testing as detailed by part C.1.b above.
    - b. Experience data as detailed by part C.1.c above.
    - c. Equipment that is considered "rugged" per part C.2 above.
  - 2. Components with hazardous contents shall be certified by the manufacturer as maintaining containment following the design earthquake by:
    - a. Testing as detailed by part C.1.b above.
    - b. Experience data as detailed by part C.1.c above.
    - c. Engineering analysis utilizing dynamic characteristics and forces. Tanks (without vibration isolators) designed by a registered design professional in accordance with ASME Boiler and Pressure Vessel Code, and satisfying the force and displacement requirements of Sections 13.3.1 and 13.3.2 of ASCE 7 having an importance factor, Ip = 1.0 shall be considered to satisfy the Special Seismic Certification requirements on the basis of ASCE 7 Section 13.6.9.

### **PART 2 - PRODUCTS**

### 2.1 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Amber/Booth Company, Inc.

- 2. CalDyn (California Dynamics Corporation).
- 3. ISAT (International Seismic Application Technology).
- 4. Kinetics Noise Control.
- Mason Industries.
- 6. Vibro-Acoustics
- 7. VMC (Vibration Mountings & Controls, Inc.)

### B. Elastomeric Isolation Pads P1:

- 1. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
- 2. Size: Factory or field cut to match requirements of supported equipment.
- 3. Pad Material: Oil and water resistant with elastomeric properties.
- 4. Surface Pattern: Ribbed pattern.
- 5. Load-bearing metal plates adhered to pads.
- C. Double-Deflection, Elastomeric Isolation Mounts M1:
  - 1. Mounting Plates:
    - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded, or with threaded studs or bolts.
    - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
  - 2. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.
- D. Restrained Elastomeric Isolation Mounts M2:
  - 1. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
    - a. Housing: Cast-ductile iron or welded steel.
    - b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.
- E. Spring Isolators **S1**: Freestanding, laterally stable, open-spring isolators.
  - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
  - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
  - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
  - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
  - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch-thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig.
  - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- F. Restrained Spring Isolators **S2**: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.

- 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation. Baseplates shall limit floor load to 500 psig.
- 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
- 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- G. Housed Restrained Spring Isolators **S3**: Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:
  - 1. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with **adjustable** snubbers to limit vertical movement.
    - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
    - b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
  - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
  - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
  - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
  - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
  - 6. Elastomeric pad: For high frequency absorption at the base of the spring.
- H. Elastomeric Hangers **H1**:
  - Description: Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods
    - a. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
    - b. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.
- I. Spring Hangers **H2**: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
  - 1. Description: Combination Coil-Spring and Elastomeric-Insert Hanger with spring and Insert in Compression.
    - Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.

- b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- f. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
- g. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- J. Spring Hangers with Vertical-Limit Stop **H3**: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
  - Description: Combination Coil-Spring and Elastomeric-Insert Hanger with spring and insert in Compression and vertical limit stop.
    - a. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
    - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
    - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
    - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
    - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
    - f. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washerreinforced cup to support spring and bushing projecting through bottom of frame.
    - g. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
    - h. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

#### K. Pipe Riser Resilient Support R1:

- 1. Description: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch-thick neoprene.
  - a. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
  - b. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

## L. Resilient Pipe Guides R2:

- 1. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch-thick neoprene.
  - Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.
- M. Horizontal Thrust Restraints **T1**: Modified specification S2 isolator.
  - Horizontal thrust restraints shall consist of a modified specification S2 spring mounting.
     Restraint springs shall have the same deflection as the isolator springs.

- 2. The assembly shall be preset at the factory and fine tuned in the field to allow for a maximum of 1/4" movement from stop to maximum thrust.
- 3. The assemblies shall be furnished with rod and angle brackets for attachment to both the equipment and duct work or the equipment and the structure.
- 4. Restraints shall be attached at the center line of thrust and symmetrically on both sides of the unit.

### 2.2 RESTRAINED VIBRATION ISOLATION ROOF-CURB RAILS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Amber/Booth Company, Inc.
  - 2. CalDyn (California Dynamics Corporation).
  - 3. ISAT (International Seismic Application Technology).
  - 4. Kinetics Noise Control.
  - Mason Industries.
  - 6. Vibro-Acoustics
  - 7. VMC (Vibration Mountings & Controls, Inc.)
- B. Restrained Vibration Isolation Roof-Curb Rails: **RC1**:
- C. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic and wind forces.
- D. Upper Frame: The upper frame shall provide continuous support for equipment and shall be captive to resiliently resist **seismic** forces.
- E. Lower Support Assembly: The lower support assembly shall be a formed sheet-metal section containing adjustable and removable steel springs that support upper frame. Lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly.
- F. Spring Isolators: Adjustable, restrained spring isolators shall be mounted on 1/4-inch-thick, elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.
  - 1. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic and wind restraint.
    - a. Housing: Steel with resilient vertical-limit stops and adjustable equipment mounting and leveling bolt.
    - b. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
    - c. Minimum Additional Travel: 50 percent of the required deflection at rated load.
    - d. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
    - e. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- G. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch-thick.
- H. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

I. All roof curbs shall be at least 8-inches (MIN) above the roof membrane.

# 2.3 VIBRATION ISOLATION EQUIPMENT BASES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Amber/Booth Company, Inc.
  - 2. CalDyn (California Dynamics Corporation).
  - 3. ISAT (International Seismic Application Technology).
  - 4. Kinetics Noise Control.
  - 5. Mason Industries.
  - 6. Vibro-Acoustics
  - 7. VMC (Vibration Mountings & Controls, Inc.)
- B. Steel Bases and Rails SB1: Factory-fabricated, welded, structural-steel bases and rails.
  - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
    - a. Include supports for suction and discharge elbows for pumps.
  - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
  - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- C. Inertia Base **IB1**: Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
  - Design Requirements: Lowest possible mounting height with not less than 2-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
    - a. Include supports for suction and discharge elbows for pumps.
  - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
  - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
  - 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

### 2.4 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Amber/Booth Company, Inc.
  - 2. CalDyn (California Dynamics Corporation).
  - 3. ISAT (International Seismic Application Technology).
  - 4. Kinetics Noise Control.
  - 5. Mason Industries.
  - 6. Vibro-Acoustics
  - 7. VMC (Vibration Mountings & Controls, Inc.)

- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by **an evaluation service member of ICC-ES**.
  - Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
  - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
  - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
  - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch-thick resilient cushion.
- D. Channel Support System: MFMA-4, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- E. Restraint Cables: ASTM A 603 galvanized or ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement. Cables located in exterior or other wet locations such as wash-down areas shall be stainless steel.
- F. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or reinforcing steel angle clamped to hanger rod.
- G. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- H. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- I. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- J. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- K. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- L. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
- M. All post installed anchors utilized in the seismic design must be qualified for use in cracked concrete and approved for use with seismic loads.
- N. Expansion anchors shall not be used for anchorage of equipment with motors rated over 10 HP with the exception of undercut expansion anchors. Spring or internally isolated equipment are exempt from this requirement.
- O. All beam clamps utilized for vertical support must also incorporate retention straps.
- P. All seismic brace arm anchorages to include concrete anchors, beam clamps, truss connections, etc., must be approved for use with seismic loads.

### 2.5 FACTORY FINISHES

- A. Finish: Manufacturer's standard paint applied to factory-assembled and tested equipment before shipping.
  - 1. Powder coating on springs and housings.
  - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
  - 3. Baked enamel or powder coat for metal components on isolators for interior use.
  - 4. Color-code or otherwise mark vibration isolation and **seismic** control devices to indicate capacity range.

### **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and **seismic** control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

#### 3.2 COORDINATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in **Divison 03 Section "Cast-in-Place Concrete."**
- B. Coordinate size, shape, reinforcement and attachment of all housekeeping pads supporting vibration/seismically rated equipment. Concrete shall have a minimum compressive strength of 4,000 psi or as specified by the project engineer. Coordinate size, thickness, doweling, and reinforcing of concrete equipment housekeeping pads and piers with vibration isolation and seismic restraint device manufacturer to ensure adequate space, embedment and prevent edge breakout failures. Pads and piers must be adequately doweled in to structural slab.
- C. Housekeeping pads shall have adequate space to mount equipment and seismic restraint devices.
- D. Housekeeping Pads must be adequately reinforced and adequately sized for proper installation of equipment anchors and shall also be large enough and thick enough to ensure adequate edge distance and embedment depth for restraint anchor bolts to avoid housekeeping pad breakout failure. Refer seismic restraint manufacturer's written instructions.
- E. Coordinate with vibration/seismic restraint manufacturer and the structural engineer of record to locate and size structural supports underneath vibration/seismically restrained equipment (e.g. roof curbs, cooling towers and other similar equipment). Installation of all seismic restraint materials specified in this section shall be accomplished as per the manufacturer's written instructions. Adjust isolators and restraints after piping systems have been filled and equipment is at its operating weight, following the manufacturer's written instructions.

# 3.3 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by **an evaluation service member of ICC-ES** and per the seismic restraint manufacturer's design.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

### 3.4 VIBRATION-CONTROL DEVICE INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Comply with requirements in Division 23 Section "Hydronic Piping" for piping flexible connections.
- C. Isolate all mechanical equipment 0.75 hp and over per the isolator and seismic restraint schedule and these specifications. Vibration isolators shall be selected in accordance with the equipment, pipe or duct weight distribution so as to produce reasonably uniform deflections
- D. All isolation materials and seismic restraints shall be of the same vendor and shall be selected and certified using published or factory certified data
- E. Installation of all vibration isolation materials, flexible connectors and supplemental equipment bases specified in this section shall be accomplished as per the manufacturer's written instructions with mountings adjusted to level equipment. Any variance or non-compliance with the manufacturer's instructions shall be reviewed and approved in writing by the manufacturer or corrected by the contractor in an approved manner.
- F. Installation of vibration isolators must not cause any change of position of equipment, piping or duct work resulting in stresses or misalignment.
- G. Locate isolation hangers as near to the overhead support structure as possible.
- H. No rigid connections between isolated components and the building structure shall be made that degrades the noise and vibration control system herein specified. "Building" includes, but is not limited to, slabs, beams, columns, studs and walls. "Components" includes, but is not limited to, mechanical equipment, piping and ducts.
- I. Coordinate work with other trades to avoid rigid contact with the building.
- J. Any conflicts with other trades which will result in rigid contact with equipment or piping due to inadequate space or other unforeseen conditions should be brought to the architects/engineers attention prior to installation. Corrective work necessitated by conflicts after installation shall be at the responsible contractor's expense.
- K. Bring to the architects/engineers attention any discrepancies between the specifications and the field conditions or changes required due to specific equipment selection, prior to installation. Corrective work necessitated by discrepancies after installation shall be at the responsible contractor's expense.
- L. Correct, at no additional cost, all installations which are deemed defective in workmanship and materials at the contractor's expense.
- M. Use horizontal thrust restraints **T1** to protect Air handling equipment and centrifugal fans against excessive displacement which results from high air thrust when thrust forces exceed 10% of the equipment weight.
- N. Isolated equipment, duct and piping located on roofs must be attached to the structure. Supports (e.g., sleepers) that are not attached to the structure will not be acceptable.
- O. On completion of installation of all isolation materials and before startup of isolated equipment all debris shall be cleared from areas surrounding and from beneath all isolated equipment, leaving equipment free to move on the isolation supports.
- P. All floor mounted isolated equipment shall be protected with specification M1, M2, S1, S2 or S3 isolator.
- Q. Horizontal Pipe Isolation: All HVAC pumped water, pumped condensate, glycol, and refrigerant piping size 1-1/4" and larger within mechanical rooms shall be isolated. Outside equipment rooms this piping shall be isolated for the greater of 50' or 100 pipe diameters from rotating equipment. For the first three (3) support locations from externally isolated equipment provide specification H2 or H3 hangers or specification S1, S2 or S3 mounts with the same deflection as

equipment isolators (max 2"). All other piping within the equipment rooms shall be isolated with the same specification isolators with a 3/4" minimum deflection. Steam piping size 1-1/4" and larger which is within an equipment room and connected to rotating equipment shall be isolated for three (3) support locations from the equipment. Provide specification H2 or H3 hangers, or specification S1 or S2 mounts with the same deflection as equipment isolators but a minimum of 3/4".

- R. Install full line size flexible pipe connectors at the inlet and outlet of each pump, cooling tower, condenser, chiller, coiling connections and where shown on the drawings. All connectors shall be suitable for use at the temperature, pressure, and service encountered at the point of installation and operation. End fitting connectors shall conform to the pipefitting schedule. Control rods or protective braid must be used to limit elongation to 3/8". Flexible connectors shall not be required for suspended in-line pumps.
- S. All plumbing pumped water, piping size 1-1/4" and larger within mechanical rooms shall be isolated the same as HVAC piping above. Isolators are not required for any plumbing pumped water, pumped condensate, and steam piping outside of mechanical rooms unless listed in the isolation schedule.
- Τ. Pipe Riser Isolation: The operating weight of all variable temperature vertical pipe risers 1-1/4" and larger, requiring isolation where specifically shown and detailed on riser drawings shall be fully supported by specification M1, M2 or R1 supports. S1, S2, S3, H2 or H3 steel spring deflection isolators with minimum 3/4-inch minimum shall be in those locations where added deflection is required due to pipe expansion and contraction. Spring deflection shall be a minimum of 4 times the anticipated deflection change. Springs shall be selected to keep the riser in tension. Height saving brackets used with isolators having 2.5" deflection or greater shall be of the precompression type to limit exposed bolt length. Specification R1 riser supports shall be installed near the center point of the riser to anchor the riser when spring isolation is used. Specification R2 riser guides may be used in conjunction with spring isolators per design calculations. Pipe risers up through 16" shall be supported at intervals of every third floor of the building. Pipe risers 18" and over, every second floor. Wall sleeves for take-offs from riser shall be sized for insulation O.D. plus two times the anticipated movement to prevent binding. Horizontal take-offs and at upper and lower elbows shall be supported with spring isolators as required to accommodate anticipated movement. In addition to submittal data requirements previously outlined, riser diagrams and calculations shall be submitted for approval. Calculations must show anticipated expansion and contraction at each support point, initial and final loads on the building structure, and spring deflection changes. Submittal data shall include certification that the riser system has been examined for excessive stresses and that none will exist if installed per design proposed.
- U. Where riser pipes pass through cored holes, core diameters shall be a maximum of 2" larger than pipe O.D. including insulation. Cored holes must be packed with resilient material or firestop as provided by other sections of this specification or local codes. Where seismic restraint is required specification isolator S3 shall support risers and provide longitudinal restraint at floors where thermal expansion is minimal and will not bind isolator restraints.
- V. Duct Isolation: Isolate all duct work with a static pressure 2" W.C. and over in equipment rooms and to minimum of 50 feet from the fan or air handler. Use specification type H2 or H3 hangers or type S1 or S2 floor mounts.

### 3.5 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment Restraints:
  - 1. On projects with Seismic Site Class A or B, seismic design or restraint is not required.
  - 2. On projects with Seismic Design Category C: Components with an importance factor of 1.0 do not require seismic design or restraint.

- 3. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- 4. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
- 5. Install seismic-restraint devices using methods approved by **an evaluation service member of ICC-ES** providing required submittals for component.
- 6. Suspended Equipment: All suspended equipment that meets any of the following conditions requires seismic restraints as specified by the supplier:
  - a. Rigidly attached to pipe or duct that is 75 lbs. and greater,
  - b. Items greater than 20 lbs and distribution systems weighing more than 5 lbs/lineal foot, with an importance factor of 1.0 hung independently or with flexible connections.
  - c. Possibility of consequential damage.
  - d. For importance factors greater than 1.0 all suspended equipment requires seismic restraint regardless of the above notes.
  - e. Wall mounted equipment weighing more than 20 lbs.
  - f. Exemptions:
    - 1) Equipment weighing less than 20 lbs and distribution systems weighing less than 5 lbs/lineal foot, with an Ip = 1.0 and where flexible connections exist between the component and associated ductwork, piping or conduit.
- 7. Base Mounted Equipment: All base mounted equipment that meets any of the following conditions requires attachments and seismic restraints as specified by the supplier:
  - a. Connections to or containing hazardous material,
  - b. With an overturning moment.
  - c. Weight greater than 400 lbs.
  - d. Mounted on a stand 4 ft. or more from the floor
  - e. Possibility of consequential damage.
  - f. For importance factors greater than 1.0 all base mounted items require seismic restraints regardless of the above notes.
  - g. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
  - h. Exemptions:
    - 1) Floor or curb-mounted equipment weighing less than 400 lbs and not resiliently mounted, where the Importance Factor, Ip = 1.0, the components are mounted at 4 feet or less above a floor level, flexible connections between the components and associated duct work, piping and conduit are provided and there is no possibility of consequential damage.
- 8. Roof Mounted Equipment:
  - a. To be installed on a structural frame, seismically rated roof curb, or structural curb frame mechanically connected to the structure. Items shall not be mounted onto sleepers or pads that are not mechanically and rigidly attached to the structure. Restraint must be adequate to resist both seismic and wind forces.
  - b. Roof curbs shall be installed directly to building structural steel or concrete roof deck and not to top of steel deck or roofing material.

# c. Exemptions:

1) Curb-mounted mushroom, exhaust and vent fans with curb area less than nine square feet are excluded.

## 9. Rigid Mounted Equipment:

- Anchor floor and wall mounted equipment to the structure as per the stamped seismic certifications / drawings.
- b. For equipment with high center of gravity additional cable restraints shall be furnished, as required by isolation manufacturer, to limit forces and motion caused by rocking.
- c. Suspended equipment shall be restrained using seismic cable restraints, or struts, and hanger rods as per the stamped seismic certifications / drawings.

# 10. Vibration Isolated Equipment:

- a. Seismic control shall not compromise the performance of noise control, vibration isolation or fire stopping systems.
- b. Equipment supported by vibration-isolation hangers shall be detailed and installed with approximately a 1/8" gap between the isolation hangers and the structure. Isolators at restraint locations must be fitted with uplift limit stops.
- B. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
- C. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
- D. Install seismic-restraint devices using methods approved by **an evaluation service member of ICC-ES** providing required submittals for component.
- E. Installation and adjustment of all seismic restraints specified in this section shall be accomplished as per the manufacturer's written instructions. Any deviation from the manufacturer's instructions shall be reviewed and approved by the manufacturer.

### F. Piping Restraints:

- 1. Comply with requirements in ASCE 7-10 Chapter 13.
- 2. Branch lines may not be used to brace main lines.
- 3. All piping requires restraint unless it meets any of the exemptions listed below.
- 4. Exemptions:
  - a. All high deformability pipe 3" or less in diameter suspended by individual hanger rods where Ip = 1.0.
  - b. High deformability pipe or conduit in Seismic Design Category C, 2" or less in diameter suspended by individual hanger rods where Ip = 1.5.
  - c. High deformability pipe in Seismic Design Category D, E or F, 1" or less in diameter suspended by individual hanger rods where Ip = 1.5.
  - d. All clevis supported pipe runs installed less than 12" from the top of the pipe to the underside of the support point and trapeze supported pipe suspended by hanger rods having a distance less than 12" in length from the underside of the pipe support to the support point of the structure.
  - e. Piping systems, including their supports, designed and constructed in accordance with ASME B31.

- f. Piping systems, including their supports, designed and constructed in accordance with NFPA, provided they meet the force and displacement requirements of Section 13.3.1 and 13.3.2 (ASCE 7).
- G. Install flexible metal hose loops in piping which crosses building seismic joints, sized for the anticipated amount of movement.
- H. Install flexible piping connectors where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment.
- I. Where pipe sizes reduce below dimensions required for seismic, the final restraint shall be installed at the transition location.
- J. Restraint Spacing For Piping: Sizes shown are maximum. Actual spacing determined by calculation.
  - 1. For non-ductile piping (e.g., cast iron, PVC) space transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.
  - 2. For piping with hazardous material inside (e.g., natural gas, medical gas) space Transverse supports a maximum of 20' o.c., and longitudinal supports a maximum of 40' o.c.
  - 3. For pipe risers, restrain the piping at floor penetrations using the same spacing requirements as above.
  - 4. For all other ductile piping see Table "A" below
- K. Seismic Restraint of Ductwork: Seismically restrain per specific code requirements, all ductwork listed below (unless otherwise indicated on the drawings), using seismic cable restraints: (Ductwork not meeting criteria listed below is to be "Exempt")
  - 1. Restrain rectangular ductwork with cross sectional area of 6 square feet or larger. Duct with and an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
  - 2. Restrain round ducts with diameters of 33" or larger. Duct with an importance factor of 1.5 must be braced with no exceptions regardless of size or distance requirements.
  - 3. Restrain flat oval ducts the same as rectangular ducts of the same nominal size.
  - 4. Duct must be reinforced at the restraint locations. Reinforcement shall consist of an additional angle on top of the ductwork that is attached to the support hanger rods. Ductwork is to be attached to both upper angle and lower trapeze. Additional reinforcing is not required if duct sections are mechanically fastened together with frame bolts and positively fastened to the duct support suspension system.
  - 5. A group of ducts may be combined in a larger frame so that the combined weights and dimensions of the ducts are less than or equal to the maximum weight and dimensions of the duct for which bracing details are selected.
  - 6. Walls, including gypsum board non-bearing partitions, which have ducts running through them, may replace a typical transverse brace. Provide channel framing around ducts and solid blocking between the duct and frame.
  - 7. If ducts are supported by angles, channels or struts, ducts shall be fastened to it at seismic brace locations in lieu of duct reinforcement.
  - 8. All ductwork weighing more than 17 lb/ft.
  - 9. Exemptions:
    - a. Duct runs supported at locations by two rods less than 12 inches in length from the structural support to the structural connection to the ductwork. This exemption does not apply to ducts with an importance factor of 1.5.

- 10. See Table "A" below for restraint spacing.
- L. Exemptions do not apply for:
  - 1. Life Safety or High Hazard Components
    - a. Including gas, fire protection, medical gas, fuel oil and compressed air needed for the continued operation of the facility or whose failure could impair the facility's continued operation, Occupancy Category IV, IBC-2009 as listed in Section 1.3 B regardless of governing code for HVAC, Plumbing, Electrical piping or equipment. (A partial list is illustrated.) High Hazard is additionally classified as any system handling flammable, combustible or toxic material. Typical systems not excluded are additionally listed below.

## 2. Piping

a. Fuel oil, gasoline, natural gas, medical gas, steam, compressed air or any piping containing hazardous, flammable, combustible, toxic or corrosive materials. Fire protection standpipe, risers and mains. Fire Sprinkler Branch Lines must be end tied.

### 3. Duct

a. Smoke evacuation duct or fresh air make up connected to emergency system, emergency generator exhaust, boiler breeching or as used by the fire department on manual override.

### 4. Equipment

a. Previously excluded non life safety duct mounted systems such as fans, variable air volume boxes, heat exchangers and humidifiers having a weight greater than 75 lbs require independent seismic bracing.

### M. Spacing Chart For Suspended Components:

| Table "A" Seismic Bracing                                                         |                      |                        |                     |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------|------------------------|---------------------|--|--|--|--|--|--|
| (Maximum Allowable Spacing Shown- Actual Spacing to Be Determined by Calculation) |                      |                        |                     |  |  |  |  |  |  |
| Equipment                                                                         | On Center Transverse | On Center Longitudinal | Change Of Direction |  |  |  |  |  |  |
| Duct                                                                              |                      |                        |                     |  |  |  |  |  |  |
| All Sizes                                                                         | 30 Feet              | 60 Feet                | 4 Feet              |  |  |  |  |  |  |
|                                                                                   |                      |                        |                     |  |  |  |  |  |  |
| Pipe Threaded, Welded, Soldered Or Grooved                                        |                      |                        |                     |  |  |  |  |  |  |
| To 16"                                                                            | 40 Feet              | 80 Feet                | 4 Feet              |  |  |  |  |  |  |
| 18" – 28"                                                                         | 30 Feet              | 60 Feet                | 4 Feet              |  |  |  |  |  |  |
| 30" – 40"                                                                         | 20 Feet              | 60 Feet                | 4 Feet              |  |  |  |  |  |  |
| 42" & Larger                                                                      | 10 Feet              | 30 Feet                | 4 Feet              |  |  |  |  |  |  |

- N. Roof mounted duct is to be installed on sleepers or frames mechanically connected to the building structure. Roof anchors and seismic cables or frames shall be used to resist seismic and wind loading. Wind loading factors shall be determined by the registered design professional.
- O. Where duct sizes reduce below dimensions required for seismic restraint the final restraint shall be installed at the transition location.
- P. Install cables so they do not bend across edges of adjacent equipment or building structure.

- Q. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- R. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- S. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- T. Seismically Rated Beam Clamps are required where welding to or penetrations to steel beams are not approved.
- U. Drilled-in Anchors:
  - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
  - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
  - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
  - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
  - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
  - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

## 3.6 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 23 Section "Hydronic Piping" for piping flexible connections.

### 3.7 FIELD QUFALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
  - A representative of the vibration isolation system manufacturer shall review the project installation and provide documentation indicating conformance to vibration isolation design intent
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.
  - 1. The installing contractor shall submit a report upon request to the building architect and/or engineer, including the manufacturer's representative's final report, indicating that all seismic restraint material has been properly installed, or steps that are to be taken by the contractor to properly complete the seismic restraint work as per the specifications.

## 3.8 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

- B. Adjust leveling devices as required to distribute loading uniformly on isolators. Shim units as required where leveling devices cannot be used to distribute loading properly.
  - 1. Adjust active height of spring isolators.
- C. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

| EQUIPMENT ISOLATION SCHEDULE                    |                |                |                |              |                |      |              |                |      |
|-------------------------------------------------|----------------|----------------|----------------|--------------|----------------|------|--------------|----------------|------|
|                                                 |                | A'             |                |              | B'             |      |              | C'             |      |
| LOCATION                                        | CRITIC<br>AL   |                |                | UPPER STORY  |                |      | GRADE        |                |      |
|                                                 | (35'-50' SPAN) |                | (20'-35' SPAN) |              |                |      |              |                |      |
|                                                 | ISOLA<br>TOR   | MINIMU<br>M    | BASE           | ISOLA<br>TOR | MINIMU<br>M    | BASE | ISOLA<br>TOR | MINIMU<br>M    | BASE |
|                                                 | TYPE           | DEFLE<br>CTION | TYPE           | TYPE         | DEFLE<br>CTION | TYPE | TYPE         | DEFLE<br>CTION | TYPE |
| EQUIPMENT (1)                                   |                | (IN)           |                |              | (IN)           |      |              | (IN)           |      |
| AIR HANDLING UNITS                              |                |                |                |              |                |      |              |                |      |
| FLOOR MOUNTED                                   |                |                |                |              |                |      |              |                |      |
| UP TO 15 HP                                     | S3             | 1.5            |                | S3           | 0.75           |      | S3           | 0.75           |      |
| 20 HP & OVER                                    | S3             | 2.5            | SB1            | S3           | 1.5            |      | S3           | 0.75           |      |
| SUSPENDED                                       |                |                |                |              |                |      |              |                |      |
| UP TO 15 HP                                     | Н3             | 1.75           |                | НЗ           | 1              |      | НЗ           | 1              |      |
| 20 HP & OVER                                    | Н3             | 2.5            | SB1            | НЗ           | 1.75           |      | НЗ           | 1              |      |
| HIGH PRESSURE FAN<br>SECTIONS                   |                |                |                |              |                |      |              |                |      |
| UP TO 30 HP                                     | S1             | 2.5            | IB1            | S3           | 1.5            | IB1  | S3           | 0.75           | IB1  |
| 40 HP & OVER                                    | S1             | 3.5            | IB1            | S3           | 2.5            | IB1  | S3           | 1.5            | IB1  |
| CENTRIFUGAL FANS                                |                |                |                |              |                |      |              |                |      |
| CL. I & II UP TO <i>54-112"</i> W.D.            |                |                |                |              |                |      |              |                |      |
| UPT015HP                                        | S3             | 1.5            | SB1            | S3           | 0.75           | SB1  | S3           | 0.75           | SB1  |
| 20-50 HP                                        | S1             | 2.5            | IB1            | S3           | 1.5            | IB1  | S3           | 0.75           | SB1  |
| 60 HP & OVER                                    | S1             | 3.5            | IB1            | S1           | 2.5            | IB1  | S3           | 1.5            | SB1  |
| CL. I & II 60" W.D. & OVERI<br>ALL CL. III FANS |                |                |                |              |                |      |              |                |      |
| UPT015HP                                        | S1             | 2.5            | IB1            | S3           | 1.5            | IB1  | S3           | 0.75           | IB1  |
| 20-50 H P                                       | S1             | 2.5            | IB1            | S1           | 2.5            | IB1  | S3           | 1.5            | IB1  |
| 60 HP & OVER                                    | S1             | 3.5            | IB1            | S1           | 2.5            | IB1  | S3           | 1.5            | IB1  |
|                                                 |                |                |                |              |                |      |              |                |      |
|                                                 |                |                |                |              |                |      |              |                |      |

|                                         |    | 1    |     | 1  | 1    |     | 1          |      | 1   |
|-----------------------------------------|----|------|-----|----|------|-----|------------|------|-----|
| AXIAL FLOWFANS                          |    |      |     |    |      |     |            |      |     |
| FLOOR MTD.                              |    |      |     |    |      |     |            |      |     |
| UP TO 15 HP                             | S3 | 1.5  | SB1 | S3 | 0.75 |     | S3         | 0.75 |     |
| 20 HP & OVER                            | S1 | 3.5  | IB1 | S3 | 1.5  |     | S3         | 0.75 |     |
| SUSPENDED                               |    |      |     |    |      |     |            |      |     |
| UP TO 15 HP                             | НЗ | 1.75 | SB1 | Н3 | 1    |     | Н3         | 1    |     |
| 20 HP & OVER                            | НЗ | 2.5  | SB1 | H3 | 1.75 | SB1 | Н3         | 1.5  |     |
| VENT (UTILITY SETS)                     |    |      |     |    |      |     |            |      |     |
| FLOOR MTD                               | S3 | 1.5  | SB1 | S3 | 0.75 |     | S3         | 0.75 |     |
| SUSPENDED                               | Н3 | 1.75 | SB1 | Н3 | 1    |     | Н3         | 0.75 |     |
| CABINET FANS, FANS<br>SECTIONS          |    |      |     |    |      |     |            |      |     |
| FLOOR MTD.                              |    |      |     |    |      |     |            |      |     |
| UP TO 15 HP                             | S3 | 1.5  |     | S3 | 0.75 |     | S3         | 0.75 |     |
| 20 HP & OVER                            | S1 | 2.5  | IB1 | S3 | 1.5  |     | S3         | 0.75 |     |
| SUSPENDED                               |    |      |     |    |      |     |            |      |     |
| UP TO 15 HP                             | Н3 | 1.75 |     | НЗ | 1    |     | НЗ         | 0.75 |     |
| 20 HP & OVER                            | Н3 | 2.5  | SB1 | НЗ | 1.75 |     | НЗ         | 1.75 |     |
| PUMPS                                   |    |      |     |    |      |     |            |      |     |
| FLOOR MTD.                              |    |      |     |    |      |     |            |      |     |
| UP TO 15 HP                             | S3 | 0.75 | IB1 | S3 | 0.75 | IB1 | SRVD       | 0.4  | IB1 |
| 7-112 HP & OVER                         | S3 | 1.5  | IB1 | S3 | 1.5  | IB1 | S3         | 0.75 | IB1 |
| SUSPENDED INLINE                        | НЗ | 1.75 |     | НЗ | 1.75 |     | Н3         | 1    |     |
| REFRIGERATION UNITS                     |    |      |     |    |      |     |            |      |     |
| RECIPROCATING<br>COMPRESSORS            | S1 | 2.5  | IB1 | S3 | 1.5  | IB1 | S3         | 0.75 | IB1 |
| RECIPROCATING COND.<br>UNITS & CHILLERS | S1 | 2.5  | IB1 | S3 | 1.5  |     | S3         | 0.75 |     |
| HERMETIC<br>CENTRIFUGALS                | S3 | 2.5  |     | S3 | 1.5  |     | P1         | 0.15 |     |
| OPEN CENTRIFUGALS                       | S1 | 2.5  | IB1 | S3 | 1.5  | IB1 | P1         | 0.15 |     |
| ABSORPTION MACHINES                     | S3 | 1.5  |     | S3 | 0.75 |     | P1         | 0.15 |     |
| AIR COMPRESSORS                         |    |      |     |    |      |     |            |      |     |
| TANK TYPE (HORIZONTAL<br>TANK)          | S1 | 2.5  | IB1 | S3 | 1.5  |     | <b>S</b> 3 | 0.75 |     |
| TANK TYPE (VERTICAL TANK)               | S1 | 2.5  | IB1 | S3 | 1.5  | IB1 | S3         | 0.75 |     |
| COOLING TOWERS & CLOSED CIRCUIT COOLERS |    |      |     |    |      |     |            |      |     |
| UP TO 500 TONS                          | S3 | 2.5  |     | S3 | 0.75 |     | P1         | 0.15 |     |
| OVER 500 TONS                           | S3 | 4.5  |     | S3 | 2.5  |     | P1         | 0.15 |     |

| AIR COOLED CONDENSERS             |    |     |     |    |      |     |    |      |  |
|-----------------------------------|----|-----|-----|----|------|-----|----|------|--|
| UP TO 50 TONS                     | S3 | 1.5 |     | S3 | 0.75 |     | P1 | 0.15 |  |
| OVER 50 TONS                      | S3 | 2.5 |     | S3 | 1.5  |     | P1 | 0.15 |  |
| ROOFTOP AIR<br>CONDITIONING UNITS |    |     |     |    |      |     |    |      |  |
| REQUIRING WEATHER<br>SEAL         |    |     |     |    |      |     |    |      |  |
| UP TO 5000 CFM (12 TON)           | S1 | 1.5 | RC1 | S1 | 0.75 | RC1 |    |      |  |
| OVER 5000 CFM (12 TON)            | S3 | 2.5 | RC1 | S3 | 1.5  | RC1 |    |      |  |
| OTHER TYPES                       |    |     |     |    |      |     |    |      |  |
| UP TO 25 TONS                     | S3 | 1.5 |     | S3 | 1.5  |     |    |      |  |
| OVER 25 TONS                      | S3 | 2.5 |     | S3 | 1.5  |     |    |      |  |
| BOILER (PACKAGE TYPE)             |    |     |     |    |      |     |    |      |  |
| ALL SIZES                         | S3 | 1.5 |     | S3 | 0.75 |     | P1 | 0.15 |  |
| ENGINE DRIVEN<br>GENERATORS       |    |     |     |    |      |     |    |      |  |
| UP TO 60 HP                       | S1 | 2.5 | IB1 | S3 | 1.5  | IB1 | S3 | 0.75 |  |
| 75 HP & OVER                      | S1 | 3.5 | IB1 | S3 | 2.5  | IB1 | S3 | 0.75 |  |

# NOTES:

# **END OF SECTION 23 0548**

<sup>1)</sup> Thrust restraints required on all high-pressure fan section, suspended axial-flow fans and on floor-mounted axial fans operating at 3.0" S.P. or greater.

# SECTION 23 0550 OPERATION AND MAINTENANCE OF HVAC SYSTEMS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

- A. All pertinent sections of Division 21, 22, & 23 Mechanical General Requirements, are part of the work of this Section. Division 1 is part of this and all other sections of these specifications.
  - 1. Testing and Balancing is specified in section 230594.
  - 2. Training and Instructions to Owner's Representative is specified in section 230100.

# 1.2 SCOPE OF WORK

- A. Submission of Operating and Maintenance Manuals complete with Balancing reports. (Coordinate with Division 1).
- B. Coordination of work required for system commissioning.
- C. Provide an electronic copy of the O and M manual fully indexed and searchable in PDF format.

#### 1.3 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Submit product data in accordance with Division 1 and Section 230100. Submit the following:
  - 1. Sample of O and M manual outline.
  - 2. An electronic copy of the O and M manual fully indexed and searchable in PDF format. The electronic copy shall also have a linked index.

# **PART 2 - PRODUCTS**

# 2.1 O & M MANUALS

- A. The operating and maintenance manuals shall be as follows:
  - 1. The front cover shall be as follows: (coordinate with **Division 01**)

OPERATING AND MAINTENANCE

MANUAL

FOR THE

(INSERT PROJECT NAME)

(INSERT PROJECT COMPLETION YEAR)

VOLUME No. ()

VAN BOERUM & FRANK ASSOCIATES, INC.
MECHANICAL ENGINEER

(INSERT ARCHITECT)

# **PART 3 - EXECUTION**

# 3.1 OPERATING AND MAINTENANCE MANUALS:

- A. Work under this section shall be performed in concert with the contractor performing the system testing and balancing. A copy of the manuals shall be furnished to the Architect for distribution to the owner.
- B. The "Start-Up and Operation" section is one of the most important in the manual. Information in this section shall be complete and accurately written and shall be verified with the actual equipment on the job, such as switches, starters, relays, automatic controls, etc. A step-by-step start-up procedure shall be described.
- C. The manuals shall include air and water-balancing reports, system commissioning procedures, start-up tests and reports, equipment and system performance test reports, warranties, and certificates of training given to the owner's representatives.

An index sheet shall be provided in the front of the binder. The manual shall be include the following:

SYSTEM DESCRIPTIONS

START-UP PROCEDURE AND OPERATION OF SYSTEM

MAINTENANCE AND LUBRICATION TABLE

**OPERATION AND MAINTENANCE BULLETINS** 

AUTOMATIC TEMPERATURE CONTROL DESCRIPTION OF OPERATION, INTERLOCK AND CONTROL DIAGRAMS, AND CONTROL PANELS.

AIR AND WATER SYSTEM BALANCING REPORTS

**EQUIPMENT WARRANTIES AND TRAINING CERTIFICATES** 

SYSTEM COMMISSIONING REPORTS

**EQUIPMENT START-UP CERTIFICATES** 

**END OF SECTION 23 0550** 

#### **SECTION 23 0553**

#### IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Equipment labels.
  - 2. Danger, Warning and Caution signs and labels.
  - 3. Pipe labels.
  - Duct labels.
  - Stencils.
  - 6. Valve tags.
  - 7. Danger tags.
  - 8. Warning tags.
  - 9. Caution tags.
  - 10. Ceiling grid.

# 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

# 1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

## **PART 2 - PRODUCTS**

# 2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
  - 1. Material and Minimum Thickness, predrilled or stamped holes for attachment hardware:
    - a. Brass, 0.032-inch.
  - 2. Minimum Label Size: Length and width vary for required label content, but not less than **2-1/2** by **3/4 inch**.
  - Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
  - 4. Fasteners: Stainless-steel:

# a. Rivets or self-tapping screws

- 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
  - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, and having predrilled holes for attachment hardware, **1/16 inch** thick.
  - 2. Letter Color:
    - a. Black.
  - 3. Background Color:
    - a. White.
  - 4. Maximum Temperature: Able to withstand temperatures up to **160 deg F**.
  - 5. Minimum Label Size: Length and width vary for required label content, but not less than **2-1/2 by 3/4 inch**.
  - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
  - 7. Fasteners: Stainless-steel;
    - a. Rivets or self-tapping screws
  - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

# 2.2 DANGER, WARNING AND CAUTION SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, having predrilled holes for attachment hardware; **1/16 inch** thick.
- B. Danger signs, colors:
  - 1. Letter Color:
    - a. White.
  - 2. Background Color:
    - a. Red.
- C. Warning signs, colors:
  - 1. Letter Color:
    - a. Black.
  - 2. Background Color:
    - a. Orange.
- D. Caution signs, colors:
  - 1. Letter Color:
    - a. Black.

# 2. Background Color:

#### a. Yellow.

- E. Maximum Temperature: Able to withstand temperatures up to **160 deg F**.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- H. Fasteners: Stainless-steel;
  - 1. Rivets or self-tapping screws
  - 2. Rivets.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information, plus emergency notification instructions.

# 2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to **partially cover** circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
  - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
  - 2. Lettering Size: At least 1-1/2 incheshigh.

## 2.4 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, having predrilled holes for attachment hardware; **1/16 inch** thick.
- B. Letter Color:
  - 1. White.
- C. Background Color:
  - 1. Black.
- D. Maximum Temperature: Able to withstand temperatures up to **160 deg F**.
- E. Minimum Label Size: Length and width vary for required label content, but not less than **2-1/2** by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel;
  - Rivets or self-tapping screws
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

- I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
  - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
  - 2. Lettering Size: At least 1-1/2 inches high.

#### 2.5 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of **1-1/4 inches** for ducts; and minimum letter height of **3/4 inch** for access panel and door labels, equipment labels, and similar operational instructions.
  - Stencil Material:
    - a. Aluminum.
  - 2. Stencil Paint:
    - a. Exterior, gloss, **alkyd enamel** black unless otherwise indicated.
    - b. Paint may be in pressurized spray-can form.
  - 3. Identification Paint:
    - Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated.

## 2.6 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
  - 1. Tag Material, predrilled or stamped holes for attachment hardware, minimum thickness:
    - a. Brass, 0.032-inch
  - 2. Fasteners: Brass;
    - a. Wire-link or beaded chain; or S-hook
- B. Valve Schedules:
  - 1. For each piping system, on **8-1/2-by-11-inch** bond paper, tabulate;
    - a. Valve number.
    - b. Piping system.
    - c. System abbreviation (as shown on valve tag).
    - d. Location of valve (room or space).
    - e. Normal-operating position (open, closed, or modulating).
    - f. Variations for identification.
    - g. Mark valves for emergency shutoff and similar special uses.
  - 2. Valve-tag schedule:
    - a. Shall be included in operation and maintenance data.

## 2.7 DANGER TAGS

- A. Danger Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
  - 1. Size:
    - a. 3 by 5-1/4 inches minimum
  - 2. Fasteners:
    - a. Brass grommet and wire.

- Nomenclature: Large-size primary caption such as "DANGER," and "DO NOT OPERATE."
- 4. Color: Red background with white lettering.

# 2.8 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
  - 1. Size:
    - a. 3 by 5-1/4 inches minimum
  - 2. Fasteners:
    - a. Brass grommet and wire.
  - Nomenclature: Large-size primary caption such as "WARNING" and "DO NOT OPERATE."
  - 4. Color: Yellow background with black lettering.

#### 2.9 CAUTION TAGS

- A. Caution Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
  - 1. Size:
    - a. 3 by 5-1/4 inches minimum
  - 2. Fasteners:
    - a. Brass grommet and wire.
  - Nomenclature: Large-size primary caption such as "CAUTION," and "DO NOT OPERATE."
  - 4. Color: Orange background with black lettering.

## 2.10 CEILING GRID

- A. Provide red lettering on the ceiling tile grid of the locations of all fire dampers, smoke dampers and fire/smoke dampers. Size of lettering and verbiage is to conform to IBC and NFPA standards.
- B. Provide valve identification for all HVAC valves located above the ceiling on the ceiling grid below the valve.
- C. Provide VAV box identification for all VAV boxes located above the ceiling on the ceiling grid below the VAV box.

# **PART 3 - EXECUTION**

## 3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

# 3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

#### 3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in **Division 09**.
- B. Stenciled Pipe Label Option:

- Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option.
- 2. Install stenciled pipe labels with painted, color-coded bands or rectangles on each piping system.
  - a. Identification Paint: Use for contrasting background.
  - b. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
  - 1. Near each valve and control device.
  - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
  - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
  - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
  - 5. Near major equipment items and other points of origination and termination.
  - 6. Spaced at maximum intervals of **50 feet** along each run. Reduce intervals to **25 feet** in areas of congested piping and equipment.
  - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Pipe Label Color Schedule: (See Drawing Schedules)

# 3.4 DUCT LABEL INSTALLATION

- A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:
  - 1. **Blue**: For cold-air supply ducts.
  - 2. Yellow: For hot-air supply ducts.
  - 3. **Green**: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
  - 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of **50 feet** in each space where ducts are exposed or concealed by removable ceiling system.

# 3.5 VALVE-TAG INSTALLATION (See Drawing Schedules.)

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

## 3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

# **END OF SECTION 23 0553**

# **SECTION 23 0593**

# TESTING, ADJUSTING, AND BALANCING FOR HVAC

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Balancing Air Systems:
    - a. Constant-volume air systems.
    - b. Variable-air-volume systems.
  - 2. Balancing Hydronic Piping Systems:
    - a. Constant-flow hydronic systems.
    - b. Variable-flow hydronic systems.
    - c. Primary-secondary hydronic systems.
  - 3. Various HVAC Equipment.
    - a. Heat Exchangers.
    - b. Motors.
    - c. Chillers.
    - d. Cooling Towers.
    - e. Condensing Units.
    - f. Boilers.
    - d. Heat Transfer Coils.
  - 4. Existing Systems.
  - 5. Domestic Heater Systems.

# 1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

# 1.4 INFORMATIONAL SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Qualification Data: Within the following number of days of the Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article;
  - 1. 30 days.
- C. Certified TAB reports.
- D. Instrument calibration reports, to include the following:
  - 1. Instrument type and make.
  - 2. Serial number.

- 3. Application.
- Dates of use.
- 5. Dates of calibration.

#### 1.5 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by **AABC** or **NEBB**.
  - TAB Field Supervisor: Employee of the TAB contractor and certified by AABC or NEBB and shall be the same as the TAB Contractor.
  - 2. TAB Technician: Employee of the TAB contractor and who is certified by **AABC** or **NEBB** as a TAB technician and shall be the same as the TAB Contractor.
- B. Certify TAB field data reports and perform the following:
  - Review field data reports to validate accuracy of data and to prepare certified TAB reports.
  - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard TAB contractor's forms approved by:
  - 1. Architect.
- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

# 1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

# 1.7 COORDINATION

- A. Notice: Provide **seven** days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on the following distribution systems have been satisfactorily completed:
  - 1. Air.
  - 2. Water.
  - 3. Air and water.

# PART 2 - PRODUCTS (Not Applicable)

# **PART 3 - EXECUTION**

# 3.1 TAB SPECIALISTS

- A. Subject to compliance with requirements, **engage one of the following**:
  - Bonneville Test and Balance
  - BTC Service.
  - Certified Test & Balance.
  - 4. Diamond Test & Balance.
  - RS Analysis.
  - 6. Test & Balance Inc.
  - 7. Payson Sheetmetal.
  - 8. QT&B Inc.

# 3.2 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

# E. Examine:

1. Ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in:

# a. Section 233113 "Metal Ducts"

- 2. Verify ceiling plenums and underfloor air plenums used for supply, return or relief air are properly separated from adjacent areas.
- 3. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
  - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
  - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

# 3.3 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:

- 1. Permanent electrical-power wiring is complete.
- 2. Hydronic systems are filled, clean, and free of air.
- 3. Automatic temperature-control systems are operational.
- Equipment and duct access doors are securely closed.
- 5. Balance, smoke, and fire dampers are open.
- 6. Isolating and balancing valves are open and control valves are operational.
- 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
- 8. Windows and doors can be closed so indicated conditions for system operations can be met.

# 3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in this section and:
  - 1. AABC's "National Standards for Total System Balance"
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
  - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
  - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in **inch-pound (IP)**.

# 3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

# 3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
  - Measure total airflow.
    - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
  - 2. Measure fan static pressures as follows to determine actual static pressure:
    - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
    - b. Measure static pressure directly at the fan outlet or through the flexible connection.
    - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
    - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
  - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
    - a. Report the cleanliness status of filters and the time static pressures are measured.
  - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
  - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
  - 6. Obtain approval from one of the following entities for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for airhandling units for adjustment of fans, belts, and pulley sizes to achieve indicated airhandling-unit performance:

# a. Architect.

- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
  - 1. Measure airflow of submain and branch ducts.
    - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
  - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
  - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
  - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
  - Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
  - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

# 3.7 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
  - 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
  - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
  - Measure total system airflow. Adjust to within indicated airflow.
  - 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
  - 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
    - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
  - 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
  - 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
  - 8. Record final fan-performance data.
- C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
  - 1. Balance variable-air-volume systems the same as described for constant-volume air systems.
  - 2. Set terminal units and supply fan at full-airflow condition.
  - Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.

- 4. Readjust fan airflow for final maximum readings.
- 5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
- 6. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
  - a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
- 7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
- D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
  - 1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
  - 2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
  - 3. Set terminal units at full-airflow condition.
  - 4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
  - 5. Adjust terminal units for minimum airflow.
  - 6. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

# 3.8 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
  - 1. Open all manual valves for maximum flow.
  - 2. Check liquid level in expansion tank.
  - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
  - Check flow-control valves for specified sequence of operation, and set at indicated flow.
  - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
  - 6. Set system controls so automatic valves are wide open to heat exchangers.
  - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
  - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

# 3.9 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
  - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
    - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from the following entity and comply with requirements in Section 232123 "Hydronic Pumps.":

# 1) Engineer of Record.

- 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
  - a. Monitor motor performance during procedures and do not operate motors in overload conditions.
- 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
- 4. Report flow rates that are not within plus or minus 10 percent of design.
- B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- D. Set calibrated balancing valves, if installed, at calculated presettings.
- E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
  - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
  - 1. Determine the balancing station with the highest percentage over indicated flow.
  - Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
  - 3. Record settings and mark balancing devices.
- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- J. Check settings and operation of each safety valve. Record settings.

# 3.10 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

# 3.11 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first and then balance the secondary circuits.

# 3.12 PROCEDURES FOR HEAT EXCHANGERS

- A. Measure water flow through all circuits.
- B. Adjust water flow to within specified tolerances.
- C. Measure inlet and outlet water temperatures.
- D. Measure inlet steam pressure.
- E. Check settings and operation of safety and relief valves. Record settings.

## 3.13 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
  - 1. Manufacturer's name, model number, and serial number.
  - 2. Motor horsepower rating.
  - Motor rpm.
  - 4. Efficiency rating.
  - 5. Nameplate and measured voltage, each phase.
  - 6. Nameplate and measured amperage, each phase.
  - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

# 3.14 PROCEDURES FOR CHILLERS

- A. Balance water flow through each evaporator **and condenser** to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:
  - 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
  - 2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
  - 3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
  - 4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
  - 5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
  - 6. Capacity: Calculate in tons of cooling.
  - 7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

# 3.15 PROCEDURES FOR COOLING TOWERS

- A. Shut off makeup water for the duration of the test, and verify that makeup and blowdown systems are fully operational after tests and before leaving the equipment. Perform the following tests and record the results:
  - 1. Measure condenser-water flow to each cell of the cooling tower.
  - 2. Measure entering- and leaving-water temperatures.

- 3. Measure wet- and dry-bulb temperatures of entering air.
- 4. Measure wet- and dry-bulb temperatures of leaving air.
- 5. Measure condenser-water flow rate recirculating through the cooling tower.
- 6. Measure cooling-tower spray pump discharge pressure.
- 7. Adjust water level and feed rate of makeup water system.
- 8. Measure flow through bypass.

## 3.16 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

## 3.17 PROCEDURES FOR BOILERS

- A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.
- B. Steam Boilers: Measure and record entering-water temperature and flow and leaving-steam pressure, temperature, and flow.

### 3.18 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each water coil:
  - 1. Entering- and leaving-water temperature.
  - 2. Water flow rate.
  - 3. Water pressure drop.
  - 4. Dry-bulb temperature of entering and leaving air.
  - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
  - 6. Airflow.
  - 7. Air pressure drop.
- B. Measure, adjust, and record the following data for each electric heating coil:
  - Nameplate data.
  - Airflow.
  - 3. Entering- and leaving-air temperature at full load.
  - 4. Voltage and amperage input of each phase at full load and at each incremental stage.
  - 5. Calculated kilowatt at full load.
  - 6. Fuse or circuit-breaker rating for overload protection.
- C. Measure, adjust, and record the following data for each steam coil:
  - 1. Dry-bulb temperature of entering and leaving air.
  - 2. Airflow.
  - 3. Air pressure drop.
  - Inlet steam pressure.
- D. Measure, adjust, and record the following data for each refrigerant coil:
  - 1. Dry-bulb temperature of entering and leaving air.
  - 2. Wet-bulb temperature of entering and leaving air.
  - Airflow.
  - Air pressure drop.

5. Refrigerant suction pressure and temperature.

# 3.19 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
  - 1. Measure and record the operating speed, airflow, and static pressure of each fan.
  - Measure motor voltage and amperage. Compare the values to motor nameplate information.
  - Check the refrigerant charge.
  - 4. Check the condition of filters.
  - Check the condition of coils.
  - 6. Check the operation of the drain pan and condensate-drain trap.
  - 7. Check bearings and other lubricated parts for proper lubrication.
  - 8. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
  - 1. New filters are installed.
  - 2. Coils are clean and fins combed.
  - Drain pans are clean.
  - Fans are clean.
  - 5. Bearings and other parts are properly lubricated.
  - 6. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
  - Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
  - 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
  - 3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
  - 4. Balance each air outlet.

# 3.20 DOMESTIC HEATER SYSTEMS

A. Test domestic heater system per Engineer's instructions.

# 3.21 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
  - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
  - Air Outlets and Inlets: Plus or minus 10 percent .
  - 3. Heating-Water Flow Rate: Plus or minus 10 percent .
  - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

# 3.22 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare progress reports on the following interval to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors;
  - 1. Weekly.

#### 3.23 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
  - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
  - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
  - 1. Pump curves.
  - 2. Fan curves.
  - Manufacturers' test data.
  - 4. Field test reports prepared by system and equipment installers.
  - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
  - 1. Title page.
  - 2. Name and address of the TAB contractor.
  - 3. Project name.
  - Project location.
  - Architect's name and address.
  - 6. Engineer's name and address.
  - 7. Contractor's name and address.
  - Report date.
  - 9. Signature of TAB supervisor who certifies the report.
  - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
  - 11. Summary of contents including the following:
    - a. Indicated versus final performance.
    - b. Notable characteristics of systems.
    - c. Description of system operation sequence if it varies from the Contract Documents.
  - 12. Nomenclature sheets for each item of equipment.
  - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.

- Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
  - a. Settings for outdoor-, return-, and exhaust-air dampers.
  - b. Conditions of filters.
  - c. Cooling coil, wet- and dry-bulb conditions.
  - d. Face and bypass damper settings at coils.
  - e. Fan drive settings including settings and percentage of maximum pitch diameter.
  - f. Inlet vane settings for variable-air-volume systems.
  - g. Settings for supply-air, static-pressure controller.
  - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
  - 1. Quantities of outdoor, supply, return, and exhaust airflows.
  - Water and steam flow rates.
  - Duct, outlet, and inlet sizes.
  - 4. Pipe and valve sizes and locations.
  - Terminal units.
  - 6. Balancing stations.
  - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
  - 1. Unit Data:
    - a. Unit identification.
    - b. Location.
    - c. Make and type.
    - Model number and unit size.
    - e. Manufacturer's serial number.
    - f. Unit arrangement and class.
    - g. Discharge arrangement.
    - h. Sheave make, size in inches, and bore.
    - i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
    - Number, make, and size of belts.
    - k. Number, type, and size of filters.
  - 2. Motor Data:
    - a. Motor make, and frame type and size.
    - b. Horsepower and rpm.
    - c. Volts, phase, and hertz.
    - d. Full-load amperage and service factor.
    - e. Sheave make, size in inches, and bore.
    - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
  - Test Data (Indicated and Actual Values):

- a. Total air flow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Filter static-pressure differential in inches wg.
- f. Preheat-coil static-pressure differential in inches wg.
- g. Cooling-coil static-pressure differential in inches wg.
- h. Heating-coil static-pressure differential in inches wg.
- i. Outdoor airflow in cfm.
- j. Return airflow in cfm.
- k. Outdoor-air damper position.
- I. Return-air damper position.
- m. Vortex damper position.

# F. Apparatus-Coil Test Reports:

- Coil Data:
  - a. System identification.
  - b. Location.
  - c. Coil type.
  - d. Number of rows.
  - e. Fin spacing in fins per inch o.c.
  - f. Make and model number.
  - g. Face area in sq. ft..
  - h. Tube size in NPS.
  - i. Tube and fin materials.
  - j. Circuiting arrangement.
- 2. Test Data (Indicated and Actual Values):
  - a. Air flow rate in cfm.
  - b. Average face velocity in fpm.
  - c. Air pressure drop in inches wg.
  - d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
  - e. Return-air, wet- and dry-bulb temperatures in deg F.
  - f. Entering-air, wet- and dry-bulb temperatures in deg F.
  - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
  - h. Water flow rate in gpm.
  - i. Water pressure differential in feet of head or psig.
  - j. Entering-water temperature in deg F.
  - k. Leaving-water temperature in deg F.
  - I. Refrigerant expansion valve and refrigerant types.
  - m. Refrigerant suction pressure in psig.
  - n. Refrigerant suction temperature in deg F.

- o. Inlet steam pressure in psig.
- G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
  - 1. Unit Data:
    - a. System identification.
    - b. Location.
    - c. Make and type.
    - d. Model number and unit size.
    - e. Manufacturer's serial number.
    - f. Fuel type in input data.
    - g. Output capacity in Btu/h.
    - h. Ignition type.
    - i. Burner-control types.
    - j. Motor horsepower and rpm.
    - k. Motor volts, phase, and hertz.
    - I. Motor full-load amperage and service factor.
    - m. Sheave make, size in inches, and bore.
    - n. Center-to-center dimensions of sheave, and amount of adjustments in inches.
  - 2. Test Data (Indicated and Actual Values):
    - a. Total air flow rate in cfm.
    - b. Entering-air temperature in deg F.
    - c. Leaving-air temperature in deg F.
    - d. Air temperature differential in deg F.
    - e. Entering-air static pressure in inches wg.
    - f. Leaving-air static pressure in inches wg.
    - g. Air static-pressure differential in inches wg.
    - h. Low-fire fuel input in Btu/h.
    - i. High-fire fuel input in Btu/h.
    - j. Manifold pressure in psig.
    - k. High-temperature-limit setting in deg F.
    - I. Operating set point in Btu/h.
    - m. Motor voltage at each connection.
    - n. Motor amperage for each phase.
    - o. Heating value of fuel in Btu/h.
- H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
  - 1. Unit Data:
    - a. System identification.
    - b. Location.
    - c. Coil identification.
    - d. Capacity in Btu/h.

- e. Number of stages.
- f. Connected volts, phase, and hertz.
- g. Rated amperage.
- h. Air flow rate in cfm.
- i. Face area in sq. ft..
- j. Minimum face velocity in fpm.
- 2. Test Data (Indicated and Actual Values):
  - a. Heat output in Btu/h.
  - b. Air flow rate in cfm.
  - c. Air velocity in fpm.
  - d. Entering-air temperature in deg F.
  - e. Leaving-air temperature in deg F.
  - f. Voltage at each connection.
  - g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
  - 1. Fan Data:
    - a. System identification.
    - b. Location.
    - c. Make and type.
    - d. Model number and size.
    - e. Manufacturer's serial number.
    - f. Arrangement and class.
    - g. Sheave make, size in inches, and bore.
    - h. Center-to-center dimensions of sheave, and amount of adjustments in inches.
  - Motor Data:
    - a. Motor make, and frame type and size.
    - b. Horsepower and rpm.
    - c. Volts, phase, and hertz.
    - d. Full-load amperage and service factor.
    - e. Sheave make, size in inches, and bore.
    - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
    - g. Number, make, and size of belts.
  - 3. Test Data (Indicated and Actual Values):
    - a. Total airflow rate in cfm.
    - b. Total system static pressure in inches wg.
    - c. Fan rpm.
    - d. Discharge static pressure in inches wg.
    - e. Suction static pressure in inches wg.
- J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

# 1. Report Data:

- a. System and air-handling-unit number.
- b. Location and zone.
- c. Traverse air temperature in deg F.
- d. Duct static pressure in inches wg.
- e. Duct size in inches.
- f. Duct area in sq. ft..
- g. Indicated air flow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual air flow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.

# K. Air-Terminal-Device Reports:

- 1. Unit Data:
  - a. System and air-handling unit identification.
  - b. Location and zone.
  - c. Apparatus used for test.
  - d. Area served.
  - e. Make.
  - f. Number from system diagram.
  - g. Type and model number.
  - h. Size.
  - i. Effective area in sq. ft..
- 2. Test Data (Indicated and Actual Values):
  - a. Air flow rate in cfm.
  - b. Air velocity in fpm.
  - c. Preliminary air flow rate as needed in cfm.
  - d. Preliminary velocity as needed in fpm.
  - e. Final air flow rate in cfm.
  - f. Final velocity in fpm.
  - g. Space temperature in deg F.
- L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
  - 1. Unit Data:
    - a. System and air-handling-unit identification.
    - b. Location and zone.
    - c. Room or riser served.
    - d. Coil make and size.
    - e. Flowmeter type.
  - 2. Test Data (Indicated and Actual Values):
    - a. Air flow rate in cfm.

- b. Entering-water temperature in deg F.
- c. Leaving-water temperature in deg F.
- d. Water pressure drop in feet of head or psig.
- e. Entering-air temperature in deg F.
- f. Leaving-air temperature in deg F.
- M. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
  - 1. Unit Data:
    - a. Unit identification.
    - b. Location.
    - c. Service.
    - d. Make and size.
    - e. Model number and serial number.
    - f. Water flow rate in gpm.
    - g. Water pressure differential in feet of head or psig.
    - h. Required net positive suction head in feet of head or psig.
    - i. Pump rpm.
    - j. Impeller diameter in inches.
    - k. Motor make and frame size.
    - I. Motor horsepower and rpm.
    - m. Voltage at each connection.
    - n. Amperage for each phase.
    - o. Full-load amperage and service factor.
    - p. Seal type.
  - 2. Test Data (Indicated and Actual Values):
    - a. Static head in feet of head or psig.
    - b. Pump shutoff pressure in feet of head or psig.
    - c. Actual impeller size in inches.
    - d. Full-open flow rate in gpm.
    - e. Full-open pressure in feet of head or psig.
    - f. Final discharge pressure in feet of head or psig.
    - g. Final suction pressure in feet of head or psig.
    - h. Final total pressure in feet of head or psig.
    - i. Final water flow rate in gpm.
    - j. Voltage at each connection.
    - k. Amperage for each phase.
- N. Instrument Calibration Reports:
  - Report Data:
    - a. Instrument type and make.
    - b. Serial number.

- c. Application.
- d. Dates of use.
- e. Dates of calibration.

#### 3.24 INSPECTIONS

- A. Initial Inspection:
  - After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
  - 2. Check the following for each system:
    - a. Measure airflow of at least **10** percent of air outlets.
    - b. Measure water flow of at least 5 percent of terminals.
    - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
    - d. Verify that balancing devices are marked with final balance position.
    - e. Note deviations from the Contract Documents in the final report.
- B. Final Inspection:
  - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by:
    - a. Architect.
  - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of:
    - a. Architect.
  - 3. The following entity shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day:
    - a. Architect.
  - If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
  - 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
  - Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
  - If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

# 3.25 ADDITIONAL TESTS

- A. Within **90 days** of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

**END OF SECTION 23 0593** 

# SECTION 23 0713 DUCT INSULATION

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section includes insulating the following duct services:
  - 1. Indoor, concealed supply and outdoor air.
  - 2. Indoor, exposed supply and outdoor air.
  - 3. Indoor, concealed return located in unconditioned space.
  - 4. Indoor, exposed return located in unconditioned space.
  - 5. Indoor, concealed combustion air.
  - 6. Indoor, exposed combustion air.
  - 7. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
  - 8. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
  - 9. Outdoor, concealed supply and return.
  - 10. Outdoor, exposed supply and return.

# B. Related Sections:

- 1. Section 230716 "HVAC Equipment Insulation."
- 2. Section 230719 "HVAC Piping Insulation."
- Section 233113 "Metal Ducts" for duct liners.

## 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
  - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
  - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
  - 3. Detail application of field-applied jackets.
  - Detail application at linkages of control devices.

# 1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

# 1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
  - Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
  - 2. Insulation Installed Outdoors: Flame-spread index of **75** or less, and smoke-developed index of 150 or less.

# 1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

# 1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

#### 1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

## **PART 2 - PRODUCTS**

# 2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Aeroflex USA, Inc.; Aerocel.
    - b. <u>Armacell LLC; AP Armaflex</u>.

- c. K-Flex USA; Insul-Sheet, K-Flex Gray Duct Liner, and K-FLEX LS.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, **Type III with factory-applied FSK jacket**. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. <u>CertainTeed Corp.; SoftTouch Duct Wrap</u>.
    - b. <u>Johns Manvil</u>le; Microlite.
    - c. Knauf Insulation; Friendly Feel Duct Wrap.
    - d. Manson Insulation Inc.; Alley Wrap.
    - e. Owens Corning; SOFTR All-Service Duct Wrap.
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. CertainTeed Corp.; Commercial Board.
    - b. Fibrex Insulations Inc.; FBX.
    - c. <u>Johns Manville</u>; 800 Series Spin-Glas.
    - d. Knauf Insulation; Insulation Board.
    - e. Manson Insulation Inc.; AK Board.
    - f. Owens Corning: Fiberglas 700 Series.
- I. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. Armacell LLC; Tubolit.
    - b. Nomaco Insulation; IMCOLOCK, IMCOSHEET, NOMALOCK, and NOMAPLY.

# 2.2 FIRE-RATED INSULATION SYSTEMS

- A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to **1700 deg F**. Comply with ASTM C 656, Type II, Grade 6. Tested and certified to provide a:
  - a. 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction
  - 1. Products: Subject to compliance with requirements, provide the following:
    - a. <u>Johns Manville</u>; <u>Super Firetemp M.</u>
- B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a:
  - a. **2**-hour fire rating by an NRTL acceptable to authorities
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. CertainTeed Corp.; FlameChek.
    - b. Johns Manville; Firetemp Wrap.
    - c. Nelson Fire Stop Products; Nelson FSB Flameshield Blanket.

- d. Thermal Ceramics; FireMaster Duct Wrap.
- e. 3M; Fire Barrier Wrap Products.
- f. Unifrax Corporation; FyreWrap.

#### 2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. Aeroflex USA, Inc.; Aeroseal.
    - b. <u>Armacell LLC; Armaflex 520 Adhesive.</u>
    - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.</u>
    - d. K-Flex USA; R-373 Contact Adhesive.
  - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.</u>
    - b. Eagle Bridges Marathon Industries; 225.
    - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; 85-60/85-70.
    - d. Mon-Eco Industries, Inc.; 22-25.
  - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. FSK Jacket Adhesive, and ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; CP-82.
    - b. Eagle Bridges Marathon Industries; 225.
    - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company;</u> 85-50.
    - d. Mon-Eco Industries, Inc.; 22-25.
  - 2. For indoor applications, adhesive shall have a VOC content of **50** g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

### 2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
  - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
  - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.</u>
- b. Vimasco Corporation; 749.
- 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, **0.013 perm** at **43-mil** dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: ASTM D 1644, **58 percent** by volume and **70 percent** by weight.
- Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company; CP-10.
    - b. <u>Eagle Bridges Marathon Industries; 550</u>.
    - c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.</u>
    - d. Mon-Eco Industries, Inc.; 55-50.
    - e. <u>Vimasco Corporation; WC-1/WC-5</u>.
  - 2. Water-Vapor Permeance: ASTM F 1249, **1.8 perms** at **0.0625-inch** dry film thickness.
  - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
  - 4. Solids Content: **60 percent** by volume and **66 percent** by weight.
  - 5. Color: White.

# 2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
  - 1. For indoor applications, use lagging adhesives that have a VOC content of **50** g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 2. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.</u>
    - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
    - c. <u>Vimasco Corporation; 713 and 714</u>.
  - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
  - 4. Service Temperature Range: 0 to plus 180 deg F.
  - 5. Color: White.

# 2.6 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
  - 1. Products: Subject to compliance with requirements, provide one of the following:
    - a. <u>Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.</u>
    - b. <u>Eagle Bridges Marathon Industries; 405</u>.

- c. <u>Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller</u> Company: 95-44.
- d. Mon-Eco Industries, Inc.; 44-05.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- Color: Aluminum.
- 6. For indoor applications, sealants shall have a VOC content of **420** g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

#### 2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
  - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

# 2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. Metal Jacket:
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. <u>Childers Brand, Specialty Construction Brands, Inc.</u>, a business of H. B. Fuller Company; Metal Jacketing Systems.
    - b. <u>ITW Insulation Systems</u>; Aluminum and Stainless Steel Jacketing.
    - c. RPR Products, Inc.; Insul-Mate.
  - 2. Aluminum Jacket: Comply with **ASTM B 209**, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
    - a. Sheet and roll stock ready for shop or field sizing
    - b. Finish and thickness are indicated in field-applied jacket schedules.
    - c. Moisture Barrier for Indoor Applications: **3-mil-thick, heat-bonded polyethylene** and kraft paper.
    - Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft.

## 2.9 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. ABI, Ideal Tape Division; 491 AWF FSK.
    - b. <u>Avery Dennison Corporation</u>, Specialty Tapes Division; Fasson 0827.
    - c. Compac Corporation; 110 and 111.
    - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
  - 2. Width: 3 inches.
  - 3. Thickness: 6.5 mils.

- 4. Adhesion: **90 ounces force/inch** in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. ABI, Ideal Tape Division; 488 AWF.
    - b. <u>Avery Dennison Corporation</u>, Specialty Tapes Division; Fasson 0800.
    - c. Compac Corporation; 120.
    - d. Venture Tape; 3520 CW.
  - 2. Width: 2 inches.
  - 3. Thickness: 3.7 mils.
  - 4. Adhesion: 100 ounces force/inch in width.
  - 5. Elongation: **5** percent.
  - 6. Tensile Strength: **34 lbf/inch** in width.

# 2.10 SECUREMENTS

- A. Bands:
  - 1. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - a. ITW Insulation Systems; Gerrard Strapping and Seals.
    - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
  - 2. Aluminum: **ASTM B 209**, Alloy 3003, 3005, 3105, or 5005; Temper H-14, **0.020 inch** thick, **3/4 inch** wide with **wing seal**.
  - 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
  - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch-diameter shank, length to suit depth of insulation indicated.
    - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
      - 1) AGM Industries, Inc.; CWP-1.
      - 2) GEMCO; CD.
      - 3) Midwest Fasteners, Inc.; CD.
      - 4) Nelson Stud Welding; TPA, TPC, and TPS.
  - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, **0.135-inch-** diameter shank, length to suit depth of insulation indicated with integral **1-1/2-inch** galvanized carbon-steel washer.
    - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
      - 1) AGM Industries, Inc.; CHP-1.
      - 2) GEMCO; Cupped Head Weld Pin.
      - 3) Midwest Fasteners, Inc.; Cupped Head.
      - 4) Nelson Stud Welding; CHP.

- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
  - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
    - 2) GEMCO; Perforated Base.
    - 3) Midwest Fasteners, Inc.; Spindle.
  - b. Baseplate: Perforated, galvanized carbon-steel sheet, **0.030 inch** thick by **2** inches square.
  - c. Spindle: **Copper- or zinc-coated, low-carbon steel** fully annealed, **0.106-inch-** diameter shank, length to suit depth of insulation indicated.
  - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
  - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - 1) GEMCO; Nylon Hangers.
    - 2) <u>Midwest Fasteners, Inc.</u>; Nylon Insulation Hangers.
  - b. Baseplate: Perforated, nylon sheet, **0.030 inch** thick by **1-1/2 inches** in diameter.
  - c. Spindle: Nylon, **0.106-inch-** diameter shank, length to suit depth of insulation indicated, up to **2-1/2 inches**.
  - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
  - a. <u>Products</u>: Subject to compliance with requirements, provide one of the following:
    - 1) <u>AGM Industries, Inc.</u>; Tactoo Self-Adhering Insul-Hangers.
    - 2) GEMCO; Peel & Press.
    - 3) Midwest Fasteners, Inc.; Self Stick.
  - b. Baseplate: Galvanized carbon-steel sheet, **0.030 inch** thick by **2 inches** square.
  - c. Spindle: **Copper- or zinc-coated, low-carbon steel**, fully annealed, **0.106-inch-** diameter shank, length to suit depth of insulation indicated.
  - d. Adhesive-backed base with a peel-off protective cover.

#### **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
  - 1. Verify that systems to be insulated have been tested and are free of defects.
  - 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

#### 3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

#### 3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
  - 1. Install insulation continuously through hangers and around anchor attachments.
  - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
  - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
  - 1. Draw jacket tight and smooth.
  - 2. Cover circumferential joints with **3-inch-** wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced **4 inches** o.c.
  - **3.** Overlap jacket longitudinal seams at least **1-1/2 inches**. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at:
    - a. 2 inche o.c.
    - b. For below ambient services, apply vapor-barrier mastic over staples.
  - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
  - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least **4 inches** beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

#### 3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
  - 1. Seal penetrations with flashing sealant.
  - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
  - 3. Extend jacket of outdoor insulation outside roof flashing at least **2 inches** below top of roof flashing.
  - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
  - 1. Seal penetrations with flashing sealant.
  - For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
  - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least **2 inches**.
  - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least **2 inches**.
  - 1. Comply with requirements in Section 078413 "Penetration Firestopping" firestopping and fire-resistive joint sealers.
- E. Insulation Installation at Floor Penetrations:
  - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least **2 inches**.
  - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

## 3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

#### 3.6 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
  - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for:

- a. **100** percent coverage of duct and plenum surfaces.
- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
  - a. On duct sides with dimensions **18 inches** and smaller, place pins along longitudinal centerline of duct. Space **3 inches** maximum from insulation end joints, and **16 inches** o.c.
  - b. On duct sides with dimensions larger than **18 inches**, place pins **16 inches** o.c. each way, and **3 inches** maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
  - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
  - d. Do not overcompress insulation during installation.
  - e. Impale insulation over pins and attach speed washers.
  - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
  - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
  - b. Install vapor stops for ductwork and plenums operating below **50 deg F** at **18-foot** intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than **3 inches**.
- 5. Overlap unfaced blankets a minimum of **2 inches** on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of **18 inches** o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with **6-inch-** wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced **6 inches** o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
  - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for:
    - a. 50 percent coverage of duct and plenum surfaces.
  - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
  - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
  - b. On duct sides with dimensions larger than **18 inches**, space pins **16 inches** o.c. each way, and **3 inches** maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
  - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
  - d. Do not overcompress insulation during installation.
  - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
  - Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with **6-inch-** wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced **6 inches** o.c.

#### 3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
  - 1. Draw jacket smooth and tight to surface with **2-inch** overlap at seams and joints.
  - 2. Embed glass cloth between two **0.062-inch-** thick coats of lagging adhesive.
  - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
  - 1. Draw jacket material smooth and tight.
  - 2. Install lap or joint strips with same material as jacket.
  - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
  - 4. Install jacket with **1-1/2-inch** laps at longitudinal seams and **3-inch-** wide joint strips at end joints.
  - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with **1-inch** overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturers recommended adhesive.

- 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with **2-inch** overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands **12 inches** o.c. and at end joints.

#### 3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."

## 3.9 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
  - 1. Flat Acrylic Finish: **Two** finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
    - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

## 3.10 FIELD QUALITY CONTROL

- A. Testing Agency:
  - a. Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
  - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to **one** location for each duct system defined in the "Duct Insulation Schedule, General" Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

## 3.11 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
  - 1. Indoor, concealed supply and outdoor air.
  - 2. Indoor, exposed supply and outdoor air.
  - 3. Indoor, concealed return located in unconditioned space.
  - 4. Indoor, exposed return located in unconditioned space.
  - 5. Indoor, concealed combustion air.
  - 6. Indoor, exposed combustion air.
  - 7. Indoor, concealed exhaust between isolation damper and penetration of building exterior.

- 8. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
- 9. Outdoor, concealed supply and return.
- 10. Outdoor, exposed supply and return.
- B. Items Not Insulated:
  - 1. Fibrous-glass ducts.
  - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
  - 3. Factory-insulated flexible ducts.
  - 4. Factory-insulated plenums and casings.
  - 5. Flexible connectors.
  - 6. Vibration-control devices.
  - 7. Factory-insulated access panels and doors.
- 3.12 Insulation shall have an R value that meets the minimum requirements of the latest International Energy Conservation Code (IECC).

## 3.13 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. All supply and return ducts and plenums shall be insulated with not less than R-6 insulation.
- B. Concealed, round and flat-oval, supply-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- C. Concealed, round and flat-oval, return-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- D. Concealed, round and flat-oval, outdoor-air and combustion-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- E. Concealed, round and flat-oval, exhaust-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- F. Concealed, rectangular, supply-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- G. Concealed, rectangular, return-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- H. Concealed, rectangular, outdoor-air and combustion-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- I. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be **one of** the following:

- 1. Flexible Elastomeric: 1-1/2 inch thick.
- 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft.
- J. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation:
  - a. Fire-rated **blanket**; thickness as required to achieve 2-hour fire rating.
  - Ductwork is to be wrapped with two layers of approved fire wrap that meets ASTM E-2336.
- K. Concealed, supply-air plenum insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: **1-1/2 inch** thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- L. Concealed, return-air plenum insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- M. Concealed, outdoor-air plenum insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: **1-1/2 inch** thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- N. Concealed, exhaust-air plenum insulation shall be **one of** the following:
  - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 2. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- O. Exposed, round and flat-oval, supply-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 3. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. ft. nominal density.
- P. Exposed, round and flat-oval, return-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 3. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. ft. nominal density.
- Q. Exposed, round and flat-oval, outdoor-air and combustion-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 3. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. ft. nominal density.
- R. Exposed, round and flat-oval, exhaust-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 Inches thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- S. Exposed, rectangular, supply-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 3. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. ft. nominal density.
- T. Exposed, rectangular, return-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 1-1/2 inch thick.
  - 2. Mineral-Fiber Blanket: **2 inches** thick and **0.75-lb/cu. ft.** nominal density.

- 3. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. ft. nominal density.
- U. Exposed, rectangular, outdoor-air and combustion-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: **1-1/2 inch** thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 3. Mineral-Fiber Board: 1-1/2 inches thick and 3-lb/cu. ft. nominal density.
- V. Exposed, rectangular, exhaust-air duct insulation shall be **one of** the following:
  - Flexible Elastomeric: [1 inch] 1-1/2 Inches <Insert dimension> thick.
  - 2. Mineral-Fiber Blanket: [1 inch] 2 inches [3 inches] thick and 0.75-lb/cu. ft. [1.5-lb/cu. ft.] [3-lb/cu. ft.] nominal density.
  - 3. Mineral-Fiber Board: [1-1/2 inches] [2 inches] [3 inches] <Insert dimension> thick and [2-lb/cu. ft.] [3-lb/cu. ft.] [6-lb/cu. ft.] nominal density.
  - 4. Polyolefin: [1 inch] < Insert dimension > thick.
- W. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation:
  - a. Fire-rated **blanket**; thickness as required to achieve 2-hour fire rating.
- X. Exposed, supply-air plenum insulation shall be[ one of] the following:
  - 1. Flexible Elastomeric: **1-1/2 inch** thick.
  - 2. Mineral-Fiber Blanket: **2 inches** thick and **0.75-lb/cu. ft.** nominal density.
  - 3. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- Y. Exposed, return-air plenum insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: **1-1/2 inch** thick.
  - 2. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 3. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- Z. Exposed, outdoor-air plenum insulation shall be **one of** the following:
  - 1. Mineral-Fiber Blanket: 3 inches thick and 0.75-lb/cu. ft. nominal density.
  - 2. Mineral-Fiber Board: 3 inches thick and 2-lb/cu. ft. nominal density.
- AA. Exposed, exhaust-air plenum insulation shall be **one of** the following:
  - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
  - 2. Mineral-Fiber Board: **1-1/2 inches** thick and nominal density.

#### 3.14 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.
- B. All outdoor supply and return ducts and plenums shall be insulated with not less than R-12 insulation.
- C. Exposed, round and flat-oval, supply-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 3 inch thick.
  - 2. Polyolefin: **3 inch** thick.
- D. Exposed, round and flat-oval, return-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 3 inch thick.
  - 2. Polyolefin: **3 inch** thick.
- E. Exposed, rectangular, supply-air duct insulation shall be **one of** the following:

- 1. Flexible Elastomeric: 3 inch thick.
- 2. Polyolefin: 3 inch thick.
- F. Exposed, rectangular, return-air duct insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 3 inch thick.
  - 2. Polyolefin: 3 inch thick.
- G. Exposed, supply-air plenum insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 3 inch thick.
  - 2. Polyolefin: 3 inch thick.
- H. Exposed, return-air plenum insulation shall be **one of** the following:
  - 1. Flexible Elastomeric: 3 inch thick.
  - 2. Polyolefin: 3 inch thick.

## 3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
  - Aluminum, Corrugated: 0.032 inch thick.
- D. Ducts and Plenums, Exposed, up to **48 Inches** in Diameter or with Flat Surfaces up to **72 Inches**:
  - 1. Aluminum, Corrugated: 0.032 inch thick.
- E. Ducts and Plenums, Exposed, Larger Than **48 Inches** in Diameter or with Flat Surfaces Larger Than **72 Inches**:
  - 1. Aluminum, with 1-1/4-Inch- Deep Corrugations: 0.032 inch thick.

**END OF SECTION 23 0713** 

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 0900 BUILDING AUTOMATION SYSTEM

#### PART 1 - GENERAL

#### 1.1 SCOPE OF WORK

- A. The Facility Management and Control System (FMCS) Contractor shall furnish and install an extension of the existing Honeywell building automation system, incorporating direct digital control (DDC) for energy management, equipment monitoring and control as herein specified. The contractor is to field verify and consult with the owner for their full requirements. The system shall include all required computer software and licenses, hardware, controllers, sensors, transmission equipment, system workstations, local panels, conduit, wire, installation, engineering, database and setup, supervision, commissioning, acceptance test, training, warranty service and, at the owner's option, extended warranty service. Licenses for all software shall be registered to Logan City School District. Include all upgrades for a period of two years.
- B. The system shall only employ BACnet or Lontalk communications in an open architecture with the capabilities to support a multi-vendor environment. The software package shall be sold and promoted by at least three independent controls manufacturers. It shall include the provisions to load and execute the toolsets of each of the three manufacturers including commissioning, configuring and programming of each manufacturer's equipment. The system shall be capable of integrating third party systems and utilizing the following standard protocols.
  - 1. BACnet communication according to ASHRAE standard ANSI/ASHRAE 135-2004.
  - 2. OPC server communications according to OPC Data Access 2.0 and Alarms and Events 1.0.
  - 3. LonWorks communication using LonTalk protocol.
  - 4. Modbus communication for integration to third party devices.
- C. The FMCS shall be web based and shall provide total integration of the facility infrastructure systems with user access to all system data either locally over a secure Intranet within the building or by remote access by a standard Web Browser over the Internet.
- D. The FMCS shall demonstrate, with (3) proof sources, integration with HVAC industry open standard protocols, including LonMark, BACnet, ModBus, OPC and Internet standard SQL database and HTTP / HTML / XML text formats.
- E. The FMCS shall communicate to third party systems on this project including VFD's, boilers, air handling systems, chillers, fuel systems, medical gas, air compressor, vacuum pumps, emergency generators, computer room units, transfer switches, fire-life safety systems and other building management related devices using any of the open, interoperable communication protocols referenced in Paragraph D.

F. All materials and equipment used shall be standard components, regularly manufactured with standard part numbers and owners manuals for this and/or other systems. One of a kind, third party or custom integrations devices designed specially for this project will not be allowed.

#### 1.2 RELATED WORK SPECIFIED ELSEWHERE:

- A. Drawings and general provisions of the Contract, including General and supplementary Conditions and Division-1 specification sections, apply to work of this section.
- B. Products furnished but not installed under this section:
  - Valves, flow switches, flow sensors, thermowells and pressure taps to be installed under section 15000.
  - 2. Automatic dampers to be installed under section 15000.
- C. Coordination with electrical:
  - 1. Installation of all line voltage power wiring by division 26.
  - 2. Each motor starter provided under Division 26, shall be furnished with individual control power transformer to supply 120 volt control power and auxiliary contacts (one N.O. and one N.C.) for use by this section.

## 1.3 QUALITY ASSURANCE

- A. The system shall be furnished, engineered, and installed by the manufacturers' locally authorized representative. The controls contractor shall have factory-trained technicians to provide instruction, routine maintenance, and emergency service within 24 hours upon receipt of request.
- B. At the time of bid, all FMCS Application Specific Controllers and Programmable Equipment Controllers shall be listed as follows:
  - 1. Underwriters Laboratory, UL 916
  - 2. FCC Regulation, Part 15, Class B

## 1.4 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Submit 6 complete sets of documentation in the following phased delivery schedule:

- 1. Valve and damper schedules
- 2. Equipment data cut sheets
- 3. System schematics, including:
  - a. sequence of operations
  - b. point names
  - c. point addresses
  - d. point to point wiring
  - e. interface wiring diagrams
  - f. panel layouts
  - g. system riser diagrams
- 4. AutoCAD® compatible as-built drawings.
- 5. ATC Submittals shall be completed using HVAC Solution Software. AutoCAD files will be accepted on components and systems which HVAC Solution does not support. The main Bulk of the submittals shall be submitted using HVAC Solution.
- C. Upon project completion, submit operation and maintenance manuals, consisting of the following:
  - 1. Index sheet, listing contents in alphabetical order
  - 2. Manufacturer's equipment parts list of all functional components of the system, disk of system schematics, including wiring diagrams
  - 3. Description of sequence of operations
  - 4. As-Built interconnection wiring diagrams
  - User's documentation containing product, system architectural and programming information.
  - 6. Trunk cable schematic showing remote electronic panel locations, and all trunk data
  - 7. List of connected data points, including panels to which they are connected and input device (ionization detector, sensors, etc.)
  - 8. Conduit routing diagrams
  - 9. Copy of the warranty/guarantee
  - 10. Operating and maintenance cautions and instructions
  - 11. Recommended spare parts list

#### PART 2 - PRODUCTS

## 2.1 ACCEPTABLE MANUFACTURERS

A. Honeywell.

- 2.2 The Facility Management Control System (FMCS) shall be comprised of a network of interoperable, stand-alone digital controllers. The FMCS shall incorporate LonWorks technology using Free Topology Transceivers (FTT-10), or BACnet MSTP485 or Ethernet in all unitary, terminal and other device controllers. The system shall include:
  - A. Programmable Equipment Controllers (PEC's) for control of primary mechanical systems and distributed system applications. Controllers shall be fully programmable to create custom control solutions.
  - B. Network Area Controllers (NAC's) for distributed system applications, databases and networking functions.
  - C. Application Specific Controllers (ASC's) for control of VAV terminal units, Fan coil terminal units, Unit Vent terminal units, Heat Pump units and other terminal equipment.
  - D. Graphical User Interface (GUI), which includes the hardware and software necessary for a user to interface with the control system and devices.
- 2.3 The controller network shall use twisted pair wiring or loop. The PEC and ASC network shall communicate at a minimum 78Kbps using BACnet or Lontalk. The GUI and NAC shall reside on an Ethernet backbone.
- 2.4 All components and controllers supplied under this contract shall be true "peer-to-peer" communicating devices.

#### 2.5 NETWORK AREA CONTROLLER (NAC)

- A. The Network Area Controller (NAC) shall provide the interface between the field control devices, and provide global supervisory control functions over the control devices connected to the NAC. It shall be capable of executing application control programs to provide:
  - 1. Calendar functions
  - 2. Scheduling
  - 3. Trending
  - 4. Alarm monitoring and routing
  - 5. Time synchronization
  - 6. Integration of LonWorks controller data
  - 7. Integration of BACnet and MODBUS networks
- B. The NAC shall provide multiple, concurrent user access to the system and support for ODBC or SQL. A database resident on the NAC shall be an ODBC-compliant database or must provide an ODBC data access mechanism to read and write data stored within it.
- C. The NAC shall support standard Web browser access via the Intranet/Internet. It shall be capable of supporting multiple users, expandable to fifty.

- D. The NAC shall provide alarm recognition, storage; routing, management, and analysis to supplement distributed capabilities of equipment or application specific controllers.
  - The NAC shall be able to route any alarm condition to any defined user location whether connected to a local network or remote via dial-up, telephone connection, or wide-area network.
  - 2. Alarm generation shall be selectable for annunciation type and acknowledgement requirements including, but not limited to:
    - a. To alarm
    - b. Return to normal
    - c. To fault
  - 3. Provide for the creation of an unlimited number of alarm classes for the purpose of routing types and or classes of alarms, i.e.: security, HVAC, Fire, etc.
  - 4. Provide timed (schedule) routing of alarms by class, object, group, or node.
  - 5. Provide alarm generation from binary object "runtime" and /or event counts for equipment maintenance. The user shall be able to reset runtime or event count values with appropriate password control.
- E. Alarms shall be annunciated in any of the following manners as user defined:
  - Screen message text
  - Email of the complete alarm message to multiple recipients. Provide the ability to route and email alarms based on:
    - a. Day of week
    - b. Time of day
    - c. Recipient
  - 3. Pagers via paging services that initiate a page on receipt of email message
  - 4. Graphic with flashing alarm object(s)
  - 5. Printed message, routed directly to a dedicated alarm printer
  - 6. Cell phones
- F. The following shall be recorded by the NAC for each alarm (at a minimum):
  - 1. Time and date
  - 2. Location (building, floor, zone, office number, etc.)
  - 3. Equipment (air handler #, accessway, etc.)
  - 4. Acknowledge time, date, and user who issued acknowledgement.
- G. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.
- H. A log of all alarms shall be maintained by the NAC and/or a server and shall be available for review by the user.
- I. Provide a "query" feature to allow review of specific alarms by user defined parameters.
- J. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.
- K. An Error Log to record system errors shall be provided and available for review by the user.
- L. Data Collection and Storage
  - The NAC shall collect data for any property of any object and store this data for future use.

- 2. The data collection shall be performed by log objects, resident in the NAC that shall have, at a minimum, the following configurable properties:
  - a. Designating the log as interval or deviation.
  - b. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
  - c. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.
  - d. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
  - e. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.
- 3. All log data shall be stored in a relational database in the NAC and the data shall be accessed from a standard Web Browser.
- 4. All log data, when accessed from a server, shall be capable of being manipulated using standard SQL statements.
- 5. All log data shall be available to the user in the following data formats:
  - a. HTML
  - b. XML
  - c. Plain Text
  - d. Comma or tab separated values
- 6. The NAC shall have the ability to archive it's log data either locally (to itself), or remotely to a server or other NAC on the network. Provide the ability to configure the following archiving properties, at a minimum:
  - a. Archive on time of day
  - b. Archive on user-defined number of data stores in the buffer (size)
  - c. Archive when buffer has reached it's user-defined capacity
- M. Provide and maintain an Audit Log that tracks all activities performed on the NAC. Provide the ability to specify a buffer size for the log and the ability to archive log based on time or when the log has reached it's user-defined buffer size. Provide the ability to archive the log locally (to the NAC), to another NAC on the network, or to a server. For each log entry, provide the following data:
  - 1. Time and date
  - 2. User ID
  - 3. Change or activity: i.e., Change setpoint, add or delete objects, commands, etc.
- N. The NAC shall have the ability to automatically backup its database. The database shall be backed up based on a user-defined time of day.
  - Copies of the current database and, at the most recently saved database shall be stored in the NAC. The age of the most recently saved database is dependent on the userdefined database save interval.
  - The NAC database shall be stored, at a minimum, in XML format to allow for user viewing and editing, if desired. Other formats are acceptable as well, as long as XML format is supported.

## 2.6 PROGRAMMABLE EQUIPMENT CONTROLLERS (PEC)

- A. Programmable Equipment Controllers (PEC's) shall be stand-alone, multi-tasking, real-time digital control processors.
- B. The PEC's shall communicate via BACnet communication according to ASHRAE standard ANSI/ASHRAE 135-2004 or Lonworks FT110.
- C. The PEC must communicate peer-to-peer with all of the network application specific, programmable controllers and third party LonMark devices.
- D. The PEC software database must be able to execute all of the specified mechanical system controls functions. The programming software shall be able to bundle software logic to simplify control sequencing. All values, which make up the PID output value, shall be readable and modifiable at a workstation or portable service tool. Each input, output, or calculation result shall be capable of being shared/bound with any controller or interface device on the network.
- E. Provide programming, engineering, and configuration tools used for the project duly licensed to the owner for owner's use.
- F. PEC's shall be able to execute custom, job-specific processes defined by the user, to automatically perform calculations and special control routines.
- G. A single process shall be able to incorporate measured or calculated data from any and all other PEC's on the network. In addition, a single process shall be able to issue commands to points in any and all other PEC's on the network.
- H. Each PEC shall support firmware upgrades without the need to replace hardware.
- I. Each PEC shall continuously perform self-diagnostics, which include communication diagnosis and diagnosis of all components.
- J. In the event of the loss of normal power, there shall be an orderly shutdown of all PEC's to prevent the loss of database or operating system software. Non-volatile memory shall be incorporated for all critical controller configuration data and battery backup shall be provided to support the real-time clock and all volatile memory for a minimum of 72 hours.
  - 1. Upon restoration of normal power, the PEC shall automatically resume full operation without manual intervention.
  - 2. All PEC's control programming and databases must be stored in Flash memory, therefore eliminating data loss, downtime and re-load time.
- K. Provide a separate PEC for each AHU or other HVAC system such that the inputs, calculations, and outputs shall reside on a single controller.

## 2.7 APPLICATION SPECIFIC CONTROLLERS (ASC)

- A. Each Application Specific Controller (ASC) shall operate as a stand-alone Lon Mark or BacNet controller capable of performing its specified control responsibilities independent of other controllers in the network. Each ASC shall be a minimum 16-BIT microprocessor based, multi-tasking, multi-user, real time digital control processor.
- B. Controllers shall include all inputs and outputs necessary to perform the specified control sequences. Analog and digital outputs shall be industry standard signals such as 0-10V and 3-point floating control allowing for interface to a variety of industry standard modulating actuators. The ASC inputs and outputs shall consist of industry standards types. Inputs shall be electrically isolated from outputs, communications and power.
- C. All controller sequences and operation shall provide closed loop control of the intended application. Closing control loops over the network is not acceptable.
- D. The control program shall reside in the ASC. The application program and the configuration information shall be stored in non-volatile memory with no battery back-up required.
- E. After a power failure the ASC must run the control application using the current setpoints and configuration. Reverting to default or factory setpoints are not acceptable.

## 2.8 GRAPHICAL USER INTERFACE SOFTWARE (GUI)

- A. Command of points from multiple manufacturers shall be transparent to the operator.
- B. The software shall provide a multi-tasking type environment that allows the user to run several applications simultaneously. The GUI software shall run on a Windows XP 32-bit operating system. The operator shall be able to work in Microsoft Word, Excel, and other Windows based software packages, while concurrently annunciating on-line FMCS alarms and monitoring information. If the software is unable to display several different types of displays at the same time, the FMCS contractor shall provide at least two operator workstations at each location specified.
- C. Real-Time Displays. The Graphical User Interface (GUI), shall at a minimum, support the following graphical features and functions:
  - Graphic screens shall be developed using any drawing package capable of generating a GIF, BMP, or JPG file format. Use of proprietary graphic file formats shall not be acceptable. In addition to, or in lieu of a graphic background, the GUI shall support the use of scanned pictures and streaming video.
  - 2. Provide programming, engineering, and configuration tools used for the project duly licensed to the owner for owner's use.
  - 3. A gallery of HVAC and automation symbols shall be provided, including fans, valves, motors, chillers, AHU systems, standard ductwork diagrams and symbols. The user shall have the ability to add custom symbols to the gallery as required.
  - 4. Graphic screens shall contain objects for text, real-time values, animation, color spectrum objects, logs, graphs, HTML or XML document links, schedule objects, hyperlinks to other URL's, and links to other graphic screens.

- 5. Graphics shall include layering and each graphic object shall be configurable for assignment to a layer. A minimum of six layers shall be supported.
- 6. Modifying common application objects, such as schedules, calendars, and set points shall be accomplished in a graphical manner.
  - a. Schedule times will be adjusted by mouse command using a graphical slider, without requiring any keyboard entry from the operator.
  - b. Holidays shall be set by mouse command using a graphical calendar, without requiring any keyboard entry from the operator.
- 7. Commands to start and stop binary objects shall be done by mouse command from the pop-up menu. No entry of text shall be required.
- D. System Configuration. At a minimum, the GUI shall permit the operator to perform the following tasks, with proper password access:
  - 1. Create, delete or modify control strategies.
  - 2. Add/delete objects to the system.
  - 3. Tune control loops through the adjustment of control loop parameters.
  - 4. Enable or disable control strategies.
  - 5. Generate hard copy records or control strategies on a printer.
  - 6. Select points to be alarmable and define the alarm state.
  - 7. Select points to be trended over a period of time and initiate the recording of values automatically.
- E. On-Line Help. Provide a context sensitive, on-line help system to assist the operator in operation and editing of the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext. All system documentation and help files shall be in HTML format.
- F. Each operator shall be required to log on to that system with a user name and password in order to view, edit, add, or delete data. System security shall be selectable for each operator. The system administrator shall have the ability to set passwords and security levels for all other operators. Each operator password shall be able to restrict the operators' access for viewing and/or changing each system application, full screen editor, and object. Each operator shall automatically be logged off of the system if no keyboard or mouse activity is detected. This auto log-off time shall be set per operator password. All system security data shall be stored in an encrypted format.
- G. All graphic displays shall be provided using web browser client as specified in 2.11.
- H. The system will be provided with a dedicated alarm window or console. This window will notify the operator of an alarm condition, and allow the operator to view details of the alarm and acknowledge the alarm. The use of the Alarm Console can be enabled or disabled by the system administrator.
- I. When the Alarm Console is enabled, a separate alarm notification window will supercede all other windows on the desktop. This window will notify the operator of new alarms and unacknowledged alarms. Alarm notification windows or banners that can be minimized or closed by the operator shall not be acceptable. The alarm console shall be loaded and operated at the following locations.

## 2.9 WEB BROWSER CLIENTS

A. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet Explorer® or Netscape Navigator®. Systems requiring

- additional software (to enable a standard Web browser) to be resident on the client machine, or manufacture-specific browsers shall not be acceptable.
- B. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser. Web page access and control shall be from system Network Area Controllers, or the Workstation.
- C. The Web browser shall provide the same system view, in terms of graphics, schedules, calendars, logs, etc., and provide the same interface methodology as is provided by the Graphical User Interface. Systems that require different views or that require different means of interacting with objects such as schedules, or logs, shall not be permitted.
- D. The Web browser client shall support at a minimum, the following functions:
  - User log-on identification and password security shall be required and implemented using Java authentication and encryption techniques to prevent unauthorized access. If an unauthorized user attempts access, a blank web page shall be displayed.
  - 2. Graphical screens developed for the GUI shall be the same screens used for the Web browser client. Any animated graphical objects supported by the GUI shall be supported by the Web browser interface.
  - HTML programming shall not be required to display system graphics or data on a Web
    page. HTML editing of the Web page shall be allowed if the user desires a specific look
    or format.
  - 4. Storage of the graphical screens shall be in the Network Area Controller (NAC), without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client machine are not acceptable.
  - 5. Real-time values displayed on a Web page shall update automatically without requiring a manual "refresh" of the Web page.
  - 6. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:
    - a. Modify in a graphical manner, common application objects, such as schedules, calendars, and set points. Schedule times will be adjusted by mouse command using a graphical slider, without requiring any keyboard entry from the operator. Holidays shall be set by mouse command using a graphical calendar, without requiring any keyboard entry from the operator.
    - b. Commands to start and stop binary objects shall be done by mouse command rightclick of the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
    - c. View logs and charts
    - d. View and acknowledge alarms
  - 7. The system shall provide the capability to specify a user's home page (as determined by the log-on user identification). From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.
  - 8. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

#### 2.10 PROJECT SPECIFIC WEB PAGES:

- A. Home page shall include a campus layout of the individual buildings at the site. Once an individual building is selected the following minimum web-based tree structure shall be provided:
  - Documents Page: The document page shall include the O&M Manuals for the control system in PDF format along with AutoCAD drawings for each drawing provided in the control system O&M Manual. This document page shall include links between the control diagrams and associated data sheet in PDF format, such that the system user shall be able to click on the control device and retrieve, in PDF format, the factory O&M sheets associated with that device.

#### 2. Station Functions:

- a. Logging separate sheet of station functions for a particular selected building shall be the viewing of one or more logs or the creation of logs in which any value at any point, or the mode of any point, shall be selected via the web to be trended against any other point with an adjustable frequency in seconds, minutes, hours or days.
- b. The alarm acknowledgement via the web shall allow the viewing and acknowledgement of the alarms.
- c. Audit log shall be provided via the web to show the operator actions as well as other audit logs as specified in section 2.4 Network Area Controller (NAC) paragraph "M" Data Collection and Storage.

#### 3. Floor Plans:

- a. AutoCAD drawings of floor plans shall be provided in the control system such that via the web the user shall be able to turn layers on and off on the mechanical floor plans. These floor plans shall also include an overlay of the temperature control as-built wiring for the project showing thermostat locations, communication runs, transformer locations, controller locations, etc.
- b. Floor Display Summaries. The operator shall be able to select floor plans displaying the following formats:
  - 1) All zone temperatures
  - 2) All zone heating percentages
  - 3) All zone cooling percentages
  - 4) All zone room names and numbers as per architectural matrix and owner input.
  - 5) All zones cfm delivered.
  - 6) All zones cfm returned.
- 4. Upon selecting a graphical floor plan layout the web page shall show all the zone temperature sensor locations on the floor. By clicking on the zone temperature location, an individual VAV box graphic shall be displayed with the following attributes:
  - A manual menu that shall allow the operator to manually set the air flow set point, space temperature set point, damper position, cooling percentage, heating percentage, and zero the box.

- b. A 24 hour log chart that shows space temperature history, flow history, and allows the operator to build custom charts by comparing this log to other associated selectable logs.
- c. A display of the VAV box discharge temperature, air handler discharge temperature, space temperature, and space temperature set point.
- d. A bar graph that shows actual CFM, current air flow, and current air floor set point, percentage of heating and cooling in a thermometer-like fashion and changes color based on heating or cooling mode.
- e. The damper position, reheat valve position, occupancy status, room name and heating/cooling mode shall also be shown.

#### 5. Systems:

- a. On selecting the systems menu, a tree structure shall allow the operator to select the air handlers, chillers, control valves, heat exchangers, med gas, boilers, fuel system, emergency generators and transfer switches, etc. systems associated with that building. The graphics shall also show the piping and ductwork associated with the air handler as well as the safeties, temperature sensors, humidity sensors, dampers, VFD's, associated with that fan system. See points lists for specifics. Each system in the points list shall be treated as a branch of the above tree.
- b. All devices that provide dynamic function in the primary equipment, i.e., fans, pumps, coils, dampers shall be dynamic in nature showing their operating status/percentage of capacity by movement on the web page.
- c. The set points for the various control loops shall be adjustable via the web page. Individual controlled devices, i.e., valves, dampers, fans shall be controlled via the web page and be stopped or started or placed in a command state or percentage of value output.

#### 2.11 FIELD DEVICES

A. Provide automatic control valves, automatic control dampers, thermostats, clocks, sensors, controllers, and other components as required for complete installation. Except as otherwise indicated, provide manufacturer's standard control system components as indicated by published product information, designed and constructed as recommended by manufacturer.

## B. Temperature Sensors

- 1. Temperature Sensors: Temperature sensors shall be linear precision elements with ranges appropriate for each specific application.
- 2. Space (room) sensors shall be available with setpoint adjustment and override switch.
- Duct mounted averaging sensors shall utilize a sensing element incorporated in a copper capillary with a minimum length of 20 feet. The sensor shall be installed according to manufacture recommendation and looped and fastened at a minimum of every 36 inches.
- 4. Sunshields shall be provided for outside air sensors.
- 5. Thermo-wells for all immersion sensors shall be stainless steel or brass as required for the application.

- C. Humidity Sensors: Humidity sensors shall be of the solid-state type using a capacitance-sensing element. The sensor shall vary the output voltage with a change in relative humidity. Room humidity sensors shall have a minimum range of 10% to 90%  $\pm$ 5%. Supply air humidity sensors shall have a range of 10% to 90%  $\pm$ 5%.
- D. Pressure Sensors: The differential pressure sensor shall be temperature compensated and shall vary the output voltage with a change in differential pressure. Sensing range shall be suitable for the application with linearity of 1.5% of full scale and offset of less than 1% of full scale. Sensor shall be capable of withstanding up to 150% of rated pressure without damage.
- E. Flat plate (flush mount) temperature sensors shall be installed in public corridors, behavior health and any other locations where gurneys and/or carts could damage sensors and where public access of setpoint is not desired.

#### F. Switches and Thermostats

- The FMCS Contractor shall furnish all electric relays and coordinate with the supplier of
  magnetic starters for auxiliary contact requirements. All electric control devices shall be
  of a type to meet current, voltage, and switching requirement of their particular
  application. Relays shall be provided with 24 VAC coils and contacts shall be rated at 10
  amps minimum.
- Duct Smoke Detectors: Duct smoke detectors shall be supplied by others with an integral auxiliary contact to be used by the FMCS contractor to provide a digital input to the FMCS.
- 3. Low Temperature Detection Thermostats: Shall be the manual reset type. The thermostat shall operate in response to the coldest one-foot length of the 20-foot sensing element, regardless of the temperatures at other parts of the element. The element shall be properly supported to cover the entire downstream side of the coil with a minimum of three loops. Separate thermostats shall be provided for each 25 square feet of coil face area or fraction thereof.
- 4. Differential Pressure Switches: Pressure differential switches shall have SPDT changeover contact, switching at an adjustable differential pressure setpoint.
- 5. Current Sensing Relays: Motor status indications, where shown on the plans, shall be provided via current sensing relays. The switch output contact shall be rated for 30 VDC, .15 amps.
- 6. Flow Switches: Motor status indications, where shown on the plans, shall be provided via flow switches. Flow switches shall be of the paddle type equipped with SPDT contacts to establish proof of flow.
- 7. Carbon Monoxide Detector and Controller shall meet or exceed UL 2034 standard and OSHA standards for CO exposure. Controller shall be solid state sensor. Fan relay shall activate at 35 ppm of CO averaged over 5 minutes. Alarm relay shall activate at 100 ppm after 30 minutes. Approved manufacturers shall be Macurco, Inc or approved equal.
- G. OSA Air Flow Measurement and Air Handler

- 1. The monitor/controller shall be capable of direct measurement of airflow through an outside air inlet and produce dual outputs; one representing the measured airflow, and the other to control the inlet damper.
- 2. The monitor/controller shall contain an integral multi-line liquid crystal display for use during the configuration and calibration processes, and to display two measured processes (volume, velocity, temperature) during normal operation. All configuration, output scaling, calibration, and controller tuning will be performed digitally in the on-board microprocessor via input pushbuttons.
- 3. The monitor/controller shall measure inlet airflow with an accuracy of + or − 5% of reading over a range of 150-600 FPM or 250-1000 FPM or 500-3000 fpm and not have its reading affected by the presence of directional or gusting wind or turbulence. Measured airflow shall be density corrected for ambient temperature variances, and atmospheric pressure due to site altitude.
- 4. The monitor/controller shall interface with existing building automation systems (BAS), accepting inputs for fan system start, economizer mode operation, and an external controller set point, and provide flow deviation alarm outputs.
- 5. The sensors shall be constructed of materials that resist corrosion due to the presence of salt or chemicals in the air; all non-painted surfaces shall be constructed of stainless steel. The electronics enclosure shall be NEMA 1.
- 6. The monitor/controller shall be the VOLU-flo/OAM as manufactured by Air Monitor Corporation, Santa Rosa, California.

#### H. Damper Actuators

1. Actuators shall be of the push-pull or rotary type of modulating, 3-point floating, or 2-position control as required by the application. The actuator shall use an overload-proof synchronous motor or an electric motor with end switches to de-energize the motor at the end of the stroke limits. Control voltage shall be 24 VAC, 0-20 VDC, or 4-20 ma as required. Actuators shall be available with spring return to the normal position when required. Actuators shall have a position indicator for external indication of damper position. Actuators shall have manual override capability without disconnecting damper linkage.

## I. Control Dampers

- 1. Motorized dampers, unless otherwise specified elsewhere, shall have damper frames using 13 gauge galvanized steel channel or 1/8" extruded aluminum with reinforced corner bracing. Damper blades shall not exceed ten (10) inches in width or 48" in length. Blades are to be suitable for high velocity performance. Damper bearings shall be as recommended by manufacturer for application. Bushings that turn in the bearing are to be oil impregnated sintered metal. All blade edges and top and bottom of the frame shall be provided with replaceable, butyl rubber or neoprene seals. Side seals may be springloaded stainless steel. The seals shall provide a maximum of 1% leakage at a wide open face velocity of 1500 FPM and 4: W.C. close-off pressure. The damper linkage shall provide a linear flow or equal percentage characteristic as required. Provide Ruskin RCD46 model or equal.
- 2. Control dampers shall be parallel or opposed blade type as scheduled on drawings or outdoor and return air mixing box dampers shall be parallel blade, arranged to direct air streams towards each other. All other dampers may be parallel or opposed blade types.

#### 2.12 LEVEL CONTROLLERS

A. Level controllers shall be Ultrasonic type that have the range of 6" to 24 feet. Accuracy shall be .25% of the span and resolution shall be 1/8". They shall be rated for fluid temperature of —40 to +140 degrees F. The enclosure rating shall be NEMA 4X and shall be mounted on 2" NPT piping connection. They shall be temperature compensated over the above specified range. They shall be provided with a remote indicator to indicate the fluid level in feet and shall include remote relay pack for four levels of control: low level pump cutoff, low level warning, fill, and high level alarm. Remote readout shall include five-digit ID display with engineering units programmed to match the level of fluid being measured along with 11-point linearization function for display and actual tank volume in gallons, thousands of gallons, or percentage as directed by the Engineer. Remote meters shall also be manufactured by Flowline to be compatible with the Ultrasonc level transmitter. Controllers shall be Flowline Model LU30-70-0-3. Remote indication shall be Flowline model L112-1001.

#### 2.13 PERSONAL COMPUTER OPERATOR WORKSTATION HARDWARE:

- A. Personal computer operator workstations shall be provided for command entry, information management, network alarm management and database management functions. All realtime control functions shall be resident in the DDC controllers to facilitate greater fault tolerance and reliability.
  - 1. Provide a workstation in the MIS (Main Computer Room). Confirm this location before installation.
  - Workstations shall consist of an SVGA 19" flat screen color monitor, personal computer with minimum 2 Gigabyte RAM, 100 GB hard drive, 48 speed DVD/RW, 3-1/2" diskette drive, mouse and 101-key enhanced keyboard. Personal computer shall be an IBM Compatible PC and shall include a minimum P4/3.1 MHZ processor.
- B. Provide an Epson FX-870 or equivalent printer at the workstation's location for recording alarms, operator transactions, and systems reports.

## **PART 3 - EXECUTION**

#### 3.1 PROJECT MANAGEMENT

- A. Provide a project manager who shall, as a part of his duties, be responsible for the following activities:
  - 1. Coordination between the Controls Contractor and all other trades, Owner, local authorities and the design team.
  - 2. Scheduling of manpower, material delivery, equipment installation and checkout.

- 3. Maintenance of construction records such as project scheduling and manpower planning and AutoCAD or Visio for project co-ordination and as-built drawings.
- 4. Coordination/Single point of contact

#### 3.2 INSTALLATION METHODS

- A. Install systems and materials in accordance with manufacturer's instructions, rough-in drawings and equipment details. Install electrical components and use electrical products complying with requirements of applicable Division-16 sections of these specifications.
- B. The term "control wiring" is defined to include providing of wire, conduit, and miscellaneous materials as required for mounting and connecting electric or electronic control devices.
- C. To run BACnet on the ethernet network, the installer is required to run, at mininum, plenum rated CAT 5e cabling for all runs associated with this network.
- D. All exposed wiring, low and line voltage subject to mechanical damage, shall be run in conduit. Line and low voltage wiring shall be run in separate conduits. Concealed but accessible wiring, except in mechanical rooms and areas where other conduit and piping are exposed shall run in UL plenum rated cable as approved by local codes unless expressly restricted by requirements in Division 16 specification.
- E. All Controllers, Relays, Transducers, etc., required for stand-alone control shall be housed in a NEMA 1 enclosure with a lockable door.

## 3.3 SYSTEM ACCEPTANCE

- A. General: The system installation shall be complete and tested for proper operation prior to acceptance testing for the Owner's authorized representative. A letter shall be submitted to the Architect requesting system acceptance. This letter shall certify all controls are installed and the software programs have been completely exercised for proper equipment operation. Acceptance testing will commence at a mutually agreeable time within ten (10) calendar days of request. When the field test procedures have been demonstrated to the Owner's representative, the system will be accepted. The warranty period will start at this time.
- B. Field Equipment Test Procedures: DDC control panels shall be demonstrated via a functional end to end test. Such that:
  - 1. All output channels shall be commanded (on/off, stop/start, adjust, etc.) and their operation verified.
  - 2. All analog input channels shall be verified for proper operation.
  - 3. All digital input channels shall be verified by changing the state of the field device and observing the appropriate change of displayed value.

- 4. If a point should fail testing, perform necessary repair action and retest failed point and all interlocked points.
- 5. Automatic control operation shall be verified by introducing an error into the system and observing the proper corrective system response.
- 6. Selected time and setpoint schedules shall be verified by changing the schedule and observing the correct response on the controlled outputs.
- C. As-Built Documentation: After a successful acceptance demonstration, the Contractor shall submit as-built drawings of the completed project for final approval. After receiving final approval, supply "6" complete as-built drawing sets, together with AutoCAD or Visio diskettes to the owner.
- D. Operation and Maintenance Manuals: Submit four copies of operation and maintenance manuals. Include the following
  - 1. Manufacturer's catalog data and specifications on sensors, transmitters, controllers, control valves, damper actuators, gauges, indicators, terminals, and any miscellaneous components used in the system.
  - 2. An operator's manual that will include detailed instructions for all operations of the system.
  - 3. An operator's reference table listing the addresses of all connected input points and output points. Settings shall be shown where applicable.
  - 4. A copy of the warranty/guarantee.
  - 5. Operating and maintenance cautions and instructions.

#### 3.4 TRAINING

- A. Contractor shall provide to the engineer a training class outline prior to any scheduled training.
- B. Factory trained control engineers and technicians shall provide training sessions for the Owner's personnel.
- C. The control contractor shall conduct six (6) four-hour training courses for the designated owners personnel in the maintenance and operation of the control system. One class shall be given before system acceptance and the others monthly into the warranty/guarantee time period.
- D. The course shall include instruction on specific systems and instructions for operating the installed system to include as a minimum:
  - 1. HVAC system overview
  - 2. Operation of Control System
  - 3. Function of each Component

- 4. System Operating Procedures
- 5. Programming Procedures
- 6. Maintenance Procedures

#### 3.5 WARRANTY/GUARANTEE

- A. The control system shall be warranted/guaranteed to be free from defects in both material and workmanship for a period of one (1) year of normal use and service. This warranty/guarantee shall become effective the date the owner accepts or receives beneficial use of the system.
- B. After completion this contractor shall make adjustments and modification as necessary for the one year warranty period. During this period the contractor as directed by the engineer shall make modifications and adjustments to the building systems at no additional cost or compensation.

**END OF SECTION 23 0900** 

# SECTION 23 0993 SEQUENCES OF OPERATION

#### 1. POWER FAILURE

All fan systems and exhaust fans shall be commanded off on detection of power failure. After power is restored, the fans shall be started sequentially. The restart sequence for other equipment shall be determined by the facility personnel. All supply, relief and interlocked exhaust fans shall stop on power failure. When power has been restored to normal for a minimum of one minute, the fans shall restart at 30-second intervals (adjustable) in a predetermined sequence as directed by the facility maintenance personnel. This restart sequence shall be changeable by the operator.

#### 2. SCHEDULE

Although specific set points, time periods and reset values are listed in the sequence of operation, all values shall be changeable through the Building Management System (BMS) console or portable operators' terminal. The initial occupied/unoccupied schedules shall be as designated by the owner's representative. Schedules shall allow the owner the option to change the operation to occupied/unoccupied.

#### 3. POINT DATABASE

Inputs and outputs required to meet the sequence of operation shall be provided, whether or not they are listed in the Input/Output schedule. All points listed in the Input/Output schedule shall also be provided.

## 3. DOMESTIC HOT WATER (WH-1)

The domestic hot water heater is self-regulating with a recirculation pump. The domestic hot water supply temperature is to be set at the domestic hot water heater and monitored via the Building Management System.

The ATC contractor shall provide and install a temperature sensor in the supply piping and generate an alarm if temperatures exceed set point by five degrees.

#### 4. DOMESTIC HOT WATER RECIRCULATION PUMP (RCP-1)

The domestic hot water recirculation pump system consists of a single recirculation pump. The system is DDC controlled using electric actuation. The system operates as follows:

The pump is cycled on/off based on a time-of-day program. The pump is on during the Occupied mode and off during the Unoccupied mode. Provide start/stop and status for the pump.

## 5. PACKAGED ROOFTOP HVAC UNITS WITH ENERGY RECOVERY (RTU-7 – RTU-14)

Provide a separate DDC control panel for each RTU.

Each packaged rooftop air-handling unit consists of a mixed air section with powered outdoor air inlet from an attached ERV, powered relief air through an attached ERV, energy transfer wheel, motorized

return/relief damper, MERV-8 filters, modulating natural gas heating section, single stage DX cooling section, and a supply fan with integral speed control. The unit is DDC controlled using electric actuation.

The packaged rooftop air-handling units are scheduled for automatic operation on a time-of-day basis for Occupied and Unoccupied modes. Within the Occupied mode, the space temperature is the variable that drives the change of unit states. The unit state will change from cooling, fan-only, or heating based on the changeover heating or cooling setpoints. Within the Unoccupied mode, Night Heating is available when the space temperature drops below 65°F and Night Cooling is available when the space temperature rises above 80°F. The latest start time is the scheduled occupancy for the space.

The air handling unit operates in Occupied, Unoccupied, Night Heating, Night Cooling and Safety modes as follows (All suggested set points and settings are adjustable):

#### Occupied:

## **Supply Volume Control**

The supply fan motor modulates to maintain the space temperature setpoint and reduce the airflow as much as possible while still tracking the instantaneous load.

The supply fan will operate continuously between a specified minimum and maximum speed. The unit will modulate the supply fan between the minimum and maximum based on how near or far the space temperature is away from its setpoint.

Upon shutdown of the air handling system, the supply and relief fan motors are stopped and the speed signal shall go to zero speed.

#### Cooling Mode

The unit will modulate the compressor on/off to maintain the unit cooling discharge air set point. The cooling discharge air set point will be adjustable by the BMS. The cooling discharge air setpoint may be reset by the space temperature. A linear relationship between the cooling discharge air temperature and the reset variable will be created for the minimum and maximum discharge air temperature setpoints. As the reset variable changes the discharge air temperature will adjust according to the relationship. The discharge air temperature setpoint is to reset up 15°F from 52°F to 67°F at a rate of 0.5°F to 1°F (programmable) per 10 minutes based on the space thermostat. Reset downward occurs when the space has a call for cooling load percentage above 90% and upward below 60%.

## **Heating Mode**

The unit capacity will modulate gas heat to maintain the heating discharge air set point. The heating discharge air set point will be adjustable by the BMS. The heating discharge air setpoint may be reset by the space temperature. A linear relationship between the heating discharge air temperature and the reset variable will be created for the minimum and maximum discharge air temperature setpoints. As the reset variable changes the discharge air temperature will adjust according to the relationship. The discharge air temperature setpoint is to reset down 15°F from 105°F to 90°F at a rate of 0.5°F to 1°F (programmable) per 10 minutes based on the space thermostat. Reset downward occurs when the space has a call for heating load percentage below 60% and upward above 90%.

## **Energy Recovery**

The energy recovery unit is an add-on accessory unit that attaches to the outside air inlet & relief air

outlet of the associated packaged rooftop HVAC unit. The energy recovery unit has an outside air supply fan with integral speed control, a relief air fan with integral speed control, and a desiccant wheel for energy transfer. The minimum speed of the outside air & relief air fans is set to maintain the minimum outside airflow rate listed on the drawings. The speed of the outside air & relief air fans can modulate up from the minimum setpoint as required to maintain a 1000 PPM CO2 setpoint (adjustable) as detected by the CO2 sensor in the room served by the associated rooftop HVAC unit.

#### **Economizer Control**

The energy recovery unit shall also allow for full economizer control. A dry bulb economizer shall be engaged whenever the outdoor air temperature is less than the economizer changeover value to utilize outside air for cooling. The outside air fan speed, relief air fan speed, and mixed air damper shall modulate in sequence to maintain supply air temperature setpoint.

## **Building Pressurization Control**

A building static pressure transmitter shall be provided for the facility. It shall be installed in the lobby area. It shall be monitored through the BMS. The packaged rooftop air-handling units' relief air fan speed shall modulate in unison to maintain a 10% (adj.) positive building static pressure setpoint.

## **Unoccupied (Normal Off)**

The supply and relief fans stop, the DX cooling section shuts off, the natural gas heating section shuts off, and the mixing section damper closes to the outdoor air.

## **Night Heating & Cooling**

The supply fan starts and the relief fan & outside air fan both remain off. The natural gas heating section and DX cooling section modulate in sequence without overlap to maintain the space temperature set point of 65°F (heating mode) or 80 degrees (cooling mode). Once satisfied the RTU returns to standard unoccupied mode.

#### Safety

Discharge high static cutout, fire alarm interlock by Div. 16, smoke detectors in the supply and return air streams, and supply and return fan fault alarms de-energize the supply and relief fans upon activation. When the OAT is less than 45°F, the natural gas heating section modulates to maintain the mixed air temperature at 45°F. When the OAT is 45°F or above, the natural gas heating section shuts off. The outside air and relief air dampers shall close, all other dampers and valves position to their normal position after the fans are de-energized.

A low temperature detector in the discharge of the natural gas heating section de-energizes the supply and relief fans when temperatures below 38°F are sensed. The natural gas heating section modulates to maintain the mixed air temperature at 45°F. The outside air and relief air dampers shall close, all other dampers and valves position to their normal position after the fans are de-energized.

The DDC system uses motor communications to confirm the fans are in the desired state (i.e. on or off) and generates an alarm if status deviates from DDC start/stop control. The DDC system generates a ECM motor trouble alarm independent from the fan status.

#### **Filter**

Provide and install a differential pressure transmitter across each pre and final filter bank. The differential pressure transmitter shall be monitored through the BMS. Alarm set points shall be adjustable at the

BMS.

## 6. EXHAUST FANS (EF-1 – EF-4)

Exhaust fans are to be interlocked with the lights in their respective restrooms. Exhaust fans shall run continuously at the constant scheduled airflow rate when the restroom lights are on and are to be off when the restroom lights are off.

The DDC system uses a current switch to monitor the exhaust fan status and generates an alarm if status deviates from DDC start/stop control.

#### 7. FIRE ALARM INTERLOCK & SMOKE CONTROL

When a fire alarm condition occurs, all RTU's shall shut down. If smoke is detected in either the supply or return airstream of a single RTU, that RTU shall shut down and an alarm shall be generated at the BMS.

## 8. CEILING ELECTRIC UNIT HEATERS (EUH-1 – EUH-5)

An internal thermostat shall energize the electric heating coil and start the fan when the space temperature drops below 65 deg F (adjustable).

## 9. ELECTRIC BASEBOARD HEATER (BB-1 - BB-4)

A line voltage thermostat shall energize the electric heating coil when the space temperature drops below 65 deg F (adjustable).

#### 10. POINTS LIST

Please refer to the points list below.

|                          | Input / Output |                |              |               |                    |                   |        | Graphical Web Pages        |                    |                    |                       |               |            |        |               |              |                   |                      | larm                 | ıs                | Trends<br>Archive Size<br>Verify with<br>Owner |                  |                               |                              |
|--------------------------|----------------|----------------|--------------|---------------|--------------------|-------------------|--------|----------------------------|--------------------|--------------------|-----------------------|---------------|------------|--------|---------------|--------------|-------------------|----------------------|----------------------|-------------------|------------------------------------------------|------------------|-------------------------------|------------------------------|
| Description              | Digital Input  | Digital Output | Analog Input | Analog Output | Hardwire Interlock | BAS Communication | Status | Temperature or Other Value | Cooling Percentage | Heating Percentage | Dynamic Flow Diagrams | O & M Manuals | Start/Stop | Status | Display Value | Adjust Value | Run Time Totalize | Operator Workstation | Remote Device/ Email | Life Safety Alarm | Run Time                                       | 30 Minute / Week | Change of Value / 800 Samples | Change of Value / 30 Samples |
| RTU PACKAGED AIR HANDLER |                |                |              |               |                    |                   |        |                            |                    |                    |                       |               |            |        |               |              |                   |                      |                      |                   |                                                |                  |                               |                              |
| Supply Fan Motor         |                |                |              |               |                    |                   |        |                            |                    |                    | Х                     |               | Χ          | Χ      | Х             |              | Χ                 |                      |                      |                   |                                                |                  |                               |                              |

| Fan Start/Stop                   | Ī | X |   |   | Х |   |   | ĺ |   |   |   |   |   |   |   |   |   |   | . [ |
|----------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| Fan Status                       | Х | - |   |   | Х | Х |   |   |   |   |   |   |   | Х |   |   | Х |   |     |
| Fan System Fault                 | Х |   |   |   | Х | Х |   |   |   |   |   |   |   | Х | Х |   |   |   |     |
| Fan Speed                        |   |   |   | Х | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   | Х   |
| Frequency Output                 |   |   |   | Х | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Percent Output                   |   |   |   | Х | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Current                          |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Torque                           |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Power                            |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Drive Temperature                |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| MWH                              |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Runtime                          |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   | Х |   |     |
| DC Bus Volts                     |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| PID Feedback                     |   |   | Х |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Fan Fault 1                      | Х |   |   |   | Χ | Х |   |   |   |   |   |   |   | Χ | Х | Х |   |   | Χ   |
| Fan Fault 2                      | Х |   |   |   | Χ | Х |   |   |   |   |   |   |   | Χ | Х | Х |   |   | Χ   |
| Relief Fan Motor (if applicable) |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Fan Start/Stop                   |   | Х |   |   | Х |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Fan Status                       | Х |   |   |   | Х | Х |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Fan System Fault                 | Х |   |   |   | Χ | Χ |   |   |   |   |   |   |   | Χ |   |   |   |   |     |
| Fan Speed                        |   |   |   | Χ | Χ |   | Х |   |   |   |   |   |   |   |   |   |   |   |     |
| Frequency Output                 |   |   |   | Χ | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Percent Output                   |   |   |   | Χ | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Current                          |   |   | Х |   | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Torque                           |   |   | Χ |   | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Power                            |   |   | Х |   | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Drive Temperature                |   |   | Х |   | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| MWH                              |   |   | Х |   | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Runtime                          |   |   | Х |   | Χ |   |   |   |   |   |   |   |   |   |   |   | Χ |   |     |
| DC Bus Volts                     |   |   | Х |   | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| PID Feedback                     |   |   | Х |   | Χ |   |   |   |   |   |   |   |   |   |   |   |   |   |     |
| Fan Fault 1                      | Х |   |   |   | Χ | Χ |   |   |   |   |   |   |   | Χ | Χ | Χ |   | - | Χ   |
| Fan Fault 2                      | Х |   |   |   | Χ | Χ |   |   |   |   |   |   |   | Χ | Х | Х |   |   | Χ   |
| Discharge Air Static Pressure    |   |   | Χ |   |   |   | Х |   | Х | Χ |   | Χ | Χ | Χ |   |   |   | Χ |     |
| Low Temp Detector (Freeze Stat)  | Х |   |   |   |   | Χ |   |   | Х | Χ | Χ | Χ |   | Χ | Χ | Χ |   | - | Χ   |
| Smoke Detector - Return Air      | Χ |   |   |   |   |   |   |   | Х |   | Χ | Χ |   | Χ | Χ | Χ |   |   | Χ   |
| Smoke Detector - Supply Air      | Χ |   |   |   |   |   |   |   | Х |   | Χ | Χ |   | Χ | Х | Χ |   |   | Χ   |
| Pre-Filter Differential Pressure |   |   | Χ |   |   |   | Χ |   | Χ | Χ | Χ | Χ |   | Χ | Χ |   |   |   | Χ   |

| 1                                     | ı                                                | ı        | 1                                                | ı        | 1 1      | 1 | ı | 1 ' | l ! | Ī |   |   | l | l | 1 1 |   | İ | ı | 1 ' | ı             | 1 1 | ,             | i I       |
|---------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|----------|----------|---|---|-----|-----|---|---|---|---|---|-----|---|---|---|-----|---------------|-----|---------------|-----------|
| High Static Pressure Switch           | Х                                                | <u> </u> | <u> </u>                                         | <u> </u> |          |   |   |     |     | Χ | Χ |   | Х | Х |     |   | Χ | Χ | Χ   |               |     | Ш             | Χ         |
| Return/Relief Air Damper              | <u> </u>                                         | <u> </u> | <u> </u>                                         | Х        |          |   | Х |     |     |   |   |   |   |   |     |   |   |   |     | <u> </u>      |     | igsqcup       | Щ         |
| Return Air Temperature                | igspace                                          |          | Х                                                |          |          |   | Х |     |     | Х |   | Χ | Х | Х |     | Χ | Χ |   |     | $\bigsqcup$   |     |               | Χ         |
| Supply Air Temperature                | igspace                                          |          | Х                                                |          |          |   | Χ |     |     | Χ |   | Χ | Х | Х |     | Χ | Χ |   |     | $\bigsqcup$   |     |               | Χ         |
| Outside Air Temperature               | igspace                                          | <u> </u> | Х                                                | <u> </u> |          |   | Χ |     |     | Χ |   | Χ | Х | Х |     | Χ | Χ |   |     |               |     |               | Χ         |
| DX Cooling                            | igspace                                          | <u> </u> | <u> </u>                                         | Х        |          |   |   | Χ   |     | Χ | Х |   | Х | Х |     |   |   |   |     |               |     |               | Χ         |
| Natural Gas Heating                   | igspace                                          | <u> </u> | <u> </u>                                         | Х        |          |   |   |     | Х   | Χ |   |   | Х |   |     |   |   |   |     |               |     |               | Χ         |
| Fan Inlet High Static Pressure Switch | Х                                                | <u> </u> | <u> </u>                                         | <u> </u> |          | Х |   |     |     |   |   |   |   |   |     |   | Χ | Χ | Χ   |               |     |               | Χ         |
| Space temperature                     | igspace                                          | <u> </u> | Х                                                | <u> </u> |          |   | Х |     |     |   |   |   |   | Х |     |   |   |   |     |               | Х   |               | Ш         |
| Space temperature setpoint            | <del>                                     </del> | <u> </u> | <del>                                     </del> | Х        |          |   |   |     |     |   |   |   |   | Х | Х   |   |   |   |     |               |     | $\square$     | H         |
| Building Static Pressure              | <del> </del>                                     |          | Х                                                |          |          |   | Х |     |     | Х | Χ |   |   | Х | Х   |   | X | X | Χ   |               | Х   |               |           |
| Miscellaneous Systems                 |                                                  |          |                                                  |          |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     |               |     |               |           |
| Electric Unit Heaters                 |                                                  |          |                                                  |          |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     |               |     |               |           |
| Space temperature                     |                                                  |          | Х                                                |          |          |   | Х |     |     |   |   |   |   | Х |     |   | Χ | Х |     |               | Х   |               |           |
| Space temperature setpoint            |                                                  |          |                                                  | Х        |          |   |   |     |     |   |   |   |   | Χ | Х   |   |   |   |     |               |     |               |           |
|                                       |                                                  |          |                                                  |          |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     |               |     |               |           |
| Baseboard Electric Heaters            |                                                  |          |                                                  |          |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     |               |     |               | Ш         |
| Space temperature                     |                                                  |          | Х                                                |          |          |   | Χ |     |     |   |   |   |   | Χ |     |   | Χ | Х |     |               | Х   |               | Ш         |
| Space temperature setpoint            | _                                                |          | <u> </u>                                         | Х        |          |   |   |     |     |   |   |   |   | Х | Х   |   |   |   |     |               |     | ightharpoonup |           |
| Domestic Hot Water System             |                                                  |          |                                                  |          |          |   |   |     |     | Х |   | Х | Х |   |     | Х |   |   |     |               |     |               |           |
| Hot Water Supply Temperature          | igspace                                          |          | Х                                                |          |          |   | Χ |     |     |   |   |   |   |   |     |   | Χ |   |     |               |     |               | Щ         |
| Recirculation Pump Start/Stop         | igspace                                          | Х        | <u> </u>                                         | <u> </u> |          |   |   |     |     |   |   |   | Χ |   |     |   |   |   |     | Х             |     |               | Х         |
| Recirculation Pump Status             | Х                                                | <u> </u> | igsqcup                                          | <u> </u> |          | Х |   |     |     |   |   |   |   |   |     |   | Χ | Χ | Х   |               |     |               | Х         |
|                                       | <u> </u>                                         | <u> </u> | <u> </u>                                         | <u> </u> |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     |               |     | igsqcup       | $\square$ |
| Exhaust Fans                          | igspace                                          |          | <u> </u>                                         |          |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     | $\bigsqcup !$ |     |               | Щ         |
| Fan(s) Start/Stop                     | <u> </u>                                         | Х        | <u> </u>                                         | ļ        |          | Х |   |     |     | Χ |   | Χ | Χ |   |     | Χ |   |   |     | Х             |     | لــــا        | Щ         |
| Fan(s) Status                         | Х                                                |          | <u> </u>                                         |          |          | Х |   |     |     | Χ |   | Χ | Χ |   |     | Χ | Χ | Χ | Χ   |               |     | <u> </u>      | Х         |
|                                       | igspace                                          | <u> </u> | ↓                                                | <u> </u> | <u> </u> |   |   |     |     | Χ |   | Χ | Χ |   |     | Χ |   |   |     | $\bigsqcup$   |     | igsqcup       | igwdow    |
| Fire Alarm System                     | ـــــــــــــــــــــــــــــــــــــ            | <u> </u> | <u> </u>                                         | <u> </u> |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     |               |     | igsqcut       | $\square$ |
| Alarm Point                           | Х                                                | <u> </u> | ↓                                                | <u> </u> |          | Х |   |     |     |   |   |   |   |   |     |   | Χ | Χ | Χ   | $\bigsqcup$   |     | Ш             | $\sqcup$  |
| Common Trouble                        | Х                                                | <u> </u> |                                                  | <u> </u> |          | Х |   |     |     |   |   |   |   |   |     |   | Χ | Χ | Χ   | $\bigsqcup$   |     | $\square$     | $\square$ |
|                                       |                                                  |          |                                                  |          |          |   |   |     |     |   |   |   |   |   |     |   |   |   |     |               |     |               |           |

## **END OF SECTION 23 0993**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 1123 FACILITY NATURAL-GAS PIPING

## **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section Includes:
  - 1. Pipes, tubes, and fittings.
  - 2. Piping specialties.
  - 3. Piping and tubing joining materials.
  - 4. Valves.
  - 5. Pressure regulators.
  - 6. Service meters
  - Mechanical sleeve seals.
  - 8. Grout.
  - 9. Concrete bases.
  - 10. This division is to pay all costs associated with the gas meter that are required by the local gas company/authority.

# 1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

## 1.4 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
  - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 2 psig but not more than 5 psig, and is reduced to secondary pressure of more than 0.5 psig but not more than 2 psig.
- C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

# 1.5 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of the following:
  - 1. Piping specialties.
  - Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
  - 3. Pressure regulators. Indicate pressure ratings and capacities.

- 4. Dielectric fittings.
- 5. Dielectric fittings.
- 6. Mechanical sleeve seals.
- 7. Escutcheons.
- C. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
  - 1. Shop Drawing Scale: 1/4 inch per foot.
- D. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
  - 1. Detail fabrication and assembly of seismic restraints.
  - 2. Design Calculations: Calculate requirements for selecting seismic restraints.
- E. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.
- F. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- G. Qualification Data: For qualified professional engineer.
- H. Welding certificates.
- I. Field quality-control reports.
- J. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

## 1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

#### 1.7 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
- D. Protect stored PE pipes and valves from direct sunlight.

## 1.8 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

# **PART 2 - PRODUCTS**

# 2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
  - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
  - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
  - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
  - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
    - a. Material Group: 1.1.
    - b. End Connections: Threaded or butt welding to match pipe.
    - c. Lapped Face: Not permitted underground.
    - d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
    - e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

# 2.2 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
  - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
  - 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
  - 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
  - 4. Corrugated stainless-steel tubing with polymer coating.
  - 5. Operating-Pressure Rating: 0.5 psig.
  - 6. End Fittings: Zinc-coated steel.
  - 7. Threaded Ends: Comply with ASME B1.20.1.
  - 8. Maximum Length: 72 inches.
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
  - 1. Copper-alloy convenience outlet and matching plug connector.
  - Nitrile seals.
  - 3. Hand operated with automatic shutoff when disconnected.
  - 4. For indoor or outdoor applications.
  - 5. Adjustable, retractable restraining cable.
- C. Y-Pattern Strainers:
  - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
  - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
  - 3. Strainer Screen: **40**-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
  - 4. CWP Rating: 125 psig.
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

# 2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

# 2.4 MANUAL GAS SHUTOFF VALVES

- A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
  - 1. CWP Rating: 125 psig.
  - 2. Threaded Ends: Comply with ASME B1.20.1.
  - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
  - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
  - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
  - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- B. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
  - 1. CWP Rating: 125 psig.
  - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
  - Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
  - 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- C. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. BrassCraft Manufacturing Company; a Masco company.
    - b. Conbraco Industries, Inc.; Apollo Div.
    - c. Lyall, R. W. & Company, Inc.
    - d. McDonald, A. Y. Mfg. Co.
    - e. Perfection Corporation; a subsidiary of American Meter Company.
  - 2. Body: Bronze, complying with ASTM B 584.
  - 3. Ball: Chrome-plated brass.
  - 4. Stem: Bronze; blowout proof.
  - Seats: Reinforced TFE; blowout proof.
  - 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
  - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
  - 8. CWP Rating: 600 psig.
  - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
  - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. BrassCraft Manufacturing Company; a Masco company.
  - b. Conbraco Industries, Inc.; Apollo Div.
  - c. Lyall, R. W. & Company, Inc.
  - d. McDonald, A. Y. Mfg. Co.
  - e. Perfection Corporation; a subsidiary of American Meter Company.
- 2. Body: Bronze, complying with ASTM B 584.
- 3. Ball: Chrome-plated bronze.
- 4. Stem: Bronze; blowout proof.
- 5. Seats: Reinforced TFE; blowout proof.
- 6. Packing: Threaded-body packnut design with adjustable-stem packing.
- 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 8. CWP Rating: 600 psig.
- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim: MSS SP-110.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. BrassCraft Manufacturing Company; a Masco company.
    - b. Conbraco Industries, Inc.; Apollo Div.
    - c. Lyall, R. W. & Company, Inc.
    - d. McDonald, A. Y. Mfg. Co.
    - e. Perfection Corporation; a subsidiary of American Meter Company.
  - 2. Body: Bronze, complying with ASTM B 584.
  - 3. Ball: Chrome-plated bronze.
  - Stem: Bronze; blowout proof.
  - 5. Seats: Reinforced TFE.
  - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
  - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
  - 8. CWP Rating: 600 psig.
  - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
  - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Bronze Plug Valves: MSS SP-78.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Lee Brass Company.
    - b. McDonald, A. Y. Mfg. Co.
  - 2. Body: Bronze, complying with ASTM B 584.

- 3. Plug: Bronze.
- 4. Ends: Threaded, socket, or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 5. Operator: Square head or lug type with tamperproof feature where indicated.
- 6. Pressure Class: 125 psig.
- 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- G. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
  - a. McDonald, A. Y. Mfg. Co.
  - b. Mueller Co.; Gas Products Div.
  - c. Xomox Corporation; a Crane company.
  - 2. Body: Cast iron, complying with ASTM A 126, Class B.
  - 3. Plug: Bronze or nickel-plated cast iron.
  - 4. Seat: Coated with thermoplastic.
  - 5. Stem Seal: Compatible with natural gas.
  - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
  - 7. Operator: Square head or lug type with tamperproof feature where indicated.
  - 8. Pressure Class: 125 psig.
  - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
  - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- H. Cast-Iron, Lubricated Plug Valves: MSS SP-78.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Flowserve.
    - b. Homestead Valve; a division of Olson Technologies, Inc.
    - c. McDonald, A. Y. Mfg. Co.
    - d. Milliken Valve Company.
    - e. Mueller Co.; Gas Products Div.
    - f. R&M Energy Systems, A Unit of Robbins & Myers, Inc.
  - 2. Body: Cast iron, complying with ASTM A 126, Class B.
  - 3. Plug: Bronze or nickel-plated cast iron.
  - 4. Seat: Coated with thermoplastic.
  - 5. Stem Seal: Compatible with natural gas.
  - 6. Ends: Threaded or flanged as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
  - 7. Operator: Square head or lug type with tamperproof feature where indicated.
  - 8. Pressure Class: 125 psig.
  - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
  - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

# 2.5 EARTHQUAKE VALVES

- A. Earthquake Valves: Comply with ASCE 25.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
    - a. Vanguard Valves, Inc.
  - 2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
  - 3. Maximum Operating Pressure: 5 psig.
  - 4. Cast-aluminum body with nickel-plated chrome steel internal parts.
  - 5. Nitrile-rubber valve washer.
  - 6. Sight windows for visual indication of valve position.
  - 7. Threaded end connections complying with ASME B1.20.1.
  - 8. Wall mounting bracket with bubble level indicator.
- B. Earthquake Valves: Comply with ASCE 25.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Pacific Seismic Products, Inc.
  - 2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
  - 3. Maximum Operating Pressure: 7 psig.
  - 4. Cast-aluminum body with stainless-steel internal parts.
  - 5. Nitrile-rubber, reset-stem o-ring seal.
  - 6. Valve position, open or closed, indicator.
  - 7. Composition valve seat with clapper held by spring or magnet locking mechanism.
  - 8. Level indicator.
  - End Connections: Threaded for valves NPS 2 and smaller; flanged for valves NPS 2-1/2 and larger.

# 2.6 PRESSURE REGULATORS

- A. General Requirements:
  - 1. Single stage and suitable for natural gas.
  - 2. Steel jacket and corrosion-resistant components.
  - 3. Elevation compensator.
  - 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
  - Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Actaris.
    - b. American Meter Company.
    - c. Eclipse Combustion, Inc.
    - d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
    - e. Invensys.
    - f. Maxitrol Company.
    - g. Richards Industries; Jordan Valve Div.

- 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
- 6. Orifice: Aluminum; interchangeable.
- 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
- 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
- 10. Overpressure Protection Device: Factory mounted on pressure regulator.
- 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- 12. Maximum Inlet Pressure: 5 psig.

# 2.7 DIELECTRIC FITTINGS

#### A. Dielectric Unions:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. Capitol Manufacturing Company.
  - b. Central Plastics Company.
  - c. Hart Industries International, Inc.
  - d. McDonald, A. Y. Mfg. Co.
  - e. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
  - f. Wilkins; Zurn Plumbing Products Group.
- 2. Minimum Operating-Pressure Rating: 150 psig.
- 3. Combination fitting of copper alloy and ferrous materials.
- 4. Insulating materials suitable for natural gas.
- 5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

#### B. Dielectric-Flange Kits:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - a. Advance Products & Systems, Inc.
  - b. Calpico Inc.
  - c. Central Plastics Company.
  - d. Pipeline Seal and Insulator, Inc.
- 2. Minimum Operating-Pressure Rating: 150 psig.
- 3. Companion-flange assembly for field assembly.
- 4. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or PE bolt sleeves, phenolic washers, and steel backing washers.
- 5. Insulating materials suitable for natural gas.

6. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

# 2.8 SLEEVES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

# 2.9 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Advance Products & Systems, Inc.
    - b. Calpico Inc.
    - c. Metraflex Company (The).
    - d. Pipeline Seal and Insulator, Inc.
  - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe and sleeve.
  - 3. Pressure Plates: Stainless steel.
  - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one nut and bolt for each sealing element.

# 2.10 ESCUTCHEONS

- A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to fit around pipe or tube, and OD that completely covers opening.
- B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Escutcheons: With set screw.
  - 1. Finish: Polished chrome-plated or rough brass.
- D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.
  - Finish: Polished chrome-plated or rough brass.
- E. One-Piece, Stamped-Steel Escutcheons: With set screw or spring clips and chrome-plated finish.
- F. Split-Plate, Stamped-Steel Escutcheons: With concealed hinge, set screw or spring clips, and chrome-plated finish.
- G. One-Piece, Floor-Plate Escutcheons: Cast-iron floor plate.
- H. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

# 2.11 **GROUT**

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
  - 1. Characteristics: Post-hardening, volume adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
  - 2. Design Mix: 5000-psi, 28-day compressive strength.
  - 3. Packaging: Premixed and factory packaged.

# 2.12 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

# **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

# 3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

# 3.3 INDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Install escutcheons at penetrations of interior walls, ceilings, and floors.

# 1. New Piping:

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
- b. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
- c. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
- d. Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
- e. Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.

- f. Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
- g. Piping in Unfinished Service Spaces: One-piece, stamped-steel type with set screw or spring clips.
- h. Piping in Equipment Rooms: One-piece, cast-brass type.
- i. Piping in Equipment Rooms: One-piece, stamped-steel type with set screw or spring clips.
- j. Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
- L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
  - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches (75 mm) long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Verify final equipment locations for roughing-in.
- O. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- P. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
  - Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped.
    Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and
    same size as connected pipe. Install with space below bottom of drip to remove plug or
    cap.
- Q. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- R. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- S. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
  - 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
  - 2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
  - 3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
  - 4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
    - Exception: Tubing passing through partitions or walls does not require striker barriers.

# 5. Prohibited Locations:

- Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- b. Do not install natural-gas piping in solid walls or partitions.
- T. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- U. Connect branch piping from top or side of horizontal piping.
- V. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- W. Do not use natural-gas piping as grounding electrode.
- X. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- Y. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

## 3.4 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.
- E. Install anode for metallic valves in underground PE piping.

# 3.5 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Welded Joints:
  - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
  - 2. Bevel plain ends of steel pipe.
  - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- D. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

#### 3.6 HANGER AND SUPPORT INSTALLATION

- A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- B. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
  - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
  - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.

- 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
- 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
- 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

#### 3.7 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

#### 3.8 LABELING AND IDENTIFYING

- A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

# 3.9 PAINTING

- A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.
- B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
  - 1. Alkyd System: MPI EXT 5.1D.
    - a. Prime Coat: Alkyd anticorrosive metal primer.
    - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
    - c. Topcoat: Exterior alkyd enamel (semigloss).
    - d. Color: Gray.
- C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
  - Latex Over Alkyd Primer System: MPI INT 5.1Q.
    - a. Prime Coat: Quick-drying alkyd metal primer.
    - b. Intermediate Coat: Interior latex matching topcoat.
    - c. Topcoat: Interior latex (flat).
    - d. Color: Gray.
  - 2. Alkyd System: MPI INT 5.1E.
    - a. Prime Coat: Quick-drying alkyd metal primer.
    - b. Intermediate Coat: Interior alkyd matching topcoat.
    - c. Topcoat: Interior alkyd (flat).
    - d. Color: Gray.
- D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

# 3.10 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base.
  - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
  - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
  - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
  - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
  - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
  - 6. Use 3000-psig 28-day, compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

# 3.11 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
  - 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

#### 3.12 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.

## 3.13 INDOOR PIPING SCHEDULE

- A. Aboveground, piping NPS 2 and smaller shall be the following:
  - Steel pipe with wrought-steel fittings and welded or threaded joints.
- B. Aboveground, piping NPS 2-1/2" and larger shall be the following:
  - 1. Steel pipe with wrought-steel fittings and welded joints.
- C. Underground, below building, piping shall be the following:
  - 1. Steel pipe with wrought-steel fittings and welded joints in a vented conduit.
- D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

# 3.14 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
  - 1. One-piece, bronze ball valve with bronze trim.
  - 2. Bronze plug valve.
- B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
  - 1. Bronze plug valve.

2. Cast-iron, nonlubricated plug valve.

**END OF SECTION 23 1123** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 3001 COMMON DUCT REQUIREMENTS

## **PART 1 - PRODUCTS**

#### 1.1 SUMMARY

- A. Includes But Not Limited To:
  - 1. General procedures and requirements for ductwork.
  - 2. Repair leaks in ductwork, as identified by smoke test, at no additional cost to Owner.
  - 3. Soundproofing procedures for duct penetrations of walls, ceilings, and floors in mechanical equipment rooms.
- B. Related Sections:
  - 1. Division 07: Quality of Acoustic Sealant.
  - 2. Section 23 0500: Common Work Results for HVAC
  - 3. Section 23 0593: Testing Adjusting and Balancing for HVAC.

# 1.2 SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Samples: Sealer and gauze proposed for sealing ductwork.
- C. Quality Assurance / Control:
  - 1. Manufacturer's installation manuals providing detailed instructions on assembly, joint sealing, and system pressure testing for leaks.
  - 2. Specification data on sealer and gauze proposed for sealing ductwork.

# 1.3 QUALITY ASSURANCE

- A. Requirements: Construction details not specifically called out in Contract Documents shall conform to applicable requirements of SMACNA HVAC Duct Construction Standards.
- B. Pre-Installation Conference: Schedule conference immediately before installation of ductwork.

## **PART 2 - PRODUCTS**

# 2.1 Finishes, Where Applicable: Colors as selected by Architect.

# 2.2 Duct Hangers:

- A. One inch by **18 ga** galvanized steel straps or steel rods as shown on Drawings, and spaced not more than **96 inches** apart. Do not use wire hangers.
  - 1. Attaching screws at trusses shall be **2 inch** No. 10 round head wood screws. Nails not allowed.
  - 2. Attach threaded rod to steel joist with Grinnell Steel washer plate Fig. 60 ph-1. Double nut connection.

# 2.3 Penetration Soundproofing Materials:

- A. Insulation for Packing: Fiberglass.
- B. Calking: Polysulphide.
- C. Escutcheon Frame: **22 ga** galvanized iron **2 inches** wide.

#### **PART 3 - EXECUTION**

#### 3.1 INSTALLATION

A. During installation, protect open ends of ducts by covering with plastic sheet tied in place to prevent entrance of debris and dirt.

- B. Make necessary allowances and provisions in installation of sheet metal ducts for structural conditions of building. Revisions in layout and configuration may be allowed, with prior written approval of Architect. Maintain required airflows in suggesting revisions.
- C. Hangers And Supports:
  - 1. Install pair of hangers close to each transverse joint and elsewhere as required by spacing indicated in table on Drawings.
  - 2. Install upper ends of hanger securely to floor or roof construction above by method shown on Drawings.
  - 3. Attach strap hangers to ducts with cadmium-plated screws. Use of pop rivets or other means will not be accepted.
  - 4. Where hangers are secured to forms before concrete slabs are poured, cut off flush all nails, strap ends, and other projections after forms are removed.
  - 5. Secure vertical ducts passing through floors by extending bracing angles to rest firmly on floors without loose blocking or shimming. Support vertical ducts, which do not pass-through floors, by using bands bolted to walls, columns, etc. Size, spacing, and method of attachment to vertical ducts shall be same as specified for hanger bands on horizontal ducts.

# D. Penetration Soundproofing

- 1. Pack space between ducts and structure full of fiberglass insulation of sufficient thickness to be wedged tight, allowing space for application of calking.
- 2. Provide calking at least **2 inches** thick between duct and structure on both ends of opening through structure.
- 3. Provide metal escutcheon on Equipment Room side. Secure escutcheon to wall.

# 3.2 CLEANING

A. Clean interior of duct systems before final completion.

**END OF SECTION 23 3001** 

# SECTION 23 3113 METAL DUCTS

## **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section Includes:
  - 1. Single-wall rectangular ducts and fittings.
  - 2. Single-wall **round** ducts and fittings.
  - Sheet metal materials.
  - Duct liner.
  - 5. Sealants and gaskets.
  - 6. Hangers and supports.
  - 7. Seismic-restraint devices.

# B. Related Sections:

- 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.
- 3. Section 230713 "Duct Insulation" for duct insulation and fire wrap.

# 1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Seismic Performance: Duct hangers and supports shall withstand the effects of earthquake motions determined according to SEI/ASCE 7 and with the requirements specified in Section 230548 "Vibration and Seismic Controls for HVAC."
  - 1. For equipment with a seismic importance factor of **1.0** the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
  - 2. For equipment with a seismic importance factor of **1.5** the term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- C. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible"
- D. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

# 1.4 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of the following products:

- 1. Liners and adhesives.
- 2. Sealants and gaskets.
- 3. Seismic-restraint devices.

# C. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- 13. Duct fabrication shall not begin until shop drawings have been submitted and reviewed by the mechanical engineer.

## D. Delegated-Design Submittal:

- 1. Sheet metal thicknesses.
- 2. Joint and seam construction and sealing.
- 3. Reinforcement details and spacing.
- 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- 5. Design Calculations: Calculations for selecting hangers and supports, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation and seismic restraints.

# 1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
  - Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
  - 2. Suspended ceiling components.
  - 3. Structural members to which duct will be attached.
  - 4. Size and location of initial access modules for acoustical tile.
  - 5. Penetrations of smoke barriers and fire-rated construction.
  - 6. Items penetrating finished ceiling including, but not limited to the following:
    - a. Lighting fixtures.
    - b. Air outlets and inlets.

- c. Speakers.
- d. Sprinklers.
- e. Access panels.
- f. Perimeter moldings.
- B. Field quality-control reports.

#### 1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to [AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.] [AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.] [AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.]
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
  - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
  - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
  - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

#### **PART 2 - PRODUCTS**

#### 2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Duct dimensions shown on drawings are inside clear dimensions.
- E. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

# 2.2 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.
- B. Duct dimensions shown on drawings are inside clear dimensions.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints,"

- for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
  - 1. Maximum Thermal Conductivity: **0.27 Btu x in./h x sq. ft. x deg F** at **75 deg F** mean temperature.
  - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
  - 3. Coat insulation with antimicrobial coating.
  - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- G. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.
  - 1. Maximum Thermal Conductivity: **0.25 Btu x in./h x sq. ft. x deg F** at **75 deg F** mean temperature.
- H. **Inner Duct:** Minimum **0.028-inch** perforated galvanized sheet steel having **3/32-inch-**diameter perforations, with overall open area of 23 percent. Inner duct shall be solid sheet steel a minimum of 10 feet downstream of humidifiers or air washers.
- I. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Traverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- J. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."

## 2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Duct dimensions shown on drawings are inside clear dimensions.
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
  - 1. Transverse Joints in Ducts Larger Than **60 Inches** in Diameter: Flanged.
- D. Longitudinal Seams: Not allowed.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials

involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

# 2.4 DOUBLE-WALL ROUND DUCTS AND FITTINGS

- A. Duct dimensions shown on drawings are inside clear dimensions.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
  - Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
    - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
  - 2. Longitudinal Seams: Not allowed.
  - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. **Inner Duct**: Minimum **0.028-inch** perforated galvanized sheet steel having **3/32-inch-**diameter perforations, with overall open area of 23 percent.
  - 1. Inner duct shall be solid sheet steel a minimum of 15 feet downstream of humidifiers and/or air washers.
- D. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
  - 1. Maximum Thermal Conductivity: **0.27 Btu x in./h x sq. ft. x deg F** at **75 deg F** mean temperature.
  - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
  - 3. Coat insulation with antimicrobial coating.
  - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- E. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.
  - 1. Maximum Thermal Conductivity: **0.25 Btu x in./h x sq. ft. x deg F**at **75 deg F** mean temperature.

# 2.5 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653.
  - 1. Galvanized Coating Designation: **G90**.
  - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A 36, steel plates, shapes, and bars; black and galvanized.

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, **1/4-inch** minimum diameter for lengths **36 inches** or less; **3/8-inch** minimum diameter for lengths longer than **36 inches**.

# 2.6 DUCT LINER

- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. CertainTeed Corporation; Insulation Group.
    - b. Johns Manville.
    - c. Knauf Insulation.
    - d. Owens Corning.
  - 2. Maximum Thermal Conductivity:
    - a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
    - b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
  - 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
  - 4. Water-Based Liner Adhesive:
    - a. Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
    - b. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Aeroflex USA Inc.
    - b. Armacell LLC.
    - c. Rubatex International, LLC
  - 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
  - 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
    - a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Insulation Pins and Washers:
  - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, , length to suit depth of insulation indicated with integral **1-1/2-inch** galvanized carbon-steel washer.
    - a. 0.135-inch-diameter shank.
  - 2. Insulation-Retaining Washers: With beveled edge sized as required to hold insulation securely in place but not less than **1-1/2 inches** in diameter.

- a. Self-locking washers formed from 0.016-inch-thick aluminum.
- D. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
  - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
  - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
  - 3. Butt transverse joints without gaps, and coat joint with adhesive.
  - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
  - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
  - 6. Secure liner with mechanical fasteners **4 inches** from corners and at intervals not exceeding **12 inches**transversely; at **3 inches**from transverse joints and at intervals not exceeding **18 inches**longitudinally.
  - 7. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
    - a. Fan discharges.
    - b. Intervals of lined duct preceding unlined duct.
  - 8. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
    - a. Sheet Metal Inner Duct Perforations: **3/32-inch** diameter, with an overall open area of 23 percent.
  - 9. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated build-outs (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

# 2.7 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
  - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
  - 2. Tape Width: 4 inches.
  - 3. Sealant: Modified styrene acrylic.
  - 4. Water resistant.
  - 5. Mold and mildew resistant.
  - 6. Maximum Static-Pressure Class: **10-inch wg**, positive and negative.
  - 7. Service: Indoor and outdoor.
  - 8. Service Temperature: Minus 40 to plus 200 deg F.

- Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Water-Based Joint and Seam Sealant:
  - 1. Application Method: Brush on.
  - 2. Solids Content: Minimum 65 percent.
  - 3. Shore A Hardness: Minimum 20.
  - Water resistant.
  - Mold and mildew resistant.
  - 6. VOC: Maximum 75 g/L (less water).
  - 7. Maximum Static-Pressure Class: **10-inch wg**, positive and negative.
  - 8. Service: Indoor or outdoor.
  - 9. Substrate: Compatible with galvanized sheet steel, stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
  - Application Method: Brush on.
  - Base: Synthetic rubber resin.
  - 3. Solvent: Toluene and heptane.
  - 4. Solids Content: Minimum 60 percent.
  - 5. Shore A Hardness: Minimum 60.
  - Water resistant.
  - 7. Mold and mildew resistant.
  - 8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 9. VOC: Maximum 395 g/L.
  - 10. Maximum Static-Pressure Class: **10-inch wg**, positive or negative.
  - 11. Service: Indoor or outdoor.
  - 12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
  - 1. General: Single-component, acid-curing, silicone, elastomeric.
  - 2. Type: S.
  - Grade: NS.
  - 4. Class: 25.
  - 5. Use: O.
  - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- G. Round Duct Joint O-Ring Seals:
  - 1. Seal shall provide maximum leakage class of **3 cfm/100 sq. ft. at 1-inch wg** and shall be rated for **10-inch wg** static-pressure class, positive or negative.
  - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.

3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

# 2.8 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," **Table 5-1**, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
  - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
  - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
  - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

# 2.9 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, **provide products by one of the following**:
  - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
  - 2. Ductmate Industries, Inc.
  - 3. Hilti Corp.
  - Kinetics Noise Control.
  - 5. Loos & Co.; Cableware Division.
  - 6. Mason Industries.
  - 7. TOLCO; a brand of NIBCO INC.
  - 8. Vibro-Acoustics
  - 9. Unistrut Corporation; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by **an evaluation service member of the ICC Evaluation Service**.
  - Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least **four** times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- D. Restraint Cables: **ASTM A 492, stainless**-steel cables with end connections made of cadmiumplated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.

- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
- F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

# **PART 3 - EXECUTION**

# 3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install **round** ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of **2 inch**, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

  Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction,"

  Appendix G, "Duct Cleanliness for New Construction Guidelines".

# 3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

# 3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
  - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
  - 2. Outdoor, Supply-Air Ducts: Seal Class A.
  - 3. Outdoor, Exhaust Ducts: Seal Class A.
  - 4. Outdoor, Return-Air Ducts: Seal Class A.
  - 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class A.
  - Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
  - 7. Unconditioned Space, Exhaust Ducts: Seal Class A.
  - 8. Unconditioned Space, Return-Air Ducts: Seal Class A.
  - Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class A.
  - 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
  - 11. Conditioned Space, Exhaust Ducts: Seal Class A.
  - 12. Conditioned Space, Return-Air Ducts: Seal Class A.

# 3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
  - 1. Where practical, install concrete inserts before placing concrete.
  - Install powder-actuated concrete fasteners after concrete is placed and completely cured.
  - Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inchesthick.
  - Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inchesthick.
  - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," **Table 5-1**, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within **24 inches** of each elbow and within **48 inches** of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of **16** feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

## 3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with the requirements specified in Section 230548 "Vibration and Seismic Controls for HVAC."
  - 1. Comply with ASCE/SEI 7.
  - 2. Space lateral supports a maximum of **40 feet** o.c., and longitudinal supports a maximum of **80 feet** o.c.
  - 3. Brace a change of direction longer than **12 feet**.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
  - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
  - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
  - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
  - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
  - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

## 3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

# 3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

# 3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:

- Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
- 2. Test the following systems:
  - a. Supply Ducts with a Pressure Class of **2-Inch wg** or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
  - b. Return Ducts with a Pressure Class of **2-Inch wg** or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
  - c. Exhaust Ducts with a Pressure Class of **2-Inch wg** or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
  - d. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Test for leaks before applying external insulation.
- Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give **seven** days' advance notice for testing.
- C. Duct System Cleanliness Tests:
  - 1. Visually inspect duct system to ensure that no visible contaminants are present.
  - 2. Any liner showing evidence that is has wet at any time shall be removed and replaced with new liner.
    - a. Disinfect affected sheet metal, and pins.
    - b. Install new liner per specifications
    - c. Seal friable edges and seams of repaired liner.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

# 3.9 DUCT CLEANING

- Clean new and existing duct systems before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
  - Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
  - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
  - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:

- 1. When venting vacuuming system inside the building, use HEPA filtration with **99.97 percent** collection efficiency for **0.3-micron**-size (or larger) particles.
- 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
  - 1. Air outlets and inlets (registers, grilles, and diffusers).
  - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
  - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
  - 4. Coils and related components.
  - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
  - 6. Supply-air ducts, dampers, actuators, and turning vanes.
  - 7. Dedicated exhaust and ventilation components and makeup air systems.

# E. Mechanical Cleaning Methodology:

- 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
- 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
- 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
- 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
- 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
- 6. Provide drainage and cleanup for wash-down procedures.
- 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

# 3.10 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

## 3.11 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel.
- B. Ductwork running in areas where there are no ceilings or when noted on the drawings shall be doubled wall duct and shall meet the requirements indicated below.
- C. Supply Ducts:
  - Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:

- a. Pressure Class: Positive 2-inch wg.
- b. Minimum SMACNA Seal Class: A.
- c. Minimum SMACNA Seal Class: A.
- d. SMACNA Leakage Class for Rectangular: 16.
- e. SMACNA Leakage Class for Round: 8.
- 2. Ducts Connected to Constant-Volume Air-Handling Units:
  - a. Pressure Class: Positive 3-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 8.
  - d. SMACNA Leakage Class for Round: 4.
- 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
  - a. Pressure Class: Positive 6-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 4.
  - d. SMACNA Leakage Class for Round: 2.
- 4. Ducts Connected to Equipment Not Listed Above:
  - a. Pressure Class: Positive 4-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 4.
  - d. SMACNA Leakage Class for Round: 2.

#### D. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
  - a. Pressure Class: Positive or negative 2-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 16.
  - d. SMACNA Leakage Class for Round: 8.
- 2. Ducts Connected to Air-Handling Units:
  - a. Pressure Class: Positive or negative 2-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 16.
  - d. SMACNA Leakage Class for Round: 8
- 3. Ducts Connected to Equipment Not Listed Above:
  - a. Pressure Class: Positive or negative 3-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 8.
  - d. SMACNA Leakage Class for Round: 4.

#### E. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
  - a. Pressure Class: Negative 2-inch wg.
  - b. Minimum SMACNA Seal Class: A.

- c. SMACNA Leakage Class for Rectangular: 16.
- d. SMACNA Leakage Class for Round: 4.
- 2. Ducts Connected to Air-Handling Units:
  - a. Pressure Class: Positive or negative 3-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 8.
  - d. SMACNA Leakage Class for Round: 4.
- 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
  - a. Pressure Class: Positive 6-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 4.
  - d. SMACNA Leakage Class for Round: 2.
- 4. Ducts Connected to Cage Wash Areas:
  - a. Type 316 .05-inch thick stainless-steel sheet.
    - 1) Exposed to View: No. 4 finish.
    - 2) Concealed: No. 2B finish.
  - b. Pressure Class: Positive or negative 6-inch wg.
  - c. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
  - d. SMACNA Leakage Class: 2.
- 5. Ducts Connected to Equipment Not Listed Above:
  - a. Pressure Class: Positive or negative 4-inch wg.
  - b. Minimum SMACNA Seal Class: A.
  - c. SMACNA Leakage Class for Rectangular: 4.
  - d. SMACNA Leakage Class for Round: 2.
- F. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
  - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
    - a. Pressure Class: Positive or negative 2-inch wg.
    - b. Minimum SMACNA Seal Class: A.
    - c. SMACNA Leakage Class for Rectangular: 16 .
    - d. SMACNA Leakage Class for Round and Flat Oval: 4.
  - 2. Ducts Connected to Air-Handling Units:
    - a. Pressure Class: Positive or negative 3-inch wg.
    - b. Minimum SMACNA Seal Class: A.
    - c. SMACNA Leakage Class for Rectangular: 8.
    - d. SMACNA Leakage Class for Round: 4.
  - 3. Ducts Connected to Equipment Not Listed Above:
    - a. Pressure Class: Positive or negative 3-inch wg.

- b. Minimum SMACNA Seal Class: A.
- c. SMACNA Leakage Class for Rectangular: 8.
- d. SMACNA Leakage Class for Round: 4.
- G. Intermediate Reinforcement:
  - Galvanized-Steel Ducts: Galvanized steel.
  - PVC-Coated Ducts:
    - a. Exposed to Airstream: Match duct material.
    - b. Not Exposed to Airstream: Match duct material.
  - 3. Stainless-Steel Ducts:
    - a. Exposed to Airstream: Match duct material.
    - b. Not Exposed to Airstream: Match duct material.
  - 4. Aluminum Ducts: Aluminum.

## H. Duct Liner Restrictions:

- Duct Liner exposed to air movement shall not be used on medium pressure ductwork (2000 to 4000 FPM velocity). See section 230713 "Duct Insulation" for insulation requirements.
- Duct Liner exposed to air movement shall not be used on high pressure ductwork (Greater than 4000 FPM velocity). See section 230713 "Duct Insulation" for insulation requirements.
- 3. All duct liner shall meet all of the requirements found in 2012 IECC
- I. Liner: (Ductwork located in Unconditioned space)
  - 1. Low Pressure Supply Air Ducts (Less than 2000 FPM velocity): **Fibrous glass, Type I**, **1-1/2 inch** thick with a minimum R value of 6.0 for ducts in unconditioned spaces.
  - 2. Supply Air Ducts: **Fibrous glass, Type I**, **1-1/2 inch** thick for ducts in unconditioned spaces.
  - 3. Return Air Ducts: **Fibrous glass, Type I**, **1-1/2 inch** thick with a minimum R value of 6.0 for ducts in unconditioned spaces.
  - 4. Return Air Ducts: Fibrous glass, Type I, 1 inch thick for ducts in conditioned spaces.
  - 5. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch thick.
  - 6. Supply Fan Plenums: **Fibrous glass, Type I**, **1-1/2 inch** thick with a minimum R value of 6.0.
  - 7. Return- and Exhaust-Fan Plenums: **Fibrous glass, Type II**, **1-1/2 inch** thick with a minimum R value of 6.0.
  - 8. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.
- J. Liner: (Ductwork located Interior to building Insulated Envelope)
  - 1. Low Pressure Supply Air Ducts (Less than 2000 FPM velocity): **Fibrous glass, Type I**, **1 inch** thick with a minimum R value of 4.0 for ducts in unconditioned spaces.
  - 2. Supply Air Ducts: **Fibrous glass, Type I, 1 inch** thick for ducts in conditioned spaces.
  - 3. Return Air Ducts: **Fibrous glass, Type I**, **1 inch** thick with a minimum R value of 4.0 for ducts in unconditioned spaces.
  - 4. Return Air Ducts: **Fibrous glass, Type I**, **1 inch** thick for ducts in conditioned spaces.
  - 5. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch thick.

- 6. Supply Fan Plenums: **Fibrous glass, Type I**, **1 inch** thick with a minimum R value of 4.0.
- 7. Return- and Exhaust-Fan Plenums: **Fibrous glass, Type II**, **1 inch** thick with a minimum R value of 4.0.
- 8. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.

# K. Double-Wall Duct Interstitial Insulation:

- 1. Supply Air Ducts: **1-1/2 inch** thick with a minimum R value of 6.0.
- 2. Return Air Ducts: 1-1/2 inch thick with a minimum R value of 6.0.
- 3. Exhaust Air Ducts: **1-1/2 inch** thick with a minimum R value of 6.0.

#### L. Exterior Ductwork Liner Insulation:

- 1. Supply Air Ducts: **2 inch** thick with a minimum R value of 8.0.
- 2. Return Air Ducts: **2 inch** thick with a minimum R value of 8.0.
- 3. Exhaust Air Ducts: **2 inch** thick with a minimum R value of 8.0.

## M. Elbow Configuration:

- Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-2, "Rectangular Elbows."
  - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
  - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
  - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
  - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
    - 1) Velocity **1000 fpm** or Lower: 1.0 radius-to-diameter ratio and three segments for 90-degree elbow.
    - 2) Velocity **1000 to 1500 fpm**: 1.5 radius-to-diameter ratio and four segments for 90-degree elbow.
    - 3) Velocity **1500 fpm** or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
    - 4) Radius-to Diameter Ratio: 1.5.
  - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
  - c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

## N. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
  - a. Rectangular Main to Rectangular Branch: 45-degree entry high efficiency take-off.

b. Rectangular Main to Round Branch: 45-degree entry high efficiency take-off.

# 2. Round:

- a. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
- b. Velocity 1000 to 1500 fpm: 45-degree entry high efficiency tap.
- c. Velocity **1500 fpm** or Higher: 45-degree lateral.

**END OF SECTION 23 3113** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 3300 AIR DUCT ACCESSORIES

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Backdraft dampers.
  - 2. Pressure relief dampers.
  - 3. Barometric relief dampers.
  - 4. Manual volume dampers.
  - 5. Control dampers.
  - 6. Fire dampers.
  - 7. Smoke dampers.
  - 8. Combination fire and smoke dampers.
  - 9. Duct silencers.
  - 10. Turning vanes.
  - 11. Remote damper operators.
  - 12. Duct-mounted access doors.
  - 13. Flexible connectors.
  - 14. Flexible ducts.
  - 15. Duct accessory hardware.
  - 16. High efficiency take-offs.

# B. Related Requirements:

- 1. Division 23 "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
- 2. Division 23 "Diffusers, Registers and Grilles".
- Division 28 "Digital, Addressable Fire-Alarm System" for duct-mounted fire and smoke detectors.
- 4. Division 28 "Zoned (DC-Loop) Fire-Alarm System" for duct-mounted fire and smoke detectors.

## 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product.
  - For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- C. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
  - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

- a. Special fittings.
- b. Manual volume damper installations.
- c. Control-damper installations.
- d. Fire-damper, smoke-damper, combination fire- and smoke-damper, pressure relief-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
- e. Wiring Diagrams: For power, signal, and control wiring.

#### 1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
- B. Source quality-control reports.

#### 1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

#### 1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Fusible Links: Furnish quantity equal to **10** percent of amount installed.

## **PART 2 - PRODUCTS**

## 2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

## 2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653.
  - 1. Galvanized Coating Designation: G60.
  - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Aluminum Sheets: Comply with **ASTM B 209**, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- C. Extruded Aluminum: Comply with **ASTM B 221**, Alloy 6063, Temper T6.
- D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- E. Tie Rods: Galvanized steel, **1/4-inch** minimum diameter for lengths **36 inches** or less; **3/8-inch** minimum diameter for lengths longer than **36 inches**.

## 2.3 BACKDRAFT DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. American Warming and Ventilating; a division of Mestek, Inc.
  - 2. Greenheck Fan Corporation.
  - Nailor Industries Inc.
  - Pottorff.

- 5. Ruskin Company.
- 6. United Enertech
- B. Function:
  - 1. Designed to allow airflow in one direction and prevent reverse airflow.
  - 2. Keeps outside air out of the space by sensing and closing against mass flow.
- C. Description:
  - 1. Gravity balanced.
- D. Maximum Air Velocity:
  - 1. **1000 fpm**
- E. Maximum System Pressure:
  - 1. 3-inch wg.
- F. Frame: Hat-shaped, with welded corners or mechanically attached and mounting flange:
  - 1. 16GA 0.063-inch- thick extruded aluminum.
- G. Blades: Multiple single-piece blades, maximum **6-inch** width noncombustible, tear-resistant, neoprene-coated fiberglass with sealed edges:
  - 1. Center pivoted: 16GA 0.050-inch- thick aluminum sheet.
- H. Blade Action: Parallel.
- I. Blade Seals: Mechanically locked.
  - 1. Neoprene.
- J. Blade Axles: 0.20 inch diameter:
  - 1. Material: Nonferrous metal.
- K. Tie Bars and Brackets:
  - 1. Aluminum .
- L. Return Spring: Adjustable tension.
- M. Bearings:
  - 1. Synthetic pivot bushings.
- N. Accessories.
  - 1. Adjustment device to permit setting for varying differential static pressure.
  - 2. Counterweights and spring-assist kits for vertical airflow installations.
  - 3. Screen Mounting: Front mounted in sleeve.
    - a. Sleeve Thickness: **20 gage** minimum.
    - b. Sleeve Length: 6 inches minimum.
  - 4. Screen Mounting: Rear mounted.
  - 5. Screen Material:
    - a. Aluminum.
  - 6. Screen Type:
    - a. Bird
  - 7. 90-degree stops.

# 2.4 PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. American Warming and Ventilating; a division of Mestek, Inc.
- 2. Greenheck Fan Corporation.
- 3. Nailor Industries Inc.
- 4. Pottorff.
- 5. Ruskin Company.
- B. Function:
  - 1. Provide component designed to protect HVAC systems by relieving air pressure from within a space that is beyond a pre-determined limit.
  - 2. To automatically begin to open at a pre-set pressure difference above maximum system pressure.
  - 3. Internally self-controlled with system pressure utilizing adjustable arms and weights.
  - 4. Self-actuated with system pressure utilizing adjustable arms and weights.
  - 5. Employs blade counterbalancing.
  - 6. Automatically closes and re-sets when pressures return to normal conditions.
- C. Air Velocity:
  - 1. **3900 fpm**.
- D. Maximum System Pressure (MSP):
  - 1. 4-inch wg.
- E. Differential Pressure Preset above MSP:
  - 1. 1-inch wg.
- F. Maximum Damper Pressure Limit:
  - 1. 5.0-inch wg.
- G. Frame Material: Flanged Channel:
  - 1. 14GA 0.079-inch- thick galvanized steel.
- H. Frame Depth: 8-inch- minimum.
- I. Blades:
  - 1. Material:
    - a. 16GA 0.063-inch-formed galvanized steel.
  - 2. Type:
    - a. Formed Sheetmetal.
  - 3. Blade-stop:
    - a. With stop.
- J. Blade Action: Parallel.
- K. Blade Seals:
  - 1. Thermo Plastic Elastomer.
- L. Blade Axles:
  - 1. Material:
    - a. Plated steel.
  - 2. Diameter: 0.375 inch.
- M. Linkage:
  - 1. External heavy duty type with galvanized steel clevis arms and plated steel tie bars & pivot pins with nylon pivot bearings.

- N. Bearings:
  - 1. Galvanized Steel ball.

## 2.5 BAROMETRIC RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. American Warming and Ventilating; a division of Mestek, Inc.
  - 2. Greenheck Fan Corporation.
  - 3. Nailor Industries Inc.
  - 4. Pottorff.
  - 5. Ruskin Company.
- B. Function:
  - 1. Senses and compares outdoor ambient and indoor pressures.
  - 2. Allows any higher pressure indoor air to escape.
- C. Description: Suitable for horizontal or vertical mounting.
- D. Maximum Air Velocity:
  - 1. 1000 fpm
- E. Maximum System Pressure:
  - 1. 3-inch wg .
- F. Frame: Hat-shaped, with welded corners or mechanically attached and mounting flange.
  - 1. 13GA 0.094-inch- thick, galvanized sheet steel.
- G. Blades: Multiple:
  - 1. 16GA 0.050-inch- thick aluminum sheet.
  - 2. Maximum Width: 6 inches.
  - 3. Action: Parallel.
  - 4. Balance: Gravity.
  - 5. Pivot:
    - a. Eccentric.
- H. Blade Seals:
  - 1. Neoprene
- I. Blade Axles:
  - 1. Galvanized steel .
- J. Tie Bars and Brackets: Rattle free with 90-degree stop.
  - Material:
    - a. Galvanized steel.
- K. Return Spring: Adjustable tension.
- L. Bearings:
  - 1. Synthetic

## 2.6 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. American Warming and Ventilating; a division of Mestek, Inc.
- b. McGill AirFlow LLC.
- c. Nailor Industries Inc.
- d. Pottorff.
- e. Ruskin Company.
- f. United Enertech
- 2. Standard leakage rating, with linkage outside airstream.
- 3. Suitable for horizontal or vertical applications.
- 4. Frames: Hat-shaped, Mitered and welded corners. Flanges for attaching to walls and flangeless frames for installing in ducts.
  - a. 16GA 0.064-inch thick, galvanized sheet steel.
- 5. Blades:
  - a. Multiple or single blade. Parallel- or opposed-blade design. Stiffened damper blades for stability.
  - b. Material:
    - 1) Galvanized -steel, 16GA 0.064 inch thick.
- 6. Blade Axles:
  - a. Nonferrous metal
  - Shall extend full length of damper blades in ducts with pressure classes of 3-inch wg or more.
- 7. Bearings:
  - a. Material:
    - 1) Molded synthetic.
  - b. Bearings at both ends of damper operating shafts in ducts with pressure classes of **3-inch wg** or more.
- 8. Tie Bars and Brackets: Galvanized steel.
- B. Low-Leakage, Steel, Manual Volume Dampers:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. American Warming and Ventilating; a division of Mestek, Inc.
    - b. McGill AirFlow LLC.
    - c. Nailor Industries Inc.
    - d. Pottorff.
    - e. Ruskin Company.
    - f. United Enertech
  - 2. Comply with AMCA 500-D testing for damper rating.
  - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
  - 4. Suitable for horizontal or vertical applications.
  - 5. Frames:
    - a. Frame: Hat-shaped,

- 1) **16GA 0.064-inch** thick, galvanized sheet steel.
- b. Mitered and welded corners.
- c. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
  - a. Multiple or single blade.
  - b. Parallel- or opposed-blade design.
  - c. Stiffen damper blades for stability.
  - d. Material:
    - 1) Galvanized, roll-formed steel, 16GA 0.064 inch thick.
- 7. Blade Axles:
  - a. Nonferrous metal.
- 8. Bearings:
  - a. Molded synthetic.
  - b. Dampers in ducts with pressure classes of **3-inch wg** or more shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals:
  - a. Neoprene.
- 10. Jamb Seals: Cambered Stainless steel or aluminum.
- 11. Tie Bars and Brackets: Galvanized steel or aluminum.
- 12. Accessories:
  - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- C. Jackshaft:
  - Size:
    - a. 1-inch diameter.
  - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
  - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- D. Damper Hardware:
  - 1. Zinc-plated, die-cast core with dial and handle made of **3/32-inch-** thick zinc-plated steel, and a **3/4-inch** hexagon locking nut.
  - 2. Include center hole to suit damper operating-rod size.
  - 3. Include elevated platform for insulated duct mounting.

# 2.7 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - Greenheck Fan Corporation.
  - Pottorff.
  - 3. Ruskin Company.
  - 4. Young Regulator Company.
  - 5. United Enertech

- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- C. Frames:
  - 1. Section:
    - a. Hat shaped.
  - 2. Material:
    - a. 20 GA 0.40-inch- thick galvanized steel .
  - 3. Corners:
    - a. Mitered-and-welded.
- D. Blades: Multiple.
  - 1. Maximum blade width:
    - a. 6 inches.
  - 2. Opposed -blade design.
  - 3. Material:
    - a. Galvanized-steel.
  - 4. Thickness:
    - a. 20 GA 0.40-inch- thick galvanized steel
  - 5. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
    - a. Closed-cell neoprene
- E. Blade Axles:
  - 1. Section:
    - a. 3/8-inch-square
  - 2. Material:
    - a. **Galvanized steel**.
  - 3. Blade-linkage hardware:
    - a. Zinc-plated steel and brass.
    - b. Ends sealed against blade bearings:
  - 4. Operating Temperature Range: From minus 40 to plus 200 deg F.
- F. Bearings:
  - 1. Type:
    - a. Molded synthetic.
  - 2. Axles: Dampers in ducts with pressure classes of **3-inch wg** or more shall have axles full length of damper blades.
  - 3. Bearings: Thrust bearings at each end of every blade. Bearings at both ends of each operating shaft.

## 2.8 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Arrow United Industries; a division of Mestek, Inc.
  - 2. Greenheck Fan Corporation.
  - 3. Nailor Industries Inc.
  - 4. Pottorff.

- 5. Ruskin Company.
- 6. United Enertech
- B. Type:
  - 1. Dynamic.
- C. Standard: Rated and labeled according to UL 555 by an NRTL.
- D. Closing rating in ducts up to **4-inch wg** static pressure class and minimum **2000-fpm** velocity.
- E. Fire Rating:
  - 1. 1-1/2 hours.
- F. Frame:
  - 1. Curtain type with blades outside airstream.
  - 2. Material:
    - a. Fabricated with roll-formed galvanized steel; with mitered and interlocking corners.
    - b. Thickness:
      - 1) 20GA-0.040-inch-.
- G. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel. Length to suit application.
  - 1. Minimum Thickness:
    - a. 18GA-0.05 inch, as indicated.
  - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- H. Mounting Orientation: Vertical or horizontal as indicated.
- I. Blades: Roll-formed, interlocking, galvanized sheet steel.
  - 1. Thickness:
    - a. 24GA-0.024-inch-
  - 2. In place of interlocking blades, use full-length, **0.034-inch-** thick, galvanized-steel blade connectors.
- J. Horizontal Dampers: Include blade lock and Type 301 constant force stainless-steel closure spring.
- K. Heat-Responsive Device: Replaceable, 212 deg F rated, fusible links.

## 2.9 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Greenheck Fan Corporation.
  - 2. Nailor Industries Inc.
  - 3. Pottorff.
  - 4. Ruskin Company.
  - 5. United Enertech
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection.
  - Type: Photoelectric.
- D. Frame: Galvanized sheet steel. With or without mounting flange as required.

- 1. Thickness:
  - a. Hat-shaped, 16GA-0.064-inch.
- 2. Corners:
  - a. Welded.
- E. Blades: Horizontal, galvanized sheet steel.
  - 1. Section:
    - a. Roll-formed.
  - 2. Fit:
    - a. Interlocking.
  - 3. Thickness:
    - a. 14GA-0.079-inch.
- F. Leakage:
  - 1. Class II.
- G. Seals:
  - 1. Blade: Inflatable silicone fiberglass material to maintain smoke leakage rating to a minimum of **450 deg F**.
- H. Rated pressure and velocity to exceed design airflow conditions.
- I. Mounting Sleeve: Factory-installed, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
  - 1. Minimum **17-inches** long.
  - 2. Thickness:
    - a. **0.05-inch-**.
- J. Damper Motors:
  - Action:
    - a. Two-position
  - Mode: Fail close.
  - 3. Mounting: External.
- K. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
  - 1. Electrical Connection: 115 V, single phase, 60 Hz.
- L. Accessories:
  - 1. Auxiliary switches for signaling:
    - a. Position indication.
  - 2. Test Switch type:
    - a. Test and reset switches.
  - 3. Test Switch Mounting:
    - a. Remote.

# 2.10 COMBINATION FIRE AND SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Greenheck Fan Corporation.

- 2. Nailor Industries Inc.
- 3. Pottorff.
- 4. Ruskin Company.
- 5. United Enertech
- B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.
- C. Closing rating in ducts up to **4-inch wg** static pressure class and minimum velocity of:
  - 1. **4000-fpm**
- D. Fire Rating:
  - 1. 1-1/2 hours.
- E. Frame: Hat shaped, galvanized sheet steel. With or without mounting flange as required.
  - 1. Thickness:
    - a. 16GA-0.064-inch
  - Corners:
    - a. Welded.
- F. Heat-Responsive Device: Replaceable, 212 deg F rated, fusible links.
- G. Blades: Horizontal, galvanized sheet steel.
  - 1. Type:
    - a. Air-foil.
  - 2. Fit:,
    - a. Interlocking.
  - Thickness:
    - a. 0.063-inch-.
- H. Leakage:
  - 1. Class I.
- I. Rated pressure and velocity to exceed design airflow conditions.
- J. Mounting Sleeve: Factory-installed, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
  - 1. Thickness:
    - a. **18GA 0.05-inch-**.
- K. Master control panel for use in dynamic smoke-management systems.
- L. Damper Motors:
  - 1. Locate outside air stream unless otherwise indicated,
  - 2. Action:
    - a. Two-position.
  - 3. Voltage: to match fire alarm system (coordinate).
  - 4. Listed: UL, as part of damper assembly.
  - 5. Outdoor Motors and Motors in Outside-Air Intakes:
    - a. Gaskets: O-ring gaskets designed to make motors weatherproof.
    - b. Internal heaters: Equip to permit normal operation at minus 40 deg F.
- M. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

- 1. Electrical Connection: 115 V, single phase, 60 Hz.
- N. Accessories:
  - 1. Auxiliary switches:
    - a. Signaling.
    - b. Position indication.
  - 2. Test Switch type:
    - a. Test and reset switches.
  - 3. Test Switch Mounting:
    - a. Remote.

# 2.11 DUCT SILENCERS

- A. Manufacturers: Subject to compliance with requirements, provide products by **one of** the following:
  - 1. Industrial Acoustics Company.
  - 2. Ruskin Company.
  - 3. SEMCO Incorporated.
  - 4. Vibro-Acoustics.
- B. General Requirements:
  - 1. Factory fabricated.
  - 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
  - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Shape:
  - 1. Rectangular straight with splitters or baffles.
  - 2. Round straight with center bodies or pods.
  - 3. Rectangular elbow with splitters or baffles.
  - 4. Round elbow with center bodies or pods.
  - 5. Rectangular transitional with splitters or baffles.
- D. Rectangular Silencer Outer Casing: Galvanized sheet steel.
  - 1. ASTM A 653:
    - a. G60.
  - 2. Thickness:
    - a. 22GA-0.034 inch.
- E. Round Silencer Outer Casing: Galvanized sheet steel.
  - 1. ASTM A 653:
    - a. **G60**.
  - 2. Sheet Metal Thickness for Units up to 24 Inches in Diameter: 22GA-0.034 inch thick.
  - 3. Sheet Metal Thickness for Units **26 through 40 Inches** in Diameter: **20GA-0.040 inch** thick
  - Sheet Metal Thickness for Units 42 through 52 Inches in Diameter: 18GA-0.05 inch thick.

- 5. Sheet Metal Thickness for Units **54 through 60 Inches** in Diameter: **16GA-0.064 inch** thick.
- F. Inner Casing and Baffles: Galvanized sheet metal with 1/8-inch- diameter perforations.
  - ASTM A 653:
    - a. **G60**.
  - 2. Thickness:
    - a. 22GA-0.034 inch.
- G. Special Construction:
  - Suitable for outdoor use.
  - 2. High transmission loss to achieve **STC 45**.
- H. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- I. Principal Sound-Absorbing Mechanism:
  - Controlled impedance membranes and broadly tuned resonators without absorptive media.
  - 2. Dissipative or Film-lined type with fill material:
    - a. **Fill Material:** Inert and vermin-proof fibrous material, packed under not less than 15 percent compression
    - b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
    - c. Prohibited: Mineral wool will not be permitted as a substitute for glass fiber.
  - 3. Lining:
    - a. Material:
      - 1) Tedlar
    - b. Prohibited: Mesh, screen or corrugated perforated liner will not be acceptable as a substitute for the specified spacer.
- J. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
  - 1. Joints:
    - a. Lock formed and sealed.
  - 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.
  - 3. Reinforcement: Cross or trapeze angles for rigid suspension.
  - 4. Structural Criteria: The silencers shall not fail structurally when subjected to a differential air pressure of **8 inches** water gage.
  - 5. Spot Welds: All spot welds shall be painted.
- K. Accessories:
  - 1. Integral [1-1/2] [3]-hour fire damper with access door. Access door to be high transmission loss to match silencer.
  - 2. Factory-installed end caps to prevent contamination during shipping.
  - 3. Removable splitters.
  - 4. Airflow measuring devices.

## 2.12 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. METALAIRE, Inc.
- 2. SEMCO Incorporated.
- 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
  - Fabricate single blade vanes to comply with SMACNA's "HVAC Duct Construction Standards-Metal and Flexible."
  - 2. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- E. Vane Construction:
  - 1. Single wall
- F. Vane Spacing:
  - 1. 1-1/2" spacing between turning vanes
  - 2. 3-1/4" spacing not allowed.
- G. Vane Construction: Single wall for ducts up to 36 **inches** wide and additional bracing for larger dimensions.

#### 2.13 REMOTE DAMPER OPERATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - Pottorff.
  - 2. Ruskin Company; Tomkins PLC.
  - 3. Young Regulator Company.
- B. Cable Type:
  - Description: Cable system designed for remote manual damper adjustment.
  - 2. Tubing/Sheathing: Galvinsed, Brass, Copper or Aluminum.
  - 3. Cable: Stainless steel or Steel.
  - 4. Wall-Box Mounting: Coordinate with Architect.
  - 5. Wall-Box Cover-Plate Material: Coordinate with Architect.
- C. Activated Electric Type:
  - 1. Description: Electrically activated zone control damper for remote adjustment. When an adjustment is needed the system is powered up.
  - 2. Means: Factory mounted actuator factory wired to damper.
  - 3. Portable **9 volt** system. No field power requirement.
  - 4. Mounting: Recessed Wall Box or Diffuser or Hand Held.
  - 5. Wall-Box Cover Finish: Coordinate with Architect.
  - 6. Wall-Box Porting: 1 to 6 ports or more.

## 2.14 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Greenheck Fan Corporation.
  - McGill AirFlow LLC.
  - 3. Pottorff.
  - 4. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
  - 5. Ruskin Company
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
  - 1. Door:
    - a. Double wall, rectangular.
    - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
    - c. Vision panel.
    - d. Hinges and Latches: **1-by-1-inch** butt or piano hinge and cam latches.
    - e. Fabricate doors airtight and suitable for duct pressure class.
  - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
  - 3. Number of Hinges and Locks:
    - a. Access Doors Less Than **12 Inches** Square: No hinges and two sash locks.
    - b. Access Doors up to **18 Inches** Square:
      - 1) Hinges:
        - a) Two hinges and two sash locks.
    - c. Access Doors up to **24 by 48 Inches**, provide outside and inside handles:
      - 1) Hinges:
        - a) Three hinges and two compression latches.
    - d. Access Doors Larger Than **24 by 48 Inches**, provide outside and inside handles:
      - 1) Hinges:
        - a) Continuous and two compression latches with outside and inside handles.

#### 2.15 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Ductmate Industries, Inc.
  - 2. Ventfabrics, Inc.
  - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Clamps: For sizes 3 through 18 inches, to suit duct size.
  - 1. Material: Stainless-Steel Band with cadmium-plated hex screw to tighten band with a worm-gear action.
  - 2. Clamps must be approved and listed with a UL181B-C listing.
- D. Coatings and Adhesives: Comply with UL 181, Class 1.

- 1. Adhesive Tape:
  - a. Material: Metalized polypropylene.
  - b. Tape must be approved and listed with a UL181B-FX listing.
- E. Metal-Edged Connectors: Factory fabricated with a wide fabric strip attached to two narrower metal strips. Provide strips of metal compatible with connected ducts and listed with a UL181B-C listing.
  - 1. Wide Strip:
    - a. 3-1/2 inches.
  - 2. Narrow Strips:
    - a. 0.028-inch- thick, galvanized sheet steel.
- F. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
  - Minimum Weight: 26 oz./sq. yd..
  - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
  - 3. Service Temperature: Minus 40 to plus 200 deg F.
  - 4. UL181B-C
- G. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
  - 1. Minimum Weight: 24 oz./sq. yd..
  - 2. Tensile Strength: **530 lbf/inch** in the warp and **440 lbf/inch** in the filling.
  - 3. Service Temperature: Minus 50 to plus 250 deg F.
  - 4. UL181B-C.

## 2.16 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Flexmaster U.S.A., Inc.
  - 2. McGill AirFlow LLC.
  - 3. Themaflex
  - 4. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Ducts shall conform to the requirements for Class I connectors when tested in accordance with "Standard for Factory Made Air Ducts Materials and Air Duct Connectors" (UL 181).
- C. Ducts shall also pass the 15 minute U.L. flame penetration test as specified in the UL 181 Standard.
- D. Insulated, Flexible Duct: Two-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene or aluminized vapor-barrier film.
  - 1. Pressure Rating: **10-inch wg** positive and **1.0-inch wg** negative.
  - 2. Maximum Air Velocity: 4000 fpm.
  - 3. Temperature Range: Minus 10 to plus 160 deg F.
  - 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1.
- E. Flexible Duct Connectors:
  - 1. Clamps: in sizes 3 through 18 inches, to suit duct size.
    - a. **Material**: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action.

## 2.17 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
- C. Splitter Damper Accessories: Zinc-plated damper blade bracket; **1/4-inch**, zinc-plated operating rod; and a duct-mounted, ball-joint bracket with flat rubber gasket and square-head set screw.
- D. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes **3 to 18 inches** to suit duct size.

# 2.18 HIGH EFFICIENCY TAKE-OFFS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following.

- 1. Air-Rite
- 2. Hercules Industries
- 3. Sheet Metal Connectors, Inc.
- 4. Spiral Manufacturing Co. Inc.
- 5. Ferguson

#### B. Materials:

- 1. 24 gauge galvanized sheet metal meeting ASTM A653 and A924
- C. Take-off shall meet SMACNA third edition Section 4.8 figure 4.6 45 degree entry.
- D.Rectangular opening with flanged sides on all sides. Complete with closed cell neoprene gasket to provide a tight seal.

## **PART 3 - EXECUTION**

#### 3.1 INSTALLATION

#### General

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Use the Remote Damper Operator when they are called out on the drawings or when the damper cannot be easily accessed.
- D. Install high efficiency take-off on all branch duct take-offs. Provide take-off with balancing damper as shown on drawings. Spin-in fittings are not allowed.

## Flexible Ducts / Flexible Duct Connectors

- E. Install flexible connectors to connect ducts to equipment.
- F. Flexible duct connections from the main trunk ducts to diffuser boots shall be furnished and installed as shown on the drawings. Flexible ductwork shall only be used as indicated on the drawings.
- G. Where flexible duct is indicated, use insulated flexible duct for supply air return and exhaust air.
- H. Flexible ductwork shall be run in straight lengths.
- I. Provide support in flexible duct every three feet.
- J. Flexible ducts shall have compression fittings on both ends.
- K. Flexible ductwork is not allowed to bend 90 degrees. If a bend is needed use sheet-metal hard elbows. Hard turns, offsets, or kinks will not be allowed.
- L. Flexible ducts shall connect to trunk duct with high efficiency takeoffs.
- M. Connect flexible ducts to metal ducts with **draw bands**.
- N. Connect ducts to duct silencers:
  - With flexible duct connectors.
- O. Connect terminal units to supply ducts:
  - 1. With maximum 12-inch lengths of flexible duct.
- P. Do not use flexible ducts to change directions.
- Q. Connect diffusers or light troffer boots to ducts:
  - With maximum 60-inch lengths of flexible duct clamped or strapped in place.

## **Backdraft/Control/Pressure Relief Dampers**

- R. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- S. Install pressure relief damper immediately upstream of main fire damper.

# **Volume Damper**

- T. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
  - 1. Install steel volume dampers in steel ducts.
  - 2. Install aluminum volume dampers in aluminum ducts.
- U. Set dampers to fully open position before testing, adjusting, and balancing. Exception: Pressure relief damper.
- V. A balance damper with locking quadrant will be provided downstream of take-off from trunk duct.

## **Fans And Test Holes**

- W. For fans developing static pressures of **5-inch wg** and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- X. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of **1/4-inch** movement during start and stop of fans.
- Y. Install duct test holes where required for testing and balancing purposes.
- Z. Install test holes at fan inlets and outlets and elsewhere as indicated.
  - FIRE, SMOKE AND FIRE-SMOKE DAMPERS
- AA. Install fire **and smoke** dampers according to UL listing.

- 1. Install fusible links in fire dampers.
- BB. For round ductwork **24-inch** and smaller a true round fire damper with the same rating may be used.

#### **Access Doors**

- CC. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
  - 1. On upstream side of duct coils.
  - 2. **Upstream** from duct filters.
  - 3. At outdoor-air intakes and mixed-air plenums.
  - 4. At drain pans and seals.
  - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
  - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be standard access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
  - 7. At each change in direction and at maximum **50-foot** spacing.
  - 8. **Upstream** from turning vanes.
  - 9. Upstream or downstream from duct silencers.
  - 10. Control devices requiring inspection.
  - 11. Elsewhere as indicated.
- DD. Install access doors with swing against duct static pressure.
- EE. Access Door Sizes:
  - 1. One-Hand or Inspection Access: 8 by 5 inches.
  - 2. Two-Hand Access: 12 by 6 inches.
  - 3. Head and Hand Access: 18 by 10 inches.
  - 4. Head and Shoulders Access: 21 by 14 inches.
  - 5. Body Access: 25 by 14 inches.
  - 6. Body plus Ladder Access: **25 by 17 inches**.
- FF. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

#### 3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
  - 1. Operate dampers to verify full range of movement.
  - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
  - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
  - 4. Inspect turning vanes for proper and secure installation.
  - 5. Operate remote damper operators to verify full range of movement of operator and damper.

## 3.3 ADJUSTING

A. Adjust duct accessories for proper settings.

- B. Adjust fire and smoke dampers for proper action.
- C. Final positioning of manual-volume dampers is specified in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

**END OF SECTION 23 3300** 

# SECTION 23 3423 HVAC POWER VENTILATORS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Centrifugal roof ventilators.
  - 2. Upblast propeller roof exhaust fans.

#### 1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on:
  - Actual Project site elevations.
- B. Operating Limits: Classify according to AMCA 99.
- C. Fan Schedule: Fan characteristics and performance data are described in an equipment schedule on the drawings including:
  - 1. Fan arrangement with wheel configuration, inlet and discharge configurations, and required accessories.
  - Capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

## 1.4 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated. Include rated capacities, shipping weights, operating weights, operating characteristics, and furnished specialties and accessories. Also include the following:
  - 1. Certified fan performance curves with system operating conditions indicated.
  - 2. Certified fan sound-power ratings.
  - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
  - 4. Material thickness and finishes, including color charts.
  - 5. Dampers, including housings, linkages, and operators.
  - 6. Roof curbs.
  - 7. Fan speed controllers.
- C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
  - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 2. Wiring Diagrams: For power, signal, and control wiring.
    - a. Detail all wiring systems and differentiate clearly between manufacturer-installed and field-installed wiring.

## 1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

- 1. Roof framing and support members relative to duct penetrations.
- 2. Ceiling suspension assembly members.
- 3. Size and location of initial access modules for acoustical tile.
- 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- Field quality-control Reports

#### 1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

#### 1.7 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Belts: One set for each belt-driven unit.

## 1.8 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
- NEMA Compliance: Power ventilator electrical components shall comply with applicable NEMA standards.
- D. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.
- E. TUV Certified: High Volume low speed fan shall comply with UL 507

## 1.9 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

#### **PART 2 - PRODUCTS**

## 2.1 PRODUCTS FURNISHED BUT NOT INSTALLED

A. Products furnished, but not installed, under this Section include roof curbs for roof-mounted exhaust fans. Roof curbs to be installed by Division 07, section "Roof Accessories".

## 2.2 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Aerovent; a division of Twin City Fan Companies, Ltd.
  - 2. Greenheck Fan Corporation.
  - 3. Loren Cook Company.
  - 4. PennBarry.
  - 5. Twin City.
- B. Housing: Removable: Square, one-piece, aluminum base with venture inlet cone.
  - 1. Spun-aluminum, dome top and outlet baffle.

- 2. **Hinged Subbase**: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels:
  - 1. Aluminum hub and wheel with backward-inclined blades.
- D. Direct-Drive Units: Motor mounted outside of airstream within fan housing.
- E. Belt-Driven Units: Motor mounted on adjustable base, adjustable sheaves and with motor and belts within fan housing.
- F. Electronically Commutated Motor (ECM)
  - 1. Motor enclosures: Open type
  - 2. Motor to be a DC electronic commutation type motor (ECM).
    - a. AC induction type motors are not acceptable.
  - 3. Permanently lubricated motor with heavy duty ball bearing
  - 4. Internal motor circuitry to convert AC power supplied to the fan to DC power to operate the motor.
  - 5. Speed controllable to 20% of full speed (80% turndown).
    - a. Potentiometer dial mounted at the motor speed controller
    - b. 0-10 VDC signal.
  - 6. 85% efficient at all speeds minimum.
- G. Accessories:
  - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
  - 2. Disconnect Switch: Nonfusible type:
    - Thermal-overload protection; factory wired through an internal aluminum conduit.
      - 1) Mounted inside fan housing.
  - 3. Bird Screens: Removable, 1/2-inch mesh:
    - a. Aluminum wire.
  - 4. Dampers:
    - **a. Counterbalanced, parallel-blade**, backdraft dampers mounted in curb base; factory set to close when fan stops.
    - **b. Motorized parallel-blade** dampers mounted in curb base with electric actuator; wired to close when fan stops.
- H. Roof Curbs: Galvanized steel; mitered and welded corners; **1-1/2-inch** thick, rigid, fiberglass insulation adhered to inside walls; and **1-1/2-inch** wood nailer. Size as required to suit roof opening and fan base. Provide neoprene gasket between fan base and curb to reduce sound transmission.
  - 1. Configuration:
    - a. Self-flashing without a cant strip, with mounting flange.
  - Overall Height:
    - a. 24 inches.
  - 3. Pitch Mounting: Manufacture curb for roof slope.

# 2.3 UPBLAST PROPELLER ROOF EXHAUST FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Aerovent; a division of Twin City Fan Companies, Ltd.
- 2. Greenheck Fan Corporation.
- 3. Hartzell Fan Incorporated.
- 4. Loren Cook Company.
- 5. New York Blower Company (The).
- 6. PennBarry.
- 7. Twin City
- B. Wind Band, Fan Housing, and Base:
  - Reinforced and braced:
    - a. Galvanized steel
  - 2. Containing **galvanized-steel** butterfly dampers and rain trough, motor and drive assembly, and fan wheel.
  - 3. Containing rain trough, motor and drive assembly, fan wheel and with butterfly dampers made of:
    - Galvanized-steel.
  - Damper Rods: Steel with;
    - a. **Bronze** bearings.
  - 5. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheel: Replaceable;
  - Cast-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades
- D. Direct-Drive Units: Motor mounted in airstream.
- E. Accessories:
  - Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
  - 2. Disconnect Switch: Nonfusible type:
    - Thermal-overload protection; factory wired through an internal aluminum conduit.
      - 1) Mounted inside fan housing.
  - 3. Bird Screens: Removable. 1/2-inch mesh:
    - a. Aluminum wire.
  - Dampers:
    - **a. Counterbalanced, parallel-blade**, backdraft dampers mounted in curb base; factory set to close when fan stops.
    - **b. Motorized parallel-blade** dampers mounted in curb base with electric actuator; wired to close when fan stops.
- F. Roof Curbs: Galvanized steel; mitered and welded corners; **1-1/2-inch-** thick, rigid, fiberglass insulation adhered to inside walls; and **1-1/2-inch** wood nailer. Size as required to suit roof opening and fan base. Provide neoprene gasket between fan base and curb to reduce sound transmission.
  - 1. Configuration:
    - a. Self-flashing without a cant strip, with mounting flange.

- 2. Overall Height:
  - a. 24 inches.
- 3. Pitch Mounting: Manufacture curb for roof slope.

#### 2.4 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
  - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
  - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
- B. Enclosure Type: Totally enclosed;
  - 1. Fan cooled

## 2.5 FACTORY FINISH

- A. Metal Parts: All assembly parts shall be protected from rust and corrosion.
  - 1. Stainless steel, aluminum, and other non-corroding materials require no protective finish.
  - 2. Non-galvanized sheet metal parts shall be prime coated or powder coated before final assembly.
  - 3. Prime coated parts shall receive baked enamel finish coat after assembly.

#### 2.6 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

## **PART 3 - EXECUTION**

## 3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements of installation tolerances and other conditions affecting performance of the power ventilators. Do not proceed with installation until unsatisfactory conditions have been corrected.

#### 3.2 PROJECT CONDITIONS

- A. Field Measurements: Verify dimensions by field measurements. Verify clearances.
- B. Do not operate fans until ductwork is clean, filters are in place, bearings are lubricated, and fans have been commissioned.

#### 3.3 INSTALLATION

- A. Install power ventilators level and plumb according to manufacturer's written instructions.
- B. Base Mounted Equipment:
  - 1. Install power ventilators on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in:
    - a. Division 33 "Cast-in-Place Concrete."
  - Comply with requirements for vibration isolation and seismic control devices specified in Division 23 "Vibration and Seismic Controls for HVAC."

- C. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.
- D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- E. **Support Steel:** Support suspended units from structure using threaded steel as specified in Division 23 "Vibration and Seismic Controls for HVAC."
- F. Label units according to requirements specified in Division 23 "Identification for HVAC Piping and Equipment."
- G. Install power ventilators with factory recommended and code required clearances for service and maintenance.

#### 3.4 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 "Grounding and Bonding for Electrical Systems."
  - 1. Tighten electrical connectors and terminals, including grounding connections, according to manufacturer's published torque-tightening values. Where manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- D. Connect wiring according to Division 26 "Low-Voltage Electrical Power Conductors and Cables."
  - 1. Tighten electrical connectors and terminals, including grounding connections, according to manufacturer's published torque-tightening values. Where manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

#### 3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
  - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

## 3.6 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Division 23 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

## 3.7 CLEANING

- A. After completing installation, inspect exposed finish. Remove burrs, dirt, and construction debris, and repair damaged finishes including chips, scratches, and abrasions.
- B. Clean fan interiors to remove foreign material and construction debris. Vacuum clean fan wheel and cabinet.

## 3.8 DEMONSTRATION

A. Train Owner's maintenance personnel on procedures and schedules related to startup and shutdown, troubleshooting, servicing, and preventive maintenance.

- B. Review data in the operation and maintenance manuals. Refer to Division 1 Section "Contract Closeout."
- C. Schedule training with Owner, through Architect, with at least 7 days' advance notice.
- D. Demonstrate operation of power ventilators. Conduct walking tour of the Project. Briefly identify location and describe function, operation, and maintenance of each power ventilator.

**END OF SECTION 23 3423** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 3713 DIFFUSERS, REGISTERS, AND GRILLES

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. This section includes ceiling- and wall-mounted diffusers, registers, and grilles.
- B. Related Sections:
  - 1. Section 233714 "Fixed Louvers" for fixed and louvers and wall vents, whether or not they are connected to ducts.
  - 2. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.
  - 3. Section 230594 "General Testing, Adjusting and Balancing" for balancing diffusers, registers, and grilles.

## 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated, include the following:
  - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
  - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

#### 1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
  - 1. Ceiling suspension assembly members.
  - 2. Method of attaching hangers to building structure.
  - 3. Size and location of initial access modules for acoustical tile.
  - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
  - 5. Duct access panels.
- B. Source quality-control reports.

# 1.5 QUALITY ASSURANCE

- A. Product Options: Drawings and schedules indicate specific requirements of diffusers, registers, and grilles and are based on the specific requirements of the systems indicated.
- B. NFPA Compliance: Install diffusers, registers, and grilles according to NFPA 90A, "Standard for the Installation of Air-Conditioning and Ventilating Systems."

#### **PART 2 - PRODUCTS**

# 2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - Air Factors
  - 2. Carnes.

- 3. Kruegar.
- 4. METALAIRE, Inc.
- 5. Nailor Industries Inc.
- 6. Price Industries.
- 7. Titus.
- 8. Tuttle & Bailey.
- 9. Air Concepts.
- 10. Trox.

# 2.2 REGISTERS, GRILLES, & DIFFUSERS

A. General: The frames for all registers, grilles, and diffusers shall match type of ceiling where they are to be installed. Special frames shall be provided for narrow T-bar ceilings. Refer to reflected ceiling plan and other specification divisions for ceiling type. See drawings AND schedules for additional information.

## 2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

## **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

#### 3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb, according to manufacturer's written instructions, coordination drawings, original design, and referenced standards.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

# 3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

#### 3.4 CLEANING

A. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

#### **END OF SECTION 23 3713**

#### **SECTION 23 7200**

#### AIR-TO-AIR ENERGY RECOVERY EQUIPMENT

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Heat wheels.
  - 2. Packaged energy recovery units.

#### 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- C. Shop Drawings: For air-to-air energy recovery equipment. Include plans, elevations, sections, details, and attachments to other work.
  - Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 2. Wiring Diagrams: For power, signal, and control wiring.
- D. Delegated-Design Submittal: For air-to-air energy recovery equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
  - 1. Detail fabrication and assembly of air-to-air energy recovery equipment.
  - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
  - 3. Design Calculations: Calculate requirements for selecting vibration isolators **and seismic restraints** and for designing vibration isolation bases.

# 1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
  - 1. Suspended ceiling components.
  - 2. Structural members to which equipment or suspension systems will be attached.
- B. Seismic Qualification Certificates: For air-to-air energy recovery equipment, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

## 1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-to-air energy recovery equipment to include in maintenance manuals.

#### 1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - Filters: One set of each type of filter specified.
  - 2. Fan Belts: **One** set of belts for each belt-driven fan in energy recovery units.
  - 3. Wheel Belts: [One] set(s) of belts for each heat wheel.

# 1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ARI Compliance:
  - 1. Capacity ratings for air-to-air energy recovery equipment shall comply with ARI 1060, "Performance Rating of Air-to-Air Heat Exchangers for Energy Recovery Ventilation Equipment."
  - 2. Capacity ratings for air coils shall comply with ARI 410, "Forced-Circulation Air- Cooling and Air-Heating Coils."
- C. ASHRAE Compliance:
  - 1. Capacity ratings for air-to-air energy recovery equipment shall comply with ASHRAE 84, "Method of Testing Air-to-Air Heat Exchangers."
- NRCA Compliance: Roof curbs for roof-mounted equipment shall be constructed according to recommendations of NRCA.
- E. UL Compliance:
  - 1. Packaged heat recovery ventilators shall comply with requirements in UL 1812, "Ducted Heat Recovery Ventilators"; or UL 1815, "Nonducted Heat Recovery Ventilators."
  - 2. Electric coils shall comply with requirements in UL 1995, "Heating and Cooling Equipment."

## 1.8 COORDINATION

- A. Coordinate layout and installation of air-to-air energy recovery equipment and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

## 1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of air-to-air energy recovery equipment that fail in materials or workmanship within specified warranty period.
  - 1. Warranty Period for Packaged Energy Recovery Units: **Two** years.

## **PART 2 - PRODUCTS**

## 2.1 HEAT WHEELS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
  - 1. Advanced Thermal Technologies.
  - 2. Airxchange Inc.
  - 3. American Energy Exchange, Inc.
  - 4. <u>Greenheck Fan Corporation</u>.
  - 5. Loren Cook Company.
  - 6. SEMCO Incorporated.
  - 7. <u>York.</u>
  - 8. <u>United Products Group.</u>
- B. Wheel/Unit shall be:
  - 1. Of the enthalpy type for both sensible and latent heat recovery.
  - 2. Provided with single point electrical connection.
  - 3. Having controls, intake dampers and exhaust dampers that are factory mounted.
  - 4. Economizer control is to stop the wheel.

# C. Casing:

- 1. Steel with galvanized G90 finish.
- 2. Integral purge section limiting carryover of exhaust air to between **0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg** differential pressure.
- 3. Casing seals on periphery of rotor and on duct divider and purge section.
- 4. Support vertical rotors on grease-lubricated ball bearings having extended grease fittings **or permanently lubricated bearings**. Support horizontal rotors on tapered roller bearing.
- D. Rotor: Aluminum segmented wheel strengthened with radial spokes.
  - 1. Maximum Solid Size for Media to Pass:
    - a. 500 micrometer.
- E. Rotor: **Glass-fiber** segmented wheel strengthened with radial spokes impregnated with nonmigrating, water-selective, molecular-sieve desiccant coating.
  - Maximum Solid Size for Media to Pass:
    - a. 800 micrometer.
- F. Drive: Fractional horsepower motor and gear reducer and self-adjusting multilink belt around outside of rotor.
  - Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
  - 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- G. Controls:
  - 1. Unit to be controlled by the packaged rooftop unit to which it is connected.
  - 2. The fresh air and exhaust air motors are both to be dual speed motors.

## H. Disposable Panel Filters:

- 1. Comply with NFPA 90A.
- 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lift out from access plenum.
- 3. Factory-fabricated, viscous-coated, flat-panel type.
- 4. Thickness: 1 inch.
- 5. Minimum Arrestance: **80**, according to ASHRAE 52.1.
- 6. Minimum Merv: 5, according to ASHRAE 52.2.
- 7. Media: Interlaced glass fibers sprayed with nonflammable adhesive **and antimicrobial agent**.
- 8. Frame: Galvanized steel with metal grid on outlet side, steel rod grid on inlet side, hinged, and with pull and retaining handles.
- I. Extended-Surface, Disposable Panel Filters:
  - 1. Comply with NFPA 90A.
  - 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lift out from access plenum.
  - 3. Factory-fabricated, dry, extended-surface type.
  - 4. Thickness: 1 inch.
  - 5. Minimum Arrestance: 90, according to ASHRAE 52.1.
  - 6. Media: Fibrous material formed into deep-V-shaped pleats with antimicrobial agent and held by self-supporting wire grid.
  - 7. Media-Grid Frame:
  - 8. Mounting Frames: Welded, galvanized steel with gaskets and fasteners, suitable for bolting together into built-up filter banks.
- J. Extended-Surface, Nonsupported-Media Filters:
  - 1. Comply with NFPA 90A.
  - 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lift out from access plenum.
  - 3. Factory-fabricated, dry, extended-surface, self-supporting type.
  - 4. Minimum Arrestance: 95 , according to ASHRAE 52.1.
  - 5. Media: Fibrous material constructed so individual pleats are maintained in tapered form by flexible internal supports under rated-airflow conditions **and antimicrobial agent**.
  - 6. Filter-Media Frame:
    - a. Galvanized steel.
  - 7. Mounting Frames: Welded, galvanized steel with gaskets and fasteners, suitable for bolting together into built-up filter banks.

## 2.2 PACKAGED ENERGY RECOVERY UNITS

- A. <u>Products:</u> Subject to compliance with requirements, provide one of the following:
  - 1. <u>Carnes Company</u>.
  - 2. Des Champs Technologies.
  - 3. Greenheck Fan Corporation.
  - 4. Loren Cook Company.

- 5. RenewAire LLC.
- 6. SEMCO Incorporated.
- 7. Trane.
- 8. York.
- 9. Unitary Products Group
- B. Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Housing: Manufacturer's standard construction with corrosion-protection coating and exterior finish, [gasketed and calked weathertight,] [hinged access doors] [removable panels] with neoprene gaskets for inspection and access to internal parts, minimum [1-inch-] [2-inch-] thick thermal insulation, knockouts for electrical and piping connections, exterior drain connection, and lifting lugs.
  - 1. Inlet: Weatherproof **hood**, with damper for exhaust and supply.
  - 2. Roof Curb: Refer to Section 077200 "Roof Accessories" for roof curbs and equipment supports.
- D. Heat Recovery Device: Heat wheel.
- E. Supply and Exhaust Fans:
  - 1. Fan Wheel:
    - a. Forward-curved, centrifugal
  - Vibration isolators:
    - a. Spring isolators.
  - Duct connections:
    - Flexible duct connections.
  - 4. Motor and Drive:
    - a. Direct driven.
  - 5. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
  - 6. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
  - 7. Spring isolators on each fan having **1-inch** static deflection.
- F. Disposable Panel Filters:
  - 1. Comply with NFPA 90A.
  - 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lift out from access plenum.
  - 3. Factory-fabricated, viscous-coated, flat-panel type.
  - 4. Thickness: 1 inch.
  - 5. Minimum Arrestance: 80 , according to ASHRAE 52.1.
  - 6. Minimum Merv: **5**, according to ASHRAE 52.2.
  - 7. Media: Interlaced glass fibers sprayed with nonflammable adhesive **and antimicrobial agent**.
  - 8. Frame: Galvanized steel with metal grid on outlet side, steel rod grid on inlet side, hinged, and with pull and retaining handles.
- G. Extended-Surface, Disposable Panel Filters:

- 1. Comply with NFPA 90A.
- 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lift out from access plenum.
- 3. Factory-fabricated, dry, extended-surface type.
- 4. Thickness: 1 inch.
- 5. Minimum Arrestance: 90, according to ASHRAE 52.1.
- 6. Media: Fibrous material formed into deep-V-shaped pleats with antimicrobial agent and held by self-supporting wire grid.
- 7. Media-Grid Frame:
- 8. Mounting Frames: Welded, galvanized steel with gaskets and fasteners, suitable for bolting together into built-up filter banks.
- H. Extended-Surface, Nonsupported-Media Filters:
  - 1. Comply with NFPA 90A.
  - 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lift out from access plenum.
  - 3. Factory-fabricated, dry, extended-surface, self-supporting type.
  - 4. Minimum Arrestance: 95, according to ASHRAE 52.1.
  - 5. Media: Fibrous material constructed so individual pleats are maintained in tapered form by flexible internal supports under rated-airflow conditions **and antimicrobial agent**.
  - 6. Filter-Media Frame: Galvanized steel.
  - 7. Mounting Frames: Welded, galvanized steel with gaskets and fasteners, suitable for bolting together into built-up filter banks.
- I. Cooling Coils: Rated according to ARI 410 and ASHRAE 33, and bearing the ARI label.
  - 1. Casing:
    - a. Manufacturer's standard material.
  - 2. Tubes: Copper material.
  - 3. Tube Headers:
    - a. Manufacturer's standard material.
  - 4. Fins: Aluminum.
  - 5. Fin and Tube Joint: Mechanical bond.
  - 6. Leak Test: Coils shall be leak tested with air under water.
  - 7. Refrigerant Coils:
    - a. Capacity Reduction: Circuit coils for;
      - 1) Face control.
    - b. Suction and Distributor: Seamless copper tube with brazed joints.
  - 8. Coating: Phenolic epoxy corrosion-protection coating after assembly.
- J. Cooling-Coil Condensate Drain Pans:
  - 1. Fabricated from **galvanized**-steel sheet and sloped in multiple planes to collect and drain condensate from cooling coils, coil piping connections, coil headers, and return bends.
  - 2. Complying with requirements in ASHRAE 62.1.
  - 3. Units with stacked coils shall have an intermediate drain pan to collect and drain condensate from top coil.

- K. Hot-Water Coils: Rated according to ARI 410 and ASHRAE 33, and bearing the ARI label.
  - 1. Access: Fabricate coil section to allow removal and replacement of coil and to allow inplace access for service and maintenance of coil(s).
  - 2. Casing material:
    - a. Manufacturer's standard material.
  - 3. Tubes: Copper material.
  - 4. Tube Header material:
    - a. Manufacturer's standard material.
  - 5. Fin material: Aluminum.
  - 6. Fin and Tube Joint: Mechanical bond.
  - 7. Leak Test: Coils shall be leak tested with air under water.
  - 8. Coating: Phenolic epoxy corrosion-protection coating after assembly.
- L. Indirect-Fired Gas Furnaces:
  - Description: Factory assembled, piped, and wired; complying with NFPA 54, "National Fuel Gas Code," and ANSI Z21.47, "Gas-Fired Central Furnaces."
    - a. AGA Approval: Furnace shall bear label of AGA.
  - 2. Burners: Stainless steel.
    - a. Ignition: Electronically controlled electric spark with flame sensor.
    - b. High-Altitude **Kit**: For Project at elevations more than 2000 feet above sea level.
  - 3. Heat-Exchanger Drain Pan: Stainless steel.
  - 4. Venting: Gravity vented.
  - 5. Power Vent: Integral, motorized centrifugal fan interlocked with gas valve.
  - 6. Gas Control Valve: **Electronic modulating**.
  - 7. Gas Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff. Control devices and control sequence shall comply with requirements of **FMG agency**.
  - 8. Access: Fabricate section to allow removal and replacement of furnace and to allow inplace access for service.
- M. Piping and Wiring: Fabricate units with space within housing for piping and electrical conduits. Wire motors and controls so only external connections are required during installation.
  - 1. Indoor Enclosure: NEMA 250, Type 12 enclosure contains relays, starters, and terminal strip.
  - 2. Outdoor Enclosure: NEMA 250, Type 3R enclosure contains relays, starters, and terminal strip.
  - Include fused disconnect switches.
  - 4. Variable-speed controller to vary fan capacity from 100 to approximately **50** percent.
- N. Accessories:
  - 1. Roof Curb:
    - a. Material:
      - 1) Steel, with gasketing.
    - b. Factory-installed wood nailer; complying with NRCA standards; minimum height of:
      - 1) 24 inches height.

- 2. Intake weather hood with 2-inch- thick filters.
- 3. Louvered intake weather hood with 2-inch- thick filters in V-bank configuration.
- 4. Exhaust weather hood with birdscreen.
- 5. Isolation Dampers (**Standard Leakage**):
  - a. Opposed-blade:
    - 1) Material;
      - a) Galvanized-steel.
      - b) Aluminum.
  - b. Operating Rod (material): Standard-non-plated.
  - c. Operating Rod (material): Cadmium-plated.
  - d. Bearings;
    - 1) Rotating in a single frame.
    - 2) Bearing (material):
      - a) Steel.
  - e. Frame (material).
    - 1) Galvanized-steel.
    - 2) Aluminum.
  - f. Frame and operating rods to be connected with a common linkage.
  - g. Electric damper operator factory wired.
  - h. Blades shall have gaskets and edge seals, and shall be mechanically fastened to operating rod.
- 6. Duct flanges.
- 7. Rubber-in-shear isolators for ceiling-mounted units.
- 8. Hinged access doors with quarter-turn latches.
- 9. Drain pans for condensate removal complying with ASHRAE 62.1.
- 10. Automatic, in-place, spray-wash system.
- 11. Weatherproofing for tilt-control system.

## 2.3 CONTROLS

- **A.** Carbon Dioxide Sensor: Adjustable control with digital display and computer/building management system interface to energize unit. CO2 input to be from associated rooftop unit.
- B. Indirect-Fired-Gas-Furnaces Controls:
  - 1. Sensor with sensor adjustment located in control panel to control gas furnace burner to maintain temperature:
    - a. Factory-mounted sensor in unit discharge.
  - 2. Wall-mounted, space-temperature sensor with **temperature adjustment** to control gas furnace burner to maintain temperature.
  - 3. Burner Controls (type):
    - a. Multiple steps.

## **PART 3 - EXECUTION**

## 3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-to-air energy recovery equipment installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

#### 3.2 INSTALLATION

- A. Install heat wheels so supply and exhaust airstreams flow in opposite directions and rotation is away from exhaust side to purge section to supply side.
  - 1. Install access doors in both supply and exhaust ducts, both upstream and downstream, for access to wheel surfaces, drive motor, and seals.
  - 2. Install removable panels or access doors between supply and exhaust ducts on building side for bypass during startup.
  - 3. Access doors and panels are specified in Section 233300 "Air Duct Accessories."
- B. Install heat-pipe heat exchangers so supply and exhaust airstreams flow in opposite directions. Install flexible connectors on ducts to enable tilt control; make connections airtight and with slack to compensate for full tilt.
  - 1. Install heat exchanger with clearance space for heat-pipe coil removal.
  - 2. Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to both sides of heat-pipe coil. Access doors and panels are specified in Section 233300 "Air Duct Accessories."
  - 3. Install tilt-control components, including electronic controller, electric actuator and linkage, thermostats, and sensors.
- C. Install fixed-plate heat exchangers so supply and exhaust airstreams flow in opposite directions.
  - Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to heat exchanger. Access doors and panels are specified in Section 233300 "Air Duct Accessories."
- D. Install gas-fired furnaces according to NFPA 54, "National Fuel Gas Code."
- E. Equipment Mounting:
  - 1. Install air-to-air energy recovery equipment on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Division 03.
- F. Roof Curb: Install on roof structure or concrete base, level and secure, according to:
  - The NRCA "Roofing and Waterproofing Manual Volume 4: Construction Details -Low-Slope Roofing," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts."
  - Install air-to-air energy recovery equipment on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure air-to-air energy recovery equipment to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- G. Unit Support:
  - 1. Install unit level on structural **pilings**.

- 2. Coordinate wall penetrations and flashing with wall construction.
- 3. Secure air-to-air energy recovery equipment to structural support with anchor bolts.
- H. Install wind and seismic restraints according to manufacturers' written instructions. Seismically restrained vibration isolation roof-curb rails are specified in Section 230548 "Vibration and Seismic Controls for HVAC."
- I. Install units with clearances for service and maintenance.
- Install new filters at completion of equipment installation and before testing, adjusting, and balancing.
- K. Pipe drains from drain pans to nearest floor drain; use ASTM B 88, Type L, drawn-temper copper water tubing with soldered joints, same size as condensate drain connection.
- L. Pipe drains from drain pans to nearest floor drain; use ASTM D 1785, Schedule 40 PVC pipe and solvent-welded fittings, same size as condensate drain connection.
  - 1. Requirements for Low-Emitting Materials:
    - a. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
    - b. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
  - 2. Requirements for Low-Emitting Materials: Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

## 3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 232113 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to unit to allow service and maintenance.
- C. Connect piping to units mounted on vibration isolators with flexible connectors.
- D. Connect cooling condensate drain pans with air seal trap at connection to drain pan and install cleanouts at changes in pipe direction.
- E. **Chilled Water Piping**: Comply with applicable requirements in Section 232113 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- F. **Hot Water Piping**: Comply with applicable requirements in Section 232113 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- G. Steam and Condensate Piping: Comply with applicable requirements in Section 232213 "Steam and Condensate Heating Piping" and Section 232216 Steam and Condensate Piping Specialties." Install shutoff valve at steam coil connections, float and thermostatic trap, and union or flange at each coil return connection.
- H. Refrigerant Piping: Comply with applicable requirements in Section 232300 "Refrigerant Piping."
- I. Gas Piping: Comply with requirements in Division 23. Connect gas piping with shutoff valve and union and with sufficient clearance for burner removal and service. Make connection with AGA-approved flexible connectors.
- J. Comply with requirements for ductwork specified in Section 233113 "Metal Ducts."

- K. Indirect-Fired Furnace Vent Connections: Comply with Section 235100 "Breechings, Chimneys, and Stacks."
- L. Install electrical devices furnished with units but not factory mounted.

#### 3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
  - Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
  - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
  - 2. Adjust seals and purge.
  - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
  - 4. Set initial temperature and humidity set points.
  - 5. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- D. Air-to-air energy recovery equipment will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

## 3.5 DEMONSTRATION

A. **Engage a factory-authorized service representative to train** Owner's maintenance personnel to adjust, operate, and maintain air-to-air energy recovery units.

## **END OF SECTION 23 7200**

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

# SECTION 23 7413 PACKAGED, OUTDOOR, ROOFTOP UNITS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

A. This Section includes packaged, outdoor, rooftop units.

## 1.3 DEFINITIONS

- A. BAS: Building Automation System
- B. ECM: Electrically commutated motor.
- C. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

#### 1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: RTUs shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- B. Delegated Design: Design RTU supports to comply with seismic performance requirements, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

## 1.5 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
- C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 1. Wiring Diagrams: Power, signal, and control wiring.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices their installation requirements.
- C. Delegated-Design Submittal: For vibration isolation and seismic restraints indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
  - 1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
  - 2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

## 1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

- 1. Structural members to which RTUs will be attached.
- 2. Roof openings
- 3. Roof curbs and flashing.
- A. Manufacturer Seismic Qualification Certification: Submit certification that the indirect gas-fired H-V units, accessories, and components will withstand seismic forces defined in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." Include the following:
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
    - a. The term "withstand" means the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control test reports and startup reports.
- C. Warranty: Special warranty specified in this Section.

#### 1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

#### 1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Fan Belts: One set for each belt-driven fan.
  - 2. Filters: Two sets of filters for each unit. One set to be used for startup, testing and balancing; second set to be installed at Substantial Completion.

## 1.9 QUALITY ASSURANCE

- A. ARI Compliance:
  - Comply with ARI 203/110 and ARI 303/110 for testing and rating energy efficiencies for RTUs.
  - 2. Comply with ARI 270 for testing and rating sound performance for RTUs.
- B. ASHRAE Compliance:
  - 1. Comply with ASHRAE 15 for refrigeration system safety.
  - 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- D. NFPA Compliance: Comply with NFPA 90A.
- E. UL Compliance: Comply with UL 1995.
- F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

## 1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.

- 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
- 2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
- 3. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion.
- 4. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

## **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - AAON.
  - 2. Carrier Corporation; a United Technologies company;
  - 3. Lennox Industries Inc.;
  - Daikin Applied (McQuay);
  - 5. Trane; a division of Ingersoll-Rand;
  - 6. York, a Johnson Control Company.

## 2.2 CASING

- A. General Fabrication Requirements for Casings: Single-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.
- B. Exterior Casing: Galvanized steel bonderized and coated with baked enamel finish on all exposed surfaces. Casing panel shall pass ASTM B 117 672-hour salt spray test.
- C. Casing Insulation: ASTM C 1071, Type I fiberglass board insulation; ½-inch thick, 1.5 lb/cu.ft. density; aluminum foil face attached with mechanical fastener and adhesive in compliance with ASTM C 916 Type 1.
- D. Condensate Drain Pans: Minimum 1/8-inch per foot double sloped pan complying with ASHRAE 62.1.
  - 1. Material: Formed sections of galvanized-steel sheet, a minimum of 2- inches deep.
  - 2. Drain Connections: Threaded nipple extending through casing.

#### 2.3 FANS

- A. Direct-Driven Supply-Air Fans:
  - 1. Wheel, forward curved, double width, centrifugal. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls:
  - 2. Motor: ECM motor, adjustable for multiple speeds; Permanently lubricated bearing, resiliently mounted in the fan inlet;
- B. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated, totally enclosed, ECM motor.
- C. Fan Motors: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
- D. Seismic Fabrication Requirements: Fabricate fan section, internal mounting frame and attachment to fans, fan housings, motors, casings, accessories, and other fan section components with reinforcement to withstand seismic forces defined in Section 230548

"Vibration and Seismic Controls for HVAC" when fan-mounted frame and RTU-mounted frame are anchored to building structure.

## 2.4 COILS

- A. Seamless internally grooved copper tubes; all brazed joints; with mechanically bonded aluminum fins in galvanized steel casing and equalizing-type vertical distributor.
  - 1. Evaporator coils shall be leak tested to 150 psig; pressure tested to 450 psig and qualified to UL burst test at 1,775 psig.
  - 2. Condenser coils shall be leak tested to 150 psig; pressure tested to 650 psig and qualified to UL burst test at 1,980 psig.

## 2.5 REFRIGERANT CIRCUIT COMPONENTS

- A. Number of Refrigerant Circuits: One.
- B. Compressor: Hermetic scroll, mounted on vibration isolators, with internal overcurrent and high-temperature protection, internal pressure relief, with crankcase heater.
- C. Refrigeration Specialties:
  - 1. Refrigerant: R-32.
  - 2. Thermostatic expansion valve with replaceable thermostatic element.
  - 3. Refrigerant filter/dryer.
  - 4. Manual-reset high-pressure safety switch.
  - 5. Automatic-reset low-pressure safety switch.
  - 6. Minimum off-time relay.
  - 7. Automatic-reset compressor motor thermal overload.
  - 8. Brass service valves installed in compressor suction and liquid lines.
  - 9. Low-ambient kit high-pressure sensor.

## 2.6 AIR FILTRATION

- A. General Requirements for Air Filtration Section:
  - 1. UL listed and labeled: UL 900 in accordance with NFPA 90A.
  - 2. Provide minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
- B. Pleated Panel Filters:
  - 1. Description: Factory-fabricated, self-supported, extended-surface, pleated, panel-type disposable air filters with holding frames.
  - 2. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.
    - a. Adhesive: As recommended by air-filter manufacturer and with a VOC content of 80 g/L or less.
    - b. Media shall be coated with an antimicrobial agent.
    - c. Media shall be bonded to frame to prevent air bypass.
  - 3. Capacities and Characteristics:
    - a. Thickness or Depth: 2-inches.
    - b. MERV Rating: 8 when tested according to ASHRAE 52.2.

## 2.7 GAS FURNACE

- A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.
  - 1. ETL Certification: Designed and certified by and bearing ELT label.

- B. Burners: Type 409 Stainless steel.
  - 1. Fuel: Natural Gas
  - 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
  - 3. High-Altitude capability: Burner performance shall be as scheduled at project elevation. Provide additional high-altitude kit or accessories as necessary.
- C. Heat-Exchanger and Drain Pan: Type 409 Stainless steel.
- D. Power Vent: Integral, motorized centrifugal induced draft fan interlocked with gas valve and air flow safety switch.
- E. Safety Controls:
  - 1. Gas Control Valve: Modulating.
  - 2. Gas Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.

## 2.8 DAMPERS AND INTEGRATED ECONOMIZER

- A. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
  - 1. Damper Motor: Modulating with adjustable minimum position.
  - 2. Relief-Air Damper: Dry bulb economizer with hood.
- B. Integrated economizer with powered relief fan.
  - 1. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
  - 2. Damper Motor: Modulating with adjustable minimum position.
  - 3. Economizer: Dry bulb economizer and hood with economizer fault detection & diagnostic.
  - 4. Washable cottonwood outside air filter, bird screen and outside air weather hood
  - 5. Fully modulating electronic control with adjustable mixed-air thermostat and automatic changeover.

## 2.9 DAMPERS AND INTEGRATED ECONOMIZER WITH ERV OPTION

- A. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
  - 1. Damper Motor: Modulating with adjustable minimum position.
  - 2. Relief-Air Damper: Electronically controlled based on economizer.
- B. Integrated ERV/economizer with powered relief fan & powered outside air fan.
  - 1. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
  - 2. Damper Motor: Modulating with adjustable minimum position.
  - 3. ERV: Desiccant wheel energy recovery wheel unit attached to the outside air inlet & relief air outlet on the packaged rooftop unit. ERV to control the amount of outside air/relief air via a room CO2 sensor.

- 4. Economizer: Dry bulb economizer through the ERV.
- 5. Washable cottonwood outside air filter, bird screen and outside air weather hood
- 6. Fully modulating electronic control with adjustable mixed-air thermostat and automatic changeover.

## 2.10 ELECTRICAL POWER CONNECTION

- A. Provide for single connection of power to unit with control-circuit transformer with built-in overcurrent protection.
- B. Provide with unit-mounted disconnect switch accessible from outside.

#### 2.11 CONTROLS

- A. Basic Unit Controls:
  - 1. Control-voltage transformer.
  - 2. Wall-mounted 7-day electronic programmable thermostat or sensor with:
    - a. Heat-cool-off switch.
    - b. Fan on-auto switch.
    - c. Fan-speed switch.
    - d. Changeover: Automatic.
    - e. Adjustable deadband.
    - f. Setpoint: Exposed.
    - g. Indication, by Degree F: Exposed.
    - h. Occupied/Unoccupied (Day/Night) Mode with unoccupied mode over-ride push button.
    - i. Auxiliary Contact to allow interlock with exhaust fans, damper, etc.
    - j. Data entry and access port to input temperature set points, occupied and unoccupied periods, and output room temperature, supply-air temperature, operating mode, and status.
    - k. Carbon dioxide sensor tied to & controlling an energy recovery ventilator unit on the outside air inlet/relief air outlet.
  - 3. Wall-mounted humidistat or sensor with the following features:
    - a. Set point: Exposed.
    - b. Indication: Exposed.
  - 4. Unit-Mounted Annunciator Panel for Each Unit:
    - a. Lights to indicate power on, cooling, heating, fan running, filter dirty, and unit alarm or failure.
    - b. DDC controller or programmable timer and interface with HVAC instrumentation and control system.
    - c. Digital display of outdoor-air temperature, supply-air temperature, return-air temperature, economizer damper position, indoor-air quality, and control parameters.

#### B. DDC Controller:

- 1. DDC Controller shall connect into the existing building management system.
- 2. Controller shall have volatile-memory backup.
- 3. Safety Control Operation:

- a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire alarm control panel.
- b. Firestats: Stop fan and close outdoor-air damper if air greater than 130 deg F enters unit. Provide additional contacts for alarm interface to fire alarm control panel.
- c. Fire Alarm Control Panel Interface: Provide control interface to coordinate with operating sequence described in Section 283111 "Digital, Addressable Fire-Alarm System" and Section 283112 "Zoned (DC Loop) Fire-Alarm System."
- d. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply air temperature is less than 40 deg F.
- e. Defrost Control for Condenser Coil: Pressure differential switch to initiate defrost sequence.
- 4. Scheduled Operation: Occupied and unoccupied periods on 7-day electronic clock with a minimum of four programmable periods per day.
- 5. Unoccupied Period:
  - a. Heating Setback: 10 deg F.
  - b. Cooling Setback: System off.
  - c. Override Operation: Two hours.
- 6. Supply Fan Operation:
  - a. Occupied Periods: Run fan continuously with modulating volume control for load matching.
  - b. Unoccupied Periods: Cycle fan to maintain setback temperature.
- 7. Gas Furnace Operation:
  - a. Occupied Periods: Modulate burner to maintain room temperature.
  - b. Unoccupied Periods: Cycle burner to maintain setback temperature.
- 8. Minimum Outdoor-Air Damper Operation:
  - a. Occupied Periods: Open to minimum airflow volume listed on the drawings.
  - b. Unoccupied Periods: Close the outdoor-air damper.
- 9. Economizer Outdoor-Air Damper Operation:
  - a. Occupied Periods: Open to minimum intake volume listed on the drawings, and maximum 100 percent of the fan capacity to comply with ASHRAE Cycle II. Controller shall permit air-side economizer operation when outdoor air is less than 60 deg F. Use outdoor-air temperature to adjust mixing dampers. Start relief-air fan with end switch on outdoor-air damper. During economizer cycle operation, lock out cooling.
  - b. Unoccupied Periods: Close outdoor-air damper and open return-air damper.
- C. Interface Requirements for Building Automation System:
  - 1. Interface relay for scheduled operation.
  - 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
  - 3. Provide ASHRAE 135.a (BACnet) compatible interface for BAS control workstation for the following:
    - a. Adjusting set points.
    - b. Monitoring supply fan start, stop, and operation.
    - c. Inquiring data to include:

- 1) Outdoor air damper position.
- 2) Supply air temperature.
- 3) Room air temperature.
- 4) Room CO2 levels.

## d. Monitoring:

- 1) Occupied and unoccupied operations.
- 2) Constant and variable motor loads.
- 3) Variable-frequency drive operation.
- 4) Cooling load.
- 5) Heating load.
- 6) Economizer cycles.
- 7) Air-distribution static pressure and ventilation air volume.
- 8) CO2 levels.

## 2.12 ACCESSORIES

- A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Outlet shall be non-powered (power shall be provide by Division 26).
- B. Low-ambient kit using variable-speed condenser fans for operation down to 10 deg F.
- C. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
- D. Coil guards of painted, galvanized-steel wire.
- E. Hail guards of galvanized steel, painted to match casing.

## 2.13 ROOF CURBS

- A. Roof curbs with vibration isolators and seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC."
- B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
  - 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
    - a. Materials: ASTM C 1071, Type I or II.
    - b. Thickness: 1 inch.
  - 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
    - a. Liner Adhesive: Comply with ASTM C 916, Type I.
    - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
    - c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
    - d. Liner Adhesive: Comply with ASTM C 916, Type I.
- C. Curb Height: 14 inches.

## **PART 3 - EXECUTION**

## 3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.
- B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.
- C. Examine roofs for suitable conditions where RTUs will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

#### 3.2 INSTALLATION

- A. Equipment Mounting:
  - Install RTUs on seismically restrained vibration isolation curb. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC"
- B. Roof Curb: Install on roof structure level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts."
  - 1. Provide sound isolation package with frames to hold 5/8" gypsum board to totally enclose roof below unit and sound isolation insulation.
- C. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.
- D. Install gas-fired units according to NFPA 54 "National Fuel Gas Code".

#### 3.3 CONNECTIONS

- A. Install condensate drain; size to match RTU connection or next size larger; with trap and indirect connection to nearest roof drain or area drain.
- B. Install piping adjacent to RTUs to allow service and maintenance.
  - 1. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
- C. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
  - 1. Install ducts to termination at top of roof curb.
  - Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
  - 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
  - 4. Install return-air duct continuously through roof structure.

## 3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing. Submit written report to Architect.
- B. Tests and Inspections:
  - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
  - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.

- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Prepare written report of findings and corrective actions. Submit written report to Architect.
- D. Remove and replace malfunctioning units and retest as specified above.

## 3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Complete installation and startup checks according to manufacturer's written instructions and do the following:
  - 1. Inspect for visible damage to unit casing.
  - 2. Inspect for visible damage to furnace combustion chamber.
  - 3. Inspect for visible damage to compressor, coils, and fans.
  - 4. Inspect internal insulation.
  - 5. Verify that labels are clearly visible.
  - 6. Verify that clearances have been provided for servicing.
  - 7. Verify that controls are connected and operable.
  - 8. Verify that filters are installed.
  - 9. Clean condenser coil and inspect for construction debris.
  - 10. Clean furnace flue and inspect for construction debris.
  - 11. Connect and purge gas line.
  - 12. Remove packing from vibration isolators.
  - 13. Inspect operation of barometric relief dampers.
  - 14. Verify lubrication on fan and motor bearings.
  - 15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
  - 16. Adjust fan belts to proper alignment and tension.
  - 17. Start unit according to manufacturer's written instructions.
    - Start refrigeration system.
    - b. Do not operate below recommended low-ambient temperature.
    - c. Complete startup sheets and attach copy with Contractor's startup report.
  - 18. Inspect and record performance of interlocks and protective devices; verify sequences.
  - 19. Operate unit for an initial period as recommended or required by manufacturer.
  - 20. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency.
    - a. Measure gas pressure on manifold.
    - b. Inspect operation of power vents.
    - c. Measure combustion-air temperature at inlet to combustion chamber.
    - d. Measure flue-gas temperature at furnace discharge.
    - e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
    - f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.

- 21. Calibrate thermostats.
- 22. Adjust and inspect high-temperature limits.
- 23. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
- 24. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
  - a. Coil leaving-air, dry- and wet-bulb temperatures.
  - b. Coil entering-air, dry- and wet-bulb temperatures.
  - c. Outdoor-air, dry-bulb temperature.
  - d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
- 25. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
- 26. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
  - a. Supply-air volume.
  - b. Return-air volume.
  - c. Relief-air volume.
  - d. Outdoor-air intake volume.
- 27. Simulate maximum cooling demand and inspect the following:
  - a. Compressor refrigerant suction and hot-gas pressures.
  - Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.
- 28. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
  - a. High-temperature limit on gas-fired heat exchanger.
  - b. Low-temperature safety operation.
  - c. Filter high-pressure differential alarm.
  - d. Economizer to minimum outdoor-air changeover.
  - e. Relief-air fan operation.
  - f. Smoke and firestat alarms.
- 29. Prepare written report of findings and corrective actions. Submit written report to Architect.

## 3.6 CLEANING AND ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions.
- B. After startup and performance testing; and testing, adjusting, and balancing RTU and airdistribution systems and prior to Substantial Completion; clean filter housings and install new filters.

## 3.7 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel on procedures and schedules related to adjusting, operating, startup and shutdown; troubleshooting; servicing and preventative maintenance of Rooftop Units.
  - 1. Review data in the Operation and Maintenance Manual. Refer to Division 1 Section "Contact Closeout".

2. Schedule training with Owner through the Architect with at least 14 days advance notice. **END OF SECTION 23 7413** 

#### **SECTION 23 8239**

#### WALL AND CEILING ELECTRIC UNIT HEATERS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

A. Section includes wall and ceiling heaters with propeller fans and electric-resistance heating coils.

## 1.3 ACTION SUBMITTALS

- A. See Section 01 3000 Administrative Requirements, for submittal procedures.
- B. Product Data: For each type of product.
  - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- C. Shop Drawings:
  - 1. Include plans, elevations, sections, and details.
  - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 3. Include details of anchorages and attachments to structure and to supported equipment.
  - 4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
  - 5. Wiring Diagrams: Power, signal, and control wiring.

## 1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wall and ceiling unit heaters to include in emergency, operation, and maintenance manuals.

## PART 2 - PRODUCTS

## 2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
  - 1. Airtherm Mfg. Co.
  - 2. Buffalo Forge Co.
  - 3. Chromalox, Inc.
  - 4. Dunham-Bush Inc.
  - 5. INDEECO.
  - 6. Markel Products; TPI Corporation.
  - 7. McQuay Inc.
  - 8. Modine MFg. Co.
  - 9. QMark Electric Heating.
  - 10. Ted Reed Thermal, Inc.
  - 11. Trane.
  - 12. Wing (The) Co.

## 2.2 DESCRIPTION

- A. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

#### 2.3 CABINET

- A. **Front Panel**: **Stamped-steel louver**, with removable panels fastened with tamperproof fasteners.
- B. **Finish**: Baked enamel over baked-on primer with manufacturer's **standard** color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
- C. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

#### 2.4 **COIL**

- A. Electric-Resistance Heating Coil:
  - 1. Nickel-chromium heating wire.
  - 2. Wire embedded in magnesium oxide refractory.
  - 3. Wire in corrosion-resistant metallic sheath.
  - 4. Stainless-steel terminate elements.
  - 5. Machine-staked terminals.
  - 6. Limit Controls and high-temperature protection.

#### 2.5 FAN AND MOTOR

- A. Fan: Aluminum propeller directly connected to motor.
- B. Motor: Permanently lubricated. Comply with requirements in Division 23 "Common Motor Requirements for HVAC Equipment."
  - 1. Multispeed.

## 2.6 CONTROLS

- A. Controls: Unit-mounted thermostat.
- B. Electrical Connection: Factory wire motors and controls for a single field connection.
  - 1. Disconnect switch.

## **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

- A. Examine areas to receive wall and ceiling unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

## 3.2 INSTALLATION

- A. Install wall and ceiling unit heaters to comply with NFPA 90A.
- B. Install wall and ceiling unit heaters level and plumb.
- C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- D. Ground equipment according to Division 26 "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Division 26 "Low-Voltage Electrical Power Conductors and Cables."

**END OF SECTION 23 8239** 

Logan City School District

THIS PAGE IS INTENTIONALLY LEFT BLANK

## **DIVISION 26 - ELECTRICAL**

| 260500 | COMMON WORK RESULTS FOR ELECTRICAL                           |
|--------|--------------------------------------------------------------|
| 260519 | LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES           |
| 260526 | GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS                 |
| 260529 | HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS                  |
| 260533 | RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS                     |
| 260544 | SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING |
| 260548 | VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS        |
| 260553 | IDENTIFICATION FOR ELECTRICAL SYSTEMS                        |
| 260572 | SHORT-CIRCUIT STUDIES                                        |
| 260573 | COORDINATION STUDIES                                         |
| 260923 | LIGHTING CONTROL DEVICES                                     |
| 260943 | RELAY-BASED LIGHTING CONTROLS                                |
| 262413 | SWITCHBOARDS                                                 |
| 262416 | PANELBOARDS                                                  |
| 262713 | ELECTRICITY METERING                                         |
| 262726 | WIRING DEVICES                                               |
| 262816 | ENCLOSED SWITCHES AND CIRCUIT BREAKERS                       |
| 262913 | ENCLOSED CONTROLLERS                                         |
| 265100 | INTERIOR LIGHTING                                            |
| 265619 | EXTERIOR LIGHTING                                            |

## **END OF TABLE OF CONTENTS**

Logan City School District

## SECTION 260500 COMMON WORK RESULTS FOR ELECTRICAL

#### **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Electrical equipment coordination and installation.
  - 2. Sleeves for raceways and cables.
  - Sleeve seals.
  - 4. Grout.
  - 5. Common electrical installation requirements.

#### 1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

#### 1.4 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
  - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
  - To provide for ease of disconnecting the equipment with minimum interference to other installations.
  - 3. To allow right of way for piping and conduit installed at required slope.
  - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."."

## **PART 2 - PRODUCTS**

#### 2.1 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel.
  - Minimum Metal Thickness:
    - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
    - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

## 2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
  - 1. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
  - 2. Pressure Plates: Carbon steel or Stainless steel. Include two for each sealing element.
  - 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

## 2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

## **PART 3 - EXECUTION**

## 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

#### 3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall
- E. Cut sleeves to length for mounting flush with both surfaces of walls.
- F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
  - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

## 3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

## 3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

## **END OF SECTION 260500**

Logan City School District

## **SECTION 260519**

## LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

#### PART 1 - GENERAL

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. This Section includes the following:
  - 1. Building wires and cables rated 600 V and less.
  - 2. Connectors, splices, and terminations rated 600 V and less.
- B. Related Sections include the following:
  - Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits.

#### 1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.

#### 1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

## 1.5 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

## **PART 2 - PRODUCTS**

## 2.1 CONDUCTORS AND CABLES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
  - 1. Alcan Products Corporation; Alcan Cable Division.
  - 2. American Insulated Wire Corp.; a Leviton Company.
  - 3. General Cable Corporation.
  - 4. Senator Wire & Cable Company.
  - 5. Southwire Company.
- B. Copper Conductors: Comply with NEMA WC 70.
- C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.
- D. Multiconductor Cable: Comply with NEMA WC 70 for metal-clad cable, Type MC (HCF for patient care areas) and Type SOW with ground wire.

#### 2.2 CONNECTORS AND SPLICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
  - 1. AFC Cable Systems, Inc.
  - 2. Hubbell Power Systems, Inc.
  - 3. O-Z/Gedney: EGS Electrical Group LLC.
  - 4. 3M; Electrical Products Division.
  - 5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

## **PART 3 - EXECUTION**

## 3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

## 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type THHN-THWN, single conductors in raceway.
- B. Feeders: Type THHN-THWN, single conductors in raceway.
- C. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- D. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway or Metal-clad cable, Type MC (HCF-MC in patient care areas).
- E. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.
- F. Cord Drops and Portable Appliance Connections: Type SOW, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
- G. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- H. Class 2 Control Circuits: Type THHN-THWN, in raceway.

## 3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."
- F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

## 3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

## **END OF SECTION 260519**

## **SECTION 260526**

## **GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS**

#### **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment

## 1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

## **PART 2 - PRODUCTS**

#### 2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
  - 1. Solid Conductors: ASTM B 3.
  - 2. Stranded Conductors: ASTM B 8.
  - 3. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
  - 4. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
- C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches (6 by 50 mm) in cross section, unless otherwise indicated; with insulators.

## 2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
  - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

## **PART 3 - EXECUTION**

#### 3.1 APPLICATIONS

- A. Conductors: Install solid or stranded conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.
- B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
  - Install bus on insulated spacers 1 inch (25 mm), minimum, from wall 6 inches (150 mm) above finished floor, unless otherwise indicated.

- 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, down to specified height above floor, and connect to horizontal bus.
- D. Conductor Terminations and Connections:
  - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
  - 2. Underground Connections: Welded connectors, except at ground rods and as otherwise indicated.
  - 3. Connections to Ground Rods: Bolted connectors.
  - 4. Connections to Structural Steel: Welded connectors.

## 3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- D. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.
- E. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
  - 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-2-by-12-inch (6-by-50-by-300-mm) grounding bus.
  - 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

## 3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
  - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
  - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
  - 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

## C. Grounding and Bonding for Piping:

- 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

- D. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
- E. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, using a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4 AWG.
  - 1. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation.
  - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to grounding electrode external to concrete.

**END OF SECTION 260526** 

Logan City School District

## **SECTION 260529**

### HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

### **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. This Section includes the following:
  - 1. Hangers and supports for electrical equipment and systems.
  - 2. Construction requirements for concrete bases.
- B. Related Sections include the following:
  - 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

### 1.3 DEFINITIONS

- EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

### 1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

## 1.5 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Comply with NFPA 70.

### 1.6 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

## **PART 2 - PRODUCTS**

## 2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
  - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
    - a. Allied Tube & Conduit.
    - b. Cooper B-Line, Inc.; a division of Cooper Industries.
    - c. ERICO International Corporation.
    - d. GS Metals Corp.
    - e. Thomas & Betts Corporation.

- f. Unistrut; Tyco International, Ltd.
- g. Wesanco, Inc.
- 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- Painted Coatings: Manufacturer's standard painted coating applied according to MFMA 4.
- 4. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
  - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
    - Available Manufacturers: Subject to compliance with requirements, manufacturers
      offering products that may be incorporated into the Work include, but are not
      limited to, the following:
      - 1) Hilti Inc.
      - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
      - 3) MKT Fastening, LLC.
      - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
  - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
    - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
      - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
      - 2) Empire Tool and Manufacturing Co., Inc.
      - 3) Hilti Inc.
      - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
      - 5) MKT Fastening, LLC.
  - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
  - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
  - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
  - 6. Toggle Bolts: All-steel springhead type.
  - 7. Hanger Rods: Threaded steel.

## 2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

## **PART 3 - EXECUTION**

## 3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 50 percent in future without exceeding specified design load limits.
  - 1. Secure raceways and cables to these supports with conduit clamps.
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

## 3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
  - 1. To Wood: Fasten with lag screws or through bolts.
  - 2. To New Concrete: Bolt to concrete inserts.
  - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
  - 4. To Existing Concrete: Expansion anchor fasteners.
  - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
  - 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts or Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
  - 7. To Light Steel: Sheet metal screws.
  - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing hars

## 3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

## 3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

- B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base.
  - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
  - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
  - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

## 3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
  - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

## **SECTION 260533**

### RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

### **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
  - 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

### 1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.
- C. IMC: Intermediate metal conduit.
- D. LFMC: Liquidtight flexible metal conduit.
- E. RNC: Rigid nonmetallic conduit.

### 1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

## **PART 2 - PRODUCTS**

## 2.1 METAL CONDUIT AND TUBING

- A. Rigid Steel Conduit: ANSI C80.1.
- B. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
  - 1. Comply with NEMA RN 1.
  - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- C. EMT: ANSI C80.3.
- D. FMC: Zinc-coated steel or aluminum.
- E. LFMC: Flexible steel conduit with PVC jacket.
- F. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
  - 1. Fittings for EMT: Steel or die-cast, set-screw or compression type.
  - 2. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- G. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

### 2.2 OPTICAL FIBER/COMMUNICATIONS CABLE RACEWAY AND FITTINGS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
  - 1. Arnco Corporation.
  - 2. Endot Industries Inc.

- 3. IPEX Inc.
- 4. Lamson & Sessions; Carlon Electrical Products.

## 2.3 METAL WIREWAYS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
  - 1. Cooper B-Line, Inc.
  - 2. Hoffman.
  - 3. Square D; Schneider Electric.
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1 or 3R, unless otherwise indicated.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Screw-cover type.
- E. Finish: Manufacturer's standard enamel finish.

### 2.4 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
    - a. Hubbell Incorporated; Wiring Device-Kellems.
    - b. MonoSystems, Inc.
    - c. Panduit Corp.
    - d. Wiremold / Legrand.

## 2.5 BOXES, ENCLOSURES, AND CABINETS

- A. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- B. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy or aluminum, Type FD, with gasketed cover.
- C. Metal Floor Boxes: Cast or sheet metal, fully adjustable, rectangular.
- D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- E. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum or galvanized, cast iron with gasketed cover.
- F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
  - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
  - 2. Nonmetallic Enclosures: Plastic.
- G. Cabinets:
  - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
  - 2. Hinged door in front cover with flush latch and concealed hinge.
  - 3. Key latch to match panelboards.
  - 4. Metal barriers to separate wiring of different systems and voltage.
  - 5. Accessory feet where required for freestanding equipment.

### **PART 3 - EXECUTION**

### 3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:

- 1. Exposed Conduit: Rigid steel conduit.
- 2. Concealed Conduit, Aboveground: Rigid steel conduit.
- 3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried.
- 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
- 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Comply with the following indoor applications, unless otherwise indicated:
  - Exposed, Not Subject to Physical Damage: EMT.
  - 2. Exposed and Subject to Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
    - a. Mechanical rooms.
  - 3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
  - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
  - 5. Damp or Wet Locations: Rigid steel conduit.
  - 6. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway or EMT.
  - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
  - 1. Rigid Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
  - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
- E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.
- F. Do not install aluminum conduits in contact with concrete.

## 3.2 INSTALLATION

- A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
- B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
- E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
- H. Raceways Embedded in Slabs:
  - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
  - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
  - 3. Change from RNC, Type EPC-40-PVC to rigid steel conduit before rising above the floor.
- I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

- J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
- K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- L. Raceways for Optical Fiber and Communications Cable: See division 27 section Communications Raceways.
- M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
  - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
  - 2. Where otherwise required by NFPA 70.
- N. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m).
  - 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
    - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
    - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
    - c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
  - 2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change.
  - 3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.
- O. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
  - 1. Use LFMC in damp or wet locations.
- P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.
- Q. Set metal floor boxes level and flush with finished floor surface.

## 3.3 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
  - Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
  - Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

## **SECTION 260544**

## SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section Includes:
  - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
  - 2. Sleeve-seal systems.
  - 3. Sleeve-seal fittings.
  - 4. Grout.
  - 5. Silicone sealants.

## B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

### **PART 2 - PRODUCTS**

## 2.1 SLEEVES

- A. Wall Sleeves:
  - Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
  - 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
  - B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
  - C. Sleeves for Rectangular Openings:
    - 1. Material: Galvanized sheet steel.
    - 2. Minimum Metal Thickness:
      - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
      - b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

### 2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
  - 1. Sealing Elements: EPDM or Nitrile (Buna N) rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
  - 2. Pressure Plates: Stainless steel.
  - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

### 2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

## 2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

## **PART 3 - EXECUTION**

## 3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Comply with NEMA VE 2 for cable tray and cable penetrations.
- C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
  - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
    - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
    - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
  - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
  - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
  - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
  - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.
- D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
  - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
  - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

## 3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

# 3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

Logan City School District

## **SECTION 260548**

### VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

### PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. This Section includes the following:
  - 1. Isolation pads.
  - 2. Channel support systems.
  - 3. Restraint cables.
  - 4. Hanger rod stiffeners.
  - 5. Anchorage bushings and washers.
- B. Related Sections include the following:
  - 1. Division 26 Section "Hangers And Supports For Electrical Systems" for commonly used electrical supports and installation requirements.

### 1.3 DEFINITIONS

- A. The IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

### 1.4 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
  - 1. Site Class as Defined in the IBC: Per structural documents.
  - 1. Site Class as Defined in the IBC: Per structural documents.
  - Assigned Seismic Use Group or Building Category as Defined in the IBC: Per structural documents.
    - a. Component Importance Factor:
      - 1) General: 1.0.
      - 2) Life Safety (EM): 1.5
    - b. Component Response Modification Factor:
      - 1) Fixtures: 1.5
      - 2) Equipment: 2.5
      - 3) Conduit and Cables: 5.0.
    - c. Component Amplification Factor: 2.5.
  - 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): Per structural documents.
  - 4. Design Spectral Response Acceleration at 1.0-Second Period: Per structural documents.

# 1.5 QUALITY ASSURANCE

- A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

D. Comply with NFPA 70.

## **PART 2 - PRODUCTS**

## 2.1 SEISMIC-RESTRAINT DEVICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
  - Amber/Booth Company, Inc.
  - 2. California Dynamics Corporation.
  - 3. Cooper B-Line, Inc.; a division of Cooper Industries.
  - 4. Hilti Inc.
  - 5. Loos & Co.; Seismic Earthquake Division.
  - 6. Mason Industries.
  - 7. TOLCO Incorporated; a brand of NIBCO INC.
  - Unistrut; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
  - Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.
- D. Restraint Cables: ASTM A 603 galvanized or ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.
- E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or Reinforcing steel angle clamped to hanger rod. Do not weld stiffeners to rods.
- F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.
- G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.
- H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
- I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.
- J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

## 2.2 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
  - 1. Powder coating on springs and housings.
  - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
  - 3. Baked enamel or powder coat for metal components on isolators for interior use.

4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

## **PART 3 - EXECUTION**

### 3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

### 3.2 APPLICATIONS

- A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

## 3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Equipment and Hanger Restraints:
  - 1. Install restrained isolators on electrical equipment.
  - 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
  - 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.
- B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

### D. Drilled-in Anchors:

- Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
- 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

# 3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

## 3.5 ADJUSTING

- A. Adjust isolators after isolated equipment is at operating weight.
- B. Adjust active height of spring isolators.
- C. Adjust restraints to permit free movement of equipment within normal mode of operation.

# SECTION 260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS

### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Identification for raceways.
  - 2. Identification for conductors.
  - 3. Equipment identification labels.
  - 4. Miscellaneous identification products.

## 1.3 QUALITY ASSURANCE

- A. Comply with ANSI A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

## 1.4 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

## **PART 2 - PRODUCTS**

### 2.1 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.
- B. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

## 2.2 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

## 2.3 EQUIPMENT IDENTIFICATION LABELS

A. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

### **PART 3 - EXECUTION**

### 3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.
- G. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

### 3.2 IDENTIFICATION SCHEDULE

- A. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
  - 1. Emergency Power.
  - 2. Power.
  - UPS.
- B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
  - 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
    - a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
    - b. Colors for 208/120-V Circuits:
      - 1) Phase A: Black.
      - 2) Phase B: Red.
      - 3) Phase C: Blue.
      - 4) Neutral: White with colored stripe matching associated phase for single phase circuits
      - 5) Ground: Green
      - 6) Isolated Ground: Green with continuous yellow stripe
    - c. Colors for 480/277-V Circuits:
      - 1) Phase A: Brown.
      - 2) Phase B: Orange.
      - 3) Phase C: Yellow.
      - Ground: Gray with colored stripe matching associated phase for single phase circuits
      - 5) Ground: Green with continuous gray stripe
    - d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- C. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.
- D. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
- E. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power,

lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

- Labeling Instructions:
  - a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
  - b. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
  - c. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
- 2. Equipment to Be Labeled:
  - a. Enclosures and electrical cabinets.
  - b. Access doors and panels for concealed electrical items.
  - c. Emergency system boxes and enclosures.
  - d. Enclosed switches.
  - e. Enclosed circuit breakers.
  - f. Enclosed controllers.
  - g. Contactors.
  - h. Remote-controlled switches, dimmer modules, and control devices.

Logan City School District

# SECTION 260572 SHORT-CIRCUIT STUDIES

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

## 1.3 **DEFINITIONS**

- A. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
- B. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- C. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
- D. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
- E. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.
- F. SCCR: Short-circuit current rating.
- G. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
- H. Single-Line Diagram: See "One-Line Diagram."

## 1.4 ACTION SUBMITTALS

- A. Product Data:
  - 1. For computer software program to be used for studies.
  - 2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
    - a. Short-circuit study input data, including completed computer program input data sheets.
    - b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
      - Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.
      - Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

## 1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data:
  - 1. For Power Systems Analysis Software Developer.
  - 2. For Power System Analysis Specialist.
  - 3. For Field Adjusting Agency.

B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

## 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data:
  - 1. For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
  - 2. The following are from the Short-Circuit Study Report:
    - a. Final one-line diagram.
    - b. Final Short-Circuit Study Report.
    - c. Short-circuit study data files.
    - d. Power system data.

## 1.7 QUALITY ASSURANCE

- A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
  - 1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.
  - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.
- F. Field Adjusting Agency Qualifications:
  - 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
  - 2. A member company of NETA.
  - 3. Acceptable to authorities having jurisdiction.

### **PART 2 - PRODUCTS**

# 2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. SKM Systems Analysis, Inc.
- B. Comply with IEEE 399 and IEEE 551.
  - 1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

## 2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram of modeled power system, showing the following:
  - 1. Protective device designations and ampere ratings.
  - 2. Conductor types, sizes, and lengths.
  - 3. Transformer kilovolt ampere (kVA) and voltage ratings.

- 4. Motor and generator designations and kVA ratings.
- 5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
- 6. Derating factors and environmental conditions.
- 7. Any revisions to electrical equipment required by the study.
- D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.
- E. Protective Device Evaluation:
  - Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
  - 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
  - 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
  - 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
  - 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
- F. Short-Circuit Study Input Data:
  - 1. One-line diagram of system being studied.
  - 2. Power sources available.
  - 3. Manufacturer, model, and interrupting rating of protective devices.
  - 4. Conductors.
  - Transformer data.
- G. Short-Circuit Study Output Reports:
  - 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
    - a. Voltage.
    - b. Calculated fault-current magnitude and angle.
    - c. Fault-point X/R ratio.
    - d. Equivalent impedance.
  - 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
    - a. Voltage.
    - b. Calculated symmetrical fault-current magnitude and angle.
    - c. Fault-point X/R ratio.
    - d. Calculated asymmetrical fault currents:
      - 1) Based on fault-point X/R ratio.
      - 2) Based on calculated symmetrical value multiplied by 1.6.
      - Based on calculated symmetrical value multiplied by 2.7.
  - 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
    - a. Voltage.
    - b. Calculated symmetrical fault-current magnitude and angle.
    - c. Fault-point X/R ratio.
    - d. No AC Decrement (NACD) ratio.
    - e. Equivalent impedance.
    - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
    - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

## **PART 3 - EXECUTION**

## 3.1 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the study.
  - 1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect's attention.
  - 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
- B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 017839 "Project Record Documents" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:
  - 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
  - 2. Obtain electrical power utility impedance at the service.
  - 3. Power sources and ties.
  - 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
  - 5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
  - 6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
  - 7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA. rated voltage, and X/R ratio.
  - 8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
  - 9. Motor horsepower and NEMA MG 1 code letter designation.
  - 10. Conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
  - 11. Derating factors.

## 3.2 SHORT-CIRCUIT STUDY

- A. Perform study following the general study procedures contained in IEEE 399.
- B. Calculate short-circuit currents according to IEEE 551.
- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:
  - To normal system low-voltage load buses where fault current is 10 kA or less.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.
- H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

- 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
- I. Include in the report identification of any protective device applied outside its capacity.

Logan City School District

# SECTION 260573 COORDINATION STUDIES

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.
  - 1. Study results shall be used to determine coordination of series-rated devices.

### 1.3 DEFINITIONS

- A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.
- B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
- C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
- E. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
- F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.
- G. SCCR: Short-circuit current rating.
- H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
- I. Single-Line Diagram: See "One-Line Diagram."

## 1.4 ACTION SUBMITTALS

## A. Product Data:

- 1. For computer software program to be used for studies.
- 2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
  - Coordination-study input data, including completed computer program input data sheets.
  - Study and equipment evaluation reports.
- 3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
  - a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

## 1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data:
  - 1. For Power System Analysis Software Developer.
  - 2. For Power Systems Analysis Specialist.
  - 3. For Field Adjusting Agency.
- B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

## 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
  - 1. The following are from the Coordination Study Report:
    - a. Final one-line diagram.
    - b. Final protective device coordination study.
    - c. Coordination study data files.
    - d. List of all protective device settings.
    - e. Time-current coordination curves.
    - f. Power system data.

### 1.7 QUALITY ASSURANCE

- A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
- D. Power System Analysis Software Qualifications:
  - 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
  - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- F. Field Adjusting Agency Qualifications:
  - 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
  - 2. A member company of NETA.
  - Acceptable to authorities having jurisdiction.

### **PART 2 - PRODUCTS**

## 2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. SKM Systems Analysis, Inc.
- B. Comply with IEEE 242 and IEEE 399.
- C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

- 1. Optional Features:
  - a. Arcing faults.
  - b. Simultaneous faults.
  - c. Explicit negative sequence.
  - d. Mutual coupling in zero sequence.

## 2.2 COORDINATION STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram of modeled power system, showing the following:
  - Protective device designations and ampere ratings.
  - 2. Conductor types, sizes, and lengths.
  - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
  - 4. Motor and generator designations and kVA ratings.
  - 5. Switchgear, switchboard, motor-control center, and panelboard designations.
  - 6. Any revisions to electrical equipment required by the study.
  - 7. Study Input Data: As described in "Power System Data" Article.
    - Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports"
       Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13
       "Short-Circuit Studies."
- D. Protective Device Coordination Study:
  - 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
    - a. Phase and Ground Relays:
      - 1) Device tag.
      - 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
      - 3) Recommendations on improved relaying systems, if applicable.
    - b. Circuit Breakers:
      - 1) Adjustable pickups and time delays (long time, short time, and ground).
      - Adjustable time-current characteristic.
      - 3) Adjustable instantaneous pickup.
      - 4) Recommendations on improved trip systems, if applicable.
    - c. Fuses: Show current rating, voltage, and class.
- E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
  - Device tag and title, one-line diagram with legend identifying the portion of the system covered.
  - 2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
  - 3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
  - 4. Plot the following listed characteristic curves, as applicable:
    - a. Power utility's overcurrent protective device.
    - b. Medium-voltage equipment overcurrent relays.
    - c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
    - d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.

- e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
- f. Cables and conductors damage curves.
- g. Ground-fault protective devices.
- Motor-starting characteristics and motor damage points.
- i. Generator short-circuit decrement curve and generator damage point.
- j. The largest feeder circuit breaker in each motor-control center and panelboard.
- 5. Maintain selectivity for tripping currents caused by overloads.
- 6. Maintain maximum achievable selectivity for tripping currents caused by overloads on series-rated devices.
- 7. Provide adequate time margins between device characteristics such that selective operation is achieved.
- 8. Comments and recommendations for system improvements.

## **PART 3 - EXECUTION**

## 3.1 EXAMINATION

- A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.
  - 1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

## 3.2 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the overcurrent protective device study.
  - 1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.
  - 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
- B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:
  - 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
  - 2. Electrical power utility impedance at the service.
  - 3. Power sources and ties.
  - 4. Short-circuit current at each system bus (three phase and line to ground).
  - 5. Full-load current of all loads.
  - 6. Voltage level at each bus.
  - 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
  - 8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
  - 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
  - 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
  - 11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
  - 12. Maximum demands from service meters.

- 13. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
- 14. Motor horsepower and NEMA MG 1 code letter designation.
- 15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
- 16. Medium-voltage cable sizes, lengths, conductor material, cable construction, metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).
- 17. Data sheets to supplement electrical distribution system one-line diagram, cross-referenced with tag numbers on diagram, showing the following:
  - a. Special load considerations, including starting inrush currents and frequent starting and stopping.
  - b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
  - c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
  - d. Generator thermal-damage curve.
  - e. Ratings, types, and settings of utility company's overcurrent protective devices.
  - f. Special overcurrent protective device settings or types stipulated by utility company.
  - g. Time-current-characteristic curves of devices indicated to be coordinated.
  - h. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
  - i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
  - Switchgear, switchboards, motor-control centers, and panelboards ampacity, and SCCR in amperes rms symmetrical.
  - k. Identify series-rated interrupting devices for a condition where the available fault current is greater than the interrupting rating of downstream equipment. Obtain device data details to allow verification that series application of these devices complies with NFPA 70 and UL 489 requirements.

### 3.3 COORDINATION STUDY

- A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.
- B. Comply with IEEE 399 for general study procedures.
- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:
  - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Transformer Primary Overcurrent Protective Devices:
  - 1. Device shall not operate in response to the following:
    - a. Inrush current when first energized.
    - b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
    - c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
  - 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.
- H. Motor Protection:

- Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
- 2. Select protection for motors served at voltages more than 600 V according to IEEE 620.
- I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
- J. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.
- K. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.
- L. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
  - 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

## M. Protective Device Evaluation:

- Evaluate equipment and protective devices and compare to short-circuit ratings.
- 2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
- 3. Any application of series-rated devices shall be recertified, complying with requirements in NFPA 70.
- 4. Include in the report identification of any protective device applied outside its capacity.

## 3.4 LOAD-FLOW AND VOLTAGE-DROP STUDY

- A. Perform a load-flow and voltage-drop study to determine the steady-state loading profile of the system. Analyze power system performance two times as follows:
  - Determine load flow and voltage drop based on full-load currents obtained in "Power System Data" Article.
  - 2. Determine load flow and voltage drop based on 80 percent of the design capacity of load
  - 3. Prepare load-flow and voltage-drop analysis and report to show power system components that are overloaded, or might become overloaded; show bus voltages that are less than as prescribed by NFPA 70.

# 3.5 MOTOR-STARTING STUDY

- A. Perform a motor-starting study to analyze the transient effect of system's voltage profile during motor starting. Calculate significant motor-starting voltage profiles and analyze the effects of motor starting on the power system stability.
- B. Prepare the motor-starting study report, noting light flicker for limits proposed by IEEE 141, and, and voltage sags so as not to affect operation of other utilization equipment on system supplying the motor.

## 3.6 FIELD ADJUSTING

- A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.
- B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.
- C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

# 3.7 DEMONSTRATION

- A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:
  - 1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.
  - 2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.
  - 3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

Logan City School District

# SECTION 260923 LIGHTING CONTROL DEVICES

### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Indoor occupancy sensors.
  - 2. Lighting contactors.
  - 3. Emergency shunt relays.
- B. Related Requirements:
  - 1. Section 262726 "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

## 1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
  - 1. Interconnection diagrams showing field-installed wiring.
  - 2. Include diagrams for power, signal, and control wiring.

### 1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

## 1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

# **PART 2 - PRODUCTS**

# 2.1 INDOOR OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Cooper Industries, Inc.
  - 2. Douglas Lighting Controls
  - 3. Hubbell Building Automation, Inc.
  - 4. Leviton Manufacturing Co., Inc.
  - 5. Lightolier Controls.
  - 6. Acuity Brands Lighting, Inc.
  - 7. Lutron Electronics Co., Inc.
  - 8. Sensor Switch, Inc.
- B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
  - Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
  - 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
  - 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
  - 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.

- 5. Mounting:
  - a. Sensor: Suitable for mounting in any position on a standard outlet box.
  - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
  - Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
- 7. Bypass Switch: Override the "on" function in case of sensor failure.
- 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights off when selected lighting level is present.
- C. PIR Type: Ceiling mounted; detect occupants in coverage area by their heat and movement.
  - 1. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm).
  - 2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
  - 3. Detection Coverage (Corridor): Detect occupancy within 90 feet (27.4 m) when mounted on a 10-foot- (3-m-) high ceiling.
- D. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
  - 1. Sensitivity Adjustment: Separate for each sensing technology.
  - Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
  - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.

## 2.2 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Cooper Industries, Inc.
  - 2. Hubbell Building Automation, Inc.
  - 3. Leviton Manufacturing Co., Inc.
  - 4. Lightolier Controls.
  - 5. Acuity Brands Lighting, Inc.
  - 6. Lutron Electronics Co., Inc.
  - 7. Sensor Switch, Inc.
  - 8. Watt Stopper.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.
  - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
  - 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
  - 3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.

## 2.3 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 22 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 16 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

# **PART 3 - EXECUTION**

## 3.1 SENSOR INSTALLATION

- A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

### 3.2 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).
- B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

## 3.3 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
  - 1. Identify controlled circuits in lighting contactors.
  - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

## 3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
  - Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
  - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Lighting control devices will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

#### 3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
  - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.

# 3.6 DEMONSTRATION

- A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 260943.13 "Addressable-Fixture Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls."
- B. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

**END OF SECTION 260923** 

# SECTION 260943 RELAY-BASED LIGHTING CONTROLS

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

A. Section Includes: Lighting control panels using mechanically held relays for switching.

#### 1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. DDC: Direct digital control.
- C. IP: Internet protocol.
- D. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.

#### 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
  - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for control modules, power distribution components, relays, manual switches and plates, and conductors and cables.
  - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
  - 3. Sound data including results of operational tests of central dimming controls.
  - 4. Operational documentation for software and firmware.
- B. Shop Drawings: For each relay panel and related equipment.
  - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
  - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
  - 3. Detail wiring partition configuration, current, and voltage ratings.
  - 4. Short-circuit current rating of relays.
  - 5. Address Drawing: Reflected ceiling plan and floor plans, showing connected luminaires, address for each luminaire, and luminaire groups. Base plans on construction plans, using the same legend, symbols, and schedules.
  - 6. Point List and Data Bus Load: Summary list of all control devices, sensors, ballasts, and other loads. Include percentage of rated connected load and device addresses.
  - 7. Wire Termination Diagrams and Schedules: Coordinate nomenclature and presentation with Drawings and block diagram. Differentiate between manufacturer-installed and field-installed wiring.
  - 8. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.

## 1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Software licenses and upgrades required by and installed for operation and programming of digital and analog devices.
- C. Sample Warranty: For manufacturer's special warranty.

## 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lighting controls to include in emergency, operation, and maintenance manuals.
- B. Software and Firmware Operational Documentation:
  - 1. Software operating and upgrade manuals.
  - 2. Program Software Backup: On USB drive and Username and password for manufacturer's support website.
  - 3. Device address list.
  - 4. Printout of software application and graphic screens.
  - 5. Testing and adjusting of panic and emergency power features.

## 1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - Lighting Control Relays: Equal to ten percent of amount installed for each size indicated, but no fewer than five.

# 1.8 DELIVERY, STORAGE, AND HANDLING

A. Handle and prepare panels for installation according to NECA 407.

#### 1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of standalone multipreset modular dimming controls that fail in materials or workmanship within specified warranty period.
  - 1. Failures include, but are not limited to, the following:
    - a. Damage from transient voltage surges.
  - 2. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.
  - 3. Extended Warranty Period: Cost of replacement parts (materials only, f.o.b. the nearest shipping point to Project site), for eight years, that failed in service due to transient voltage surges.

# **PART 2 - PRODUCTS**

# 2.1 SYSTEM DESCRIPTION

- A. Sequence of Operations: Input signal from field-mounted manual switches, or digital signal sources, shall open or close one or more lighting control relays in the lighting control panels. Any combination of inputs shall be programmable to any number of control relays.
- B. Surge Protective Device: Factory installed as an integral part of control components or field-mounted surge suppressors complying with UL 1449, SPD Type 2.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with 47 CFR 15, Subparts A and B, for Class A digital devices.
- E. Comply with UL 916.

# 2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Lighting control panels shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
  - 2. Component Importance Factor: 1.5.

# 2.3 LIGHTING CONTROL RELAY PANELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Cooper Greengate
- 2. Leviton Manufacturing Co., Inc.
- 3. Lightolier; a Philips group brand.
- 4. Lithonia Lighting; Acuity Brands Lighting, Inc.
- Nexlight
- 6. WattStopper; a Legrand® Group brand.
- B. Description: Standalone lighting control panel using mechanically latched relays to control lighting and appliances.
- C. Lighting Control Panel:
  - 1. A single enclosure with incoming lighting branch circuits, control circuits, switching relays, and on-board timing and control unit.
  - 2. A vertical barrier separating branch circuits from control wiring.
- D. Control Unit: Contain the power supply and electronic control for operating and monitoring individual relays.
  - Timing Unit:
    - a. 365-day calendar, astronomical clock, and automatic adjustments for daylight savings and leap year.
    - b. Clock configurable for 12-hour (A.M./P.M.) or 24-hour format.
    - c. Four independent schedules, each having 24 time periods.
    - d. Schedule periods settable to the minute.
    - e. Day-of-week, day-of-month, day-of-year with one-time or repeating capability.
    - f. 10 special date periods.
  - 2. Sequencing Control with Override:
    - a. Automatic sequenced on and off switching of selected relays at times set at the timing unit, allowing timed overrides from external switches.
    - b. Sequencing control shall operate relays one at a time, completing the operation of all connected relays in not more than 10 seconds.
    - c. Override control shall allow any relay connected to it to be switched on or off by a field-deployed manual switch or by an automatic switch, such as an occupancy sensor.
    - d. Override control "blink warning" shall warn occupants approximately five minutes before actuating the off sequence.
  - 3. Nonvolatile memory shall retain all setup configurations. After a power failure, the controller shall automatically reboot and return to normal system operation, including accurate time of day and date.
- E. Relays: Electrically operated, mechanically held single-pole switch, rated at 20 A at 120-V tungsten, 30 A at 277-V ballast, 1.5 hp at 120 V, and 3 hp at 277 V. Short-circuit current rating shall be not less than 14 kA. Control shall be three-wire, 24-V ac.
- F. Power Supply: NFPA 70, Class 2, sized for connected equipment, plus 20 percent spare capacity. Powered from a dedicated branch circuit of the panelboard that supplies power to the line side of the relays, sized to provide control power for the local panel-mounted relays, bus system, low-voltage inputs, field-installed occupancy sensors, and photo sensors.
- G. Operator Interface:
  - 1. Integral alphanumeric keypad and digital display, and intuitive drop-down menus to assist in programming.
  - 2. Log and display relay on-time.
  - 3. Connect relays to one or more time and sequencing schemes.

## 2.4 NETWORKED LIGHTING CONTROL PANELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Cooper Greengate
  - 2. Leviton Manufacturing Co., Inc.
  - 3. Lightolier; a Philips group brand.

- 4. Acuity nLight
- 5. Nexlight
- 6. WattStopper; a Legrand® Group brand
- B. Description: Lighting control panels using mechanically latched relays to control lighting and appliances. The panels shall be capable of being interconnected with digital communications to appear to the operator as a single lighting control system.
- C. Lighting Control Panels:
  - 1. A single enclosure with incoming lighting branch circuits, control circuits, switching relays, and on-board timing and control unit.
  - 2. A vertical barrier separating branch circuits from control wiring.
- D. Main Control Unit: Installed in the main lighting control panel only; powered from the branch circuit of the standard control unit.
  - 1. Ethernet Communications: Comply with TCP/IP protocol. The main control unit shall provide for programming of all control functions of the main and all networked slave lighting control panels including timing, sequencing, and overriding.
  - 2. Compliance with ASHRAE 135: Controllers shall support serial MS/TP and Ethernet IP communications, and shall be able to communicate directly via DDC system for HVAC RS-485 serial networks and Ethernet 10Base-T networks as a native device.
  - 3. Web Server: Display information listed below over a standard Web-enabled server for displaying information over a standard browser.
    - a. A secure, password-protected login screen for modifying operational parameters, accessible to authorized users via Web page interface.
    - b. Panel summary showing the master and slave panels connected to the controller.
    - c. Controller diagnostic information.
    - d. Show front panel mimic screens for setting up controller parameters, input types, zones, and operating schedules. These mimic screens shall also allow direct breaker control and zone overrides.
  - 4. Timing Unit:
    - a. 365-day calendar, astronomical clock, and automatic adjustments for daylight savings and leap year.
    - b. Clock configurable for 12-hour (A.M./P.M.) or 24-hour format.
    - c. Four independent schedules, each having 24 time periods.
    - d. Schedule periods settable to the minute.
    - e. Day-of-week, day-of-month, day-of-year with one-time or repeating capability.
    - f. 16 special date periods.
  - 5. Time Synchronization: The timing unit shall be updated not less than every four hour(s) with the network time server.
  - 6. Sequencing Control with Override:
    - a. Automatic sequenced on and off switching of selected relays at times set at the timing unit, allowing timed overrides from external switches.
    - b. Sequencing control shall operate relays one at a time, completing the operation of all connected relays in not more than 10 seconds.
    - c. Override control shall allow any relay connected to it to be switched on or off by a field-deployed manual switch or by an automatic switch, such as an occupancy sensor.
    - d. Override control "blinking warning" shall warn occupants approximately five minutes before actuating the off sequence.
    - e. Activity log, storing previous relay operation, including the time and cause of the change of status.
    - f. Download firmware to the latest version offered by manufacturer.
- E. Standard Control Unit, Installed in All Lighting Control Panels: Contain electronic controls for programming the operation of the relays in the control panel, contain the status of relays, and contain communications link to enable the digital functions of the main control unit. Comply with UL 916.

- Electronic control for operating and monitoring individual relays, and display relay ontime.
- 2. Nonvolatile memory shall retain all setup configurations. After a power failure, the controller shall automatically reboot and return to normal system operation.
- 3. Integral keypad and digital-display front panel for local setup, including the following:
  - a. Blink notice, time adjustable from software.
  - b. Ability to log and display relay on-time.
  - c. Capability for accepting downloadable firmware so that the latest production features may be added in the future without replacing the module.
  - d. Graphical user interface with touchscreen
- F. Relays: Electrically operated, mechanically held single-pole switch, rated at 20 A at 120-V tungsten, 30 A at 277-V ballast, 1.5 hp at 120 V, and 3 hp at 277 V. Short-circuit current rating shall be not less than 14 kA. Control shall be digital control network.
- G. Power Supply: NFPA 70, Class 2, UL listed, sized for connected equipment, plus not less than 20 percent spare capacity. Powered from a dedicated branch circuit of the panelboard that supplies power to the line side of the relays, sized to provide control power for the local panelmounted relays, bus system, low-voltage inputs, field-installed occupancy sensors, and lowvoltage photo sensors.
- H. Operator Interface: At the main control unit, provide graphical user interface for a tethered connection of a portable PC running MS Windows for configuring all networked lighting control panels using setup software designed for the specified operating system. Include one portable device for initial programming of the system and training of Owner's personnel. That device shall remain the property of Owner.

#### Software:

- 1. Menu-driven data entry.
- 2. Online and offline programming and editing.
- 3. Provide for entry of the room or space designation for the load side of each relay.
- 4. Monitor and control all relays, showing actual relay state and the name of the automatic actuating control, if any.
- 5. Size the software appropriate to the system.

## 2.5 MANUAL SWITCHES AND PLATES

- A. Push-Button Switches: Modular, digital, addressible, for operating one or more relays and to override automatic controls.
  - 1. Match color and style specified in Section 262726 "Wiring Devices."
  - 2. Integral green LED pilot light to indicate when circuit is on.
  - 3. Internal white LED locator light to illuminate when circuit is off.
- B. Wall Plates: Single and multigang plates as specified in Section 262726 "Wiring Devices."
- C. Legend: Engraved or permanently silk-screened on wall plate where indicated. Use designations indicated on Drawings.

# 2.6 FIELD-MOUNTED SIGNAL SOURCES

- A. Daylight Harvesting Switching Controls: Comply with Section 260923 "Lighting Control Devices." Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.
- B. Indoor Occupancy Sensors: Comply with Section 260923 "Lighting Control Devices." Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.

# 2.7 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Class 2 Power Source: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

- B. Classes 2 and 3 Control Cables: Multiconductor cable with copper conductors not smaller than No. 22 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 16 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- D. Twisted-Pair Data Cable: Category 6. Comply with requirements in Section 271513 "Communications Copper Horizontal Cabling."

#### **PART 3 - EXECUTION**

## 3.1 EXAMINATION

- A. Receive, inspect, handle, and store panels according to NECA 407.
- B. Examine panels before installation. Reject panels that are damaged or rusted or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panels for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

## 3.2 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
  - 1. Install plenum cable in environmental airspaces, including plenum ceilings.
  - 2. Comply with requirements for cable trays specified in Section 260536 "Cable Trays for Electrical Systems."
  - 3. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

# 3.3 PANEL INSTALLATION

- A. Comply with NECA 1.
- B. Install panels and accessories according to NECA 407.
- C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- E. Mount panel cabinet plumb and rigid without distortion of box.
- F. Install filler plates in unused spaces.

# 3.4 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."
- C. Create a directory to indicate loads served by each relay; incorporate Owner's final room designations. Obtain approval before installing. Use a PC or typewriter to create directory; handwritten directories are unacceptable.

D. Lighting Control Panel Nameplates: Label each panel with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

# 3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
  - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers described below. Certify compliance with manufacturer's test parameters.
    - a. Surge Arrestor Tests:
      - 1) Compare nameplate with the Contract Documents.
      - 2) Inspect physical and mechanical conditions.
      - 3) Inspect anchorage, alignment, grounding, and clearances.
      - 4) Verify that the units are clean.
      - 5) Inspect bolted electrical connections for high resistance using one or more of the following methods:
        - a) Low-resistance ohmmeter.
        - b) Verify tightness of bolted electrical connections by calibrated torque wrench.
      - 6) Verify that the ground lead on each device is individually attached to a ground bus or ground electrode.
      - 7) Perform an insulation-resistance test on each arrestor, phase terminal-to-ground using voltage according to manufacturer written instructions.
      - 8) Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding tests.
  - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Lighting control panel will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies lighting control panels and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

## 3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
  - 1. Complete installation and startup checks according to manufacturer's written instructions.
  - 2. Confirm correct communications wiring, initiate communications between panels, and program the lighting control system according to approved configuration schedules, time-of-day schedules, and input override assignments.

#### 3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to four visits to Project during other-than-normal occupancy hours for this purpose.

## 3.8 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
  - 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

# 3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the control unit and operator interface.

**END OF SECTION 260943** 

# SECTION 262413 SWITCHBOARDS

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Service and distribution switchboards rated 600 V and less.
  - 2. Surge protection devices.
  - 3. Disconnecting and overcurrent protective devices.
  - 4. Instrumentation.
  - 5. Control power.
  - 6. Accessory components and features.
  - 7. Identification.

## B. Related Requirements

 Section 260573.19 "Arc-Flash Hazard Analysis" for arc-flash analysis and arc-flash label requirements.

## 1.3 ACTION SUBMITTALS

- A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
  - 1. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
- B. Shop Drawings: For each switchboard and related equipment.
  - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
  - 2. Detail enclosure types for types other than NEMA 250, Type 1.
  - 3. Detail bus configuration, current, and voltage ratings.
  - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.
  - 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
  - 6. Include evidence of NRTL listing for series rating of installed devices.
  - 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
  - 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
  - 9. Include diagram and details of proposed mimic bus.
  - 10. Include schematic and wiring diagrams for power, signal, and control wiring.
- Samples: Representative portion of mimic bus with specified material and finish, for color selection.
- D. Delegated Design Submittal:
  - 1. For arc-flash hazard analysis.
  - 2. For arc-flash labels.

## 1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Data: Certificates, for switchboards, overcurrent protective devices, accessories, and components, from manufacturer.

- 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

## B. Field Quality-Control Reports:

- Test procedures used.
- 2. Test results that comply with requirements.
- 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

## 1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.
  - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
    - a. Routine maintenance requirements for switchboards and all installed components.
    - Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
    - c. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

## 1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
  - 2. Indicating Lights: Equal to 10 percent of quantity installed for each size and type but no less than one of each size and type.

## 1.7 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

# 1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.
- B. Remove loose packing and flammable materials from inside switchboards and to prevent condensation.
- C. Handle and prepare switchboards for installation according to NEMA PB 2.1.

# 1.9 FIELD CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations:
  - Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
  - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
    - a. Ambient Temperature: Not exceeding 104 deg F (40 deg C).
    - b. Altitude: Not exceeding 6600 feet (2000 m).
- C. Unusual Service Conditions: NEMA PB 2, as follows:

- 1. Ambient temperatures within limits specified.
- 2. Altitude not exceeding 6600 feet (2000 m).

## 1.10 COORDINATION

- A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

## 1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.
  - 1. Warranty Period: Three years from date of Substantial Completion.

## **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
  - 2. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

## 2.2 SWITCHBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. General Electric.
- B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NEMA PB 2.
- F. Comply with NFPA 70.
- G. Comply with UL 891.
- H. Front-Connected, Front-Accessible Switchboards:
  - 1. Main Devices: Fixed, individually mounted.
  - 2. Branch Devices: Panel mounted.
  - 3. Sections front and rear aligned.
- I. Nominal System Voltage: As indicated on drawings.
- J. Main-Bus Continuous: As indicated on drawings.
- K. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

- Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
  - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- L. Indoor Enclosures: Steel, NEMA 250, Type 1.
- M. Outdoor Enclosures: Type 3R.
  - 1. Finish: Factory-applied finish in manufacturer's custom color; undersurfaces treated with corrosion-resistant undercoating.
  - 2. Enclosure: Flat roof; bolt-on rear covers for each section, with provisions for padlocking.
- N. Barriers: Between adjacent switchboard sections.
- O. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.
- P. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six service disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.
- Q. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- R. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- S. Buses and Connections: Three phase, four wire unless otherwise indicated.
  - 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
  - 2. Phase- and Neutral-Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections or Hard-drawn copper of 98 percent conductivity.
  - 3. Copper feeder circuit-breaker line connections.
  - 4. Tin-plated aluminum feeder circuit-breaker line connections.
  - 5. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
  - 6. Ground Bus: 1/4-by-2-inch- (6-by-50-mm-) unless smaller than Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
  - 7. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
  - 8. Disconnect Links:
    - a. Isolate neutral bus from incoming neutral conductors.
    - b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
  - 9. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
- T. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

## 2.3 SURGE PROTECTION DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Eaton.
  - 2. General Electric Company.

- 3. Siemens Industry, Inc., Energy Management Division.
- 4. Square D; by Schneider Electric.
- B. SPDs: Comply with UL 1449, Type 2.
- C. Features and Accessories:
  - 1. Integral disconnect switch.
  - 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
  - 3. Indicator light display for protection status.
  - 4. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
  - 5. Surge counter.
- D. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 250kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
- E. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits shall not exceed the following:
  - 1. Line to Neutral: 1200 V for 480Y/277 V.
  - 2. Line to Ground: 1200 V for 480Y/277 V.
  - 3. Line to Line: 2000 V for 480Y/277 V.
- F. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
  - 1. Line to Neutral: 700 V for 208Y/120 V.
  - 2. Line to Ground: 1200 V for 208Y/120 V.
  - 3. Line to Line: 1000 V for 208Y/120 V.
- G. SCCR: Equal or exceed 200 kA.
- H. Nominal Rating: 20 kA.

## 2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
  - Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
    - a. Instantaneous trip.
    - b. Long- and short-time pickup levels.
    - c. Long and short time adjustments.
    - d. Ground-fault pickup level, time delay, and I squared t response.
    - e. Integral digital multi-metering
  - 2. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
  - 3. Ground-Fault Equipment Protection (GFEP) Circuit Breakers: Class B ground-fault protection (30-mA trip).
  - 4. MCCB Features and Accessories:
    - a. Standard frame sizes, trip ratings, and number of poles.
    - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
    - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
    - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

- e. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Section 260913 "Electrical Power Monitoring and Control."
- f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
- g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
- h. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts

## 2.5 INSTRUMENTATION

- A. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
  - 1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
    - a. Phase Currents, Each Phase: Plus or minus 0.5 percent.
    - b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
    - c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
    - d. Megawatts: Plus or minus 1 percent.
    - e. Megavars: Plus or minus 1 percent.
    - f. Power Factor: Plus or minus 1 percent.
    - g. Frequency: Plus or minus 0.1 percent.
    - h. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.
    - i. Megawatt Demand: Plus or minus 1 percent; demand interval programmable from five to 60 minutes.
    - j. Contact devices to operate remote impulse-totalizing demand meter.
  - 2. Mounting: Integral to electronic trip breaker unless otherwise indicated.

## 2.6 ACCESSORY COMPONENTS AND FEATURES

- A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- B. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.
- C. Mounting Accessories: For anchors, mounting channels, bolts, washers, and other mounting accessories, comply with requirements in Section 260548.16 "Seismic Controls for Electrical Systems" or manufacturer's instructions.

#### 2.7 IDENTIFICATION

A. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

### **PART 3 - EXECUTION**

#### 3.1 EXAMINATION

- A. Receive, inspect, handle, and store switchboards according to NEMA PB 2.1.
  - 1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
  - 2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
  - 3. Protect from moisture, dust, dirt, and debris during storage and installation.
  - 4. Install temporary heating during storage per manufacturer's instructions.
- B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.

- C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

## 3.2 INSTALLATION

- A. Install switchboards and accessories according to NEMA PB 2.1.
- B. Equipment Mounting: Install switchboards on concrete base, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
  - 1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches (50-mm) above concrete base after switchboard is anchored in place.
  - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
  - 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
  - 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
  - 5. Install anchor bolts to elevations required for proper attachment to switchboards.
  - 6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.
- D. Comply with mounting and anchoring requirements specified in Section 260548 "Seismic Controls for Electrical Systems."
- E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
- F. Install filler plates in unused spaces of panel-mounted sections.
- G. Install overcurrent protective devices, surge protection devices, and instrumentation.
  - 1. Set field-adjustable switches and circuit-breaker trip ranges.
- H. Comply with NECA 1.

# 3.3 CONNECTIONS

- A. Comply with requirements for terminating feeder bus specified in Section 262500 "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties.
- B. Comply with requirements for terminating cable trays specified in Section 260536 "Cable Trays for Electrical Systems." Drawings indicate general arrangement of cable trays, fittings, and specialties.
- C. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.
- D. Support and secure conductors within the switchboard according to NFPA 70.
- E. Extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

#### 3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

# 3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
  - 1. Acceptance Testing:
    - a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
    - b. Test continuity of each circuit.
  - 2. Test ground-fault protection of equipment for service equipment per NFPA 70.
  - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
  - 4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
  - 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Switchboard will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

# 3.6 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

## 3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

### 3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories, and to use and reprogram microprocessor-based trip, monitoring, and communication units.

#### **END OF SECTION 262413**

# SECTION 262416 PANELBOARDS

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Distribution panelboards.
  - 2. Lighting and appliance branch-circuit panelboards.

## 1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. HID: High-intensity discharge.
- E. MCCB: Molded-case circuit breaker.
- F. SPD: Surge protective device.
- G. VPR: Voltage protection rating.

#### 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
  - Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
  - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
  - 1. Include dimensioned plans, elevations, sections, and details.
  - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
  - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
  - 4. Detail bus configuration, current, and voltage ratings.
  - 5. Short-circuit current rating of panelboards and overcurrent protective devices.
  - 6. Include evidence of NRTL listing for series rating of installed devices.
  - 7. Include evidence of NRTL listing for SPD as installed in panelboard.
  - 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
  - 9. Include wiring diagrams for power, signal, and control wiring.
  - 10. Key interlock scheme drawing and sequence of operations.
  - 11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

## 1.5 INFORMATIONAL SUBMITTALS

A. Panelboard Schedules: For installation in panelboards.

## 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
  - Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
  - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

## 1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Keys: Two spares for each type of panelboard cabinet lock.
  - 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.

### 1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

## 1.9 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

#### 1.10 FIELD CONDITIONS

- A. Environmental Limitations:
  - Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
  - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
    - a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).
    - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
  - 1. Ambient temperatures within limits specified.
  - 2. Altitude not exceeding 6600 feet (2000 m).

#### 1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
  - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

## **PART 2 - PRODUCTS**

# 2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
  - 1. General Electric.
- B. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with NEMA PB 1.

- F. Comply with NFPA 70.
- G. Enclosures: Flush and Surface-mounted, dead-front cabinets.
  - 1. Rated for environmental conditions at installed location.
    - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
    - b. Outdoor Locations: NEMA 250, Type 3R.
    - c. Kitchen or Wash-Down Areas: NEMA 250, Type 4X,..
    - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
    - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
  - 2. Height: 84 inches (2.13 m) maximum.
  - Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
  - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
  - 5. Finishes:
    - Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
      - 1) Custom color where noted on drawings
    - b. Back Boxes: Galvanized steel.

#### H. Incoming Mains:

- Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.
- I. Phase, Neutral, and Ground Buses:
  - Material: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
    - a. Plating shall run entire length of bus.
    - b. Bus shall be fully rated the entire length.
  - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
  - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors: bonded to box.
  - 4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
  - 5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
  - 6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
- J. Conductor Connectors: Suitable for use with conductor material and sizes.
  - 1. Material: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
  - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
  - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
  - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
  - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
  - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.

- 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- 8. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
- K. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- L. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- M. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
  - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
  - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

#### 2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
- B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 2.

## 2.3 POWER PANELBOARDS

- A. Panelboards: NEMA PB 1. distribution type.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
  - 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
- C. Mains: As indicated on drawings
- D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

#### 2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- B. Mains: As indicated on drawings
- C. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- D. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.
- F. Column-Type Panelboards: Single row of overcurrent devices.
  - Doors: Concealed hinges secured with multipoint latch with tumbler lock; keyed alike.

## 2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
  - 1. Thermal-Magnetic Circuit Breakers:

- a. Inverse time-current element for low-level overloads.
- b. Instantaneous magnetic trip element for short circuits.
- c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- 2. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 3. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 4. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
- 5. Subfeed Circuit Breakers: Vertically mounted.
- 6. MCCB Features and Accessories:
  - a. Standard frame sizes, trip ratings, and number of poles.
  - b. Breaker handle indicates tripped status.
  - c. UL listed for reverse connection without restrictive line or load ratings.
  - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
  - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
  - f. Shunt Trip: 120-V or 24-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
  - g. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
  - h. Multipole units enclosed in a single housing with a single handle or factory assembled to operate as a single unit.
  - i. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
  - j. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

## 2.6 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
  - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.
- D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
  - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

# **PART 3 - EXECUTION**

## 3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

## 3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NEMA PB 1.1.
- D. Equipment Mounting:
  - Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
  - 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
  - Comply with requirements for seismic control devices specified in Section 260548
     "Seismic Controls for Electrical Systems."
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- G. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- H. Mount panelboard cabinet plumb and rigid without distortion of box.
- I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- J. Mount surface-mounted panelboards in production areas and mechanical equipment rooms to steel slotted supports 5/8 inch (16 mm) in depth. Orient steel slotted supports vertically.
- K. Install overcurrent protective devices and controllers not already factory installed.
  - 1. Set field-adjustable, circuit-breaker trip ranges.
  - 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- M. Install filler plates in unused spaces.
- N. Stub four 1-inch (25 mm) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (25 mm) empty conduits into raised floor space or below slab not on grade.

#### 3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

**Panelboards** 

## 3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
- C. Acceptance Testing Preparation:
  - Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
  - 2. Test continuity of each circuit.

# D. Tests and Inspections:

- 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6 Circuit Breakers and Paragraph 7.19.1 Surge Arrestors, Low-Voltage. Perform optional tests. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- E. Panelboards will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

# 3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

## 3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

## **END OF SECTION 262416**

Logan City School District

# SECTION 262713 ELECTRICITY METERING

## **PART 1 - GENERAL**

## 1.1 SUMMARY

A. Section includes electricity metering.

## 1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For electricity-metering equipment.
  - Include elevation views of front panels of control and indicating devices and control stations.
  - 2. Include diagrams for power, signal, and control wiring.
  - 3. Wire Termination Diagrams and Schedules: Include diagrams for power, signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
  - 4. Include series-combination rating data for modular meter centers with main disconnect device.

## 1.3 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample warranty.

#### 1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

# 1.5 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of metering equipment that fail in materials or workmanship within specified warranty period.
  - Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.

## 1.6 COORDINATION

A. Electrical Service Connections: Coordinate with utility companies and utility-furnished components.

## **PART 2 - PRODUCTS**

## 2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 916.

## 2.2 UTILITY METERING INFRASTRUCTURE

- A. Install metering accessories furnished by the utility company, complying with its requirements.
- B. Utility-Furnished Meters: Connect data transmission facility of metering equipment installed by the Utility.
  - Data Transmission: Transmit pulse data over control-circuit conductors, classified as Class 1 per NFPA 70, Article 725. Comply with Section 260523 "Control-Voltage Electrical Power Cables."
- C. Current-Transformer Cabinets: Comply with requirements of electrical-power utility company.
- D. Meter Sockets:

- 1. Comply with requirements of electrical-power utility company.
- 2. Meter Sockets: Steady-state and short-circuit current ratings shall meet indicated circuit ratings.

# **PART 3 - EXECUTION**

## 3.1 INSTALLATION

- A. Comply with equipment installation requirements in NECA 1.
- B. Install meters furnished by utility company. Install raceways and equipment according to utility company's written instructions. Provide empty conduits for metering leads and extend grounding connections as required by utility company.
- C. Install modular meter center according to switchboard installation requirements in NECA 400.
- D. Install arc-flash labels as required by NFPA 70.
- E. Wiring Method:
  - Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
  - 2. Install unshielded, twisted-pair cable for control and signal transmission conductors, complying with Section 271513 "Communications Copper Horizontal Cabling."
  - 3. Minimum conduit size shall be 1/2 inch (13 mm).
- F. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

#### **END OF SECTION 262713**

# SECTION 262726 WIRING DEVICES

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
  - 2. Twist-locking receptacles.
  - 3. Isolated-ground receptacles.
  - 4. Tamper-resistant receptacles.
  - 5. Snap switches and wall-box dimmers.
  - 6. Wall-switch and exterior occupancy sensors.
  - 7. Cord and plug sets.

#### 1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

# 1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
  - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
  - 2. Cord and Plug Sets: Match equipment requirements.

#### 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

## 1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

## 1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

# **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Cooper Wiring Devices, Inc.
  - 2. Hubbell.
  - 3. Leviton Manufacturing Co., Inc.
  - Pass & Seymour/Legrand (Pass & Seymour).
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

## 2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. Devices that are manufactured for use with modular plug-in connectors:
  - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
  - 2. Devices shall comply with the requirements in this Section.

#### 2.3 STRAIGHT-BLADE RECEPTACLES

- A. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
    - a. Pass & Seymour/Legrand (Pass & Seymour): PTIG8300.
  - 2. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.
- B. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498 Supplement sd, and FS W-C-596.
  - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
    - a. Pass & Seymour/Legrand (Pass & Seymour): PTTR26362HG.
  - 2. Description: Labeled shall comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.
- C. Tamper- and Weather-Resistant Duplex Receptacles, 125 V, 20 A:
  - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
  - 2. Configuration: NEMA WD 6, Configuration 5-20R.
  - 3. Standards: Comply with UL 498.
  - 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

# 2.4 USB RECEPTACLES

- A. USB Charging Receptacles:
  - Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickelplated. brass mounting strap.
  - 2. USB Receptacles: Quad, USB Type A, 5 V dc, and 2.1 A per receptacle (minimum).
  - 3. Standards: Comply with UL 1310 and USB 3.0 devices.
- B. Tamper-Resistant Duplex and USB Charging Receptacles:
  - 1. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickel-plated, brass mounting strap. Integral shutters that operate only when a plug is inserted in the line voltage receptacle.
  - 2. Line Voltage Receptacles: Two pole, three wire, and self-grounding; NEMA WD 6, Configuration 5-20R.
  - 3. USB Receptacles: Dual USB Type A, 5 V dc, and 2.1 A per receptacle (minimum).
  - 4. Standards: Comply with UL 498, UL 1310, USB 3.0 devices, and FS W-C-596.
  - 5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.

## 2.5 GFCI RECEPTACLES

- A. General Description:
  - 1. Straight blade, feed-through type.
  - 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.

- 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Tamper-Resistant Duplex GFCI Receptacles, 125 V, 20 A:
  - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle.
  - 2. Configuration: NEMA WD 6, Configuration 5-20R.
  - 3. Type: Feed through.
  - 4. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.
  - 5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.
- C. Tamper- and Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20 A:
  - Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two
    pole, three wire, and self-grounding. Integral shutters that operate only when a plug is
    inserted in the receptacle. Square face.
  - 2. Configuration: NEMA WD 6, Configuration 5-15R.
  - 3. Type: Feed through.
  - 4. Standards: Comply with UL 498 and UL 943 Class A.
  - 5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

## 2.6 CORD AND PLUG SETS

- A. Description:
  - 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
  - 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
  - 3. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

#### 2.7 TOGGLE SWITCHES

- A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- B. Switches, 120/277 V, 20 A:

### 2.8 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable; with single-pole, three-way, and/or four-way dimming. Comply with UL 1472.
- C. LED Dimmer Switches: Modular; compatible with dimmer power supplies; trim potentiometer to adjust low-end dimming; dimmer-driver combination capable of consistent dimming with low end not greater than 1 percent of full brightness.

#### 2.9 WALL PLATES

- A. Single and combination types to match corresponding wiring devices.
  - 1. Plate-Securing Screws: Metal with head color to match plate finish.
  - 2. Material for Finished Spaces:
    - a. 1-mm- (Operating/procedure rooms: 0.035-inch-) thick, satin-finished stainless steel
    - b. General: Unbreakable Nylon or Lexan
  - 3. Material for Unfinished Spaces: Galvanized steel or Unbreakable Nylon or Lexan.
  - 4. Material for Damp Locations: Thermoplastic or Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."

## 2.10 FINISHES

- A. Device Color:
  - 1. Wiring Devices Connected to Normal Power System: White or As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
  - 2. Wiring Devices Connected to Emergency Power System: Red.
  - TVSS Devices: Blue.
  - 4. Isolated-Ground Receptacles: Orange.
- B. Wall Plate Color: For plastic covers, match device color.

#### **PART 3 - EXECUTION**

## 3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
  - Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
  - Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
  - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
  - 4. Install wiring devices after all wall preparation, including painting, is complete.

## C. Conductors:

- Do not strip insulation from conductors until right before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
- 4. Existing Conductors:
  - a. Cut back and pigtail, or replace all damaged conductors.
  - b. Straighten conductors that remain and remove corrosion and foreign matter.
  - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

### D. Device Installation:

- 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

# E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

- 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
  - 1. Install dimmers within terms of their listing.
  - 2. Verify that dimmers used for fan speed control are listed for that application.
  - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

# 3.2 IDENTIFICATION

- A. Comply with Section 260553 "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

### 3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
  - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
  - 2. Test Instruments: Use instruments that comply with UL 1436.
  - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- B. Tests for Convenience Receptacles:
  - 1. Line Voltage: Acceptable range is 105 to 132 V.
  - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
  - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
  - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
  - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
  - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- C. Test straight-blade convenience outlets in patient-care areas for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz. (115 g).
- D. Wiring device will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

#### **END OF SECTION 262726**

Logan City School District

# SECTION 262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

#### PART 1 - GENERAL

# 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Fusible switches.
  - 2. Enclosures.

#### 1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

## 1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

#### 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
  - 1. Enclosure types and details for types other than NEMA 250, Type 1.
  - 2. Current and voltage ratings.
  - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
  - 4. Include evidence of NRTL listing for series rating of installed devices.
  - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
  - 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
  - 1. Wiring Diagrams: For power, signal, and control wiring.

## 1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.
  - Test procedures used.

- 2. Test results that comply with requirements.
- 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- D. Manufacturer's field service report.

# 1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
  - Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
  - 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

## 1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

## 1.9 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.

# 1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
  - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
  - 2. Altitude: Not exceeding 6600 feet (2010 m).
- B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
  - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
  - 2. Indicate method of providing temporary electric service.
  - 3. Do not proceed with interruption of electric service without Owner's written permission.
  - 4. Comply with NFPA 70E.

# 1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

# **PART 2 - PRODUCTS**

### 2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
  - Square D; by Schneider Electric.

- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
  - Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
  - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
  - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
  - 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
  - 5. Lugs: Mechanical type, suitable for number, size, and conductor material.

### 2.2 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
  - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
  - 2. Outdoor Locations: NEMA 250, Type 3R.
  - 3. Kitchen and Wash-Down Areas: NEMA 250, Type 4X,...
  - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
  - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

## **PART 3 - EXECUTION**

### 3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

### 3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NECA 1.

### 3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
  - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
  - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

### 3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
  - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
  - 2. Test continuity of each circuit.
- C. Tests and Inspections:
  - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

## 3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."

### **END OF SECTION 262816**

# SECTION 262913 ENCLOSED CONTROLLERS

#### **PART 1 - GENERAL**

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section includes the following enclosed controllers rated 600 V and less:
  - Full-voltage manual.
  - 2. Full-voltage magnetic.

## 1.3 **DEFINITIONS**

- A. CPT: Control power transformer.
- B. MCCB: Molded-case circuit breaker.
- C. MCP: Motor circuit protector.
- D. N.C.: Normally closed.
- E. N.O.: Normally open.
- F. OCPD: Overcurrent protective device.
- G. SCR: Silicon-controlled rectifier.

#### 1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

## 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
- B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
  - 1. Show tabulations of the following:
    - a. Each installed unit's type and details.
    - b. Factory-installed devices.
    - c. Nameplate legends.
    - d. Short-circuit current rating of integrated unit.
    - e. Listed and labeled for integrated short-circuit current (withstand) rating of OCPDs in combination controllers by an NRTL acceptable to authorities having jurisdiction.
    - f. Features, characteristics, ratings, and factory settings of individual OCPDs in combination controllers.
  - Wiring Diagrams: For power, signal, and control wiring.

# 1.6 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For enclosed controllers, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.
- C. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor running overload protection suit actual motors to be protected.

## 1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
  - 1. Routine maintenance requirements for enclosed controllers and installed components.
  - 2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
  - 3. Manufacturer's written instructions for setting field-adjustable overload relays.
  - 4. Manufacturer's written instructions for testing, adjusting, and reprogramming reduced-voltage solid-state controllers.

## 1.8 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

# 1.9 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

# 1.10 DELIVERY, STORAGE, AND HANDLING

- A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.
- B. If stored in areas subject to weather, cover enclosed controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers;.

### 1.11 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
  - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
  - 2. Altitude: Not exceeding 6600 feet (2010 m).
- B. Interruption of Existing Electrical Systems: Do not interrupt electrical systems in facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
  - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electrical systems.
  - 2. Indicate method of providing temporary utilities.
  - 3. Do not proceed with interruption of electrical systems without Owner's written permission.
  - 4. Comply with NFPA 70E.

## 1.12 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

#### **PART 2 - PRODUCTS**

### 2.1 FULL-VOLTAGE CONTROLLERS

- A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
- B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
  - 1. Configuration: Nonreversing.
  - 2. Flush or Surface mounting.
  - 3. Green pilot light.
- C. Fractional Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
  - 1. Configuration: Nonreversing.
  - 2. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type or melting alloy type.
  - 3. Flush or Surface mounting.
  - 4. Green pilot light.
- D. Integral Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
  - 1. Configuration: Nonreversing.
  - Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters and sensors in each phase, matched to nameplate full-load current of actual protected motor and having appropriate adjustment for duty cycle; external reset push button; bimetallic type or melting alloy type.
  - 3. Flush or Surface mounting.
  - 4. Green pilot light.
  - 5. N.O./N.C. auxiliary contact.
- E. Magnetic Controllers: Full voltage, across the line, electrically held.
  - Manufacturers: Subject to compliance with requirements, provide products by the following:
    - a. Siemens Industry, Inc.
  - 2. Configuration: Nonreversing.
  - 3. Contactor Coils: Pressure-encapsulated type.
    - Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
  - 4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
  - 5. Control Circuits: V ac connection as required; obtained from integral CPT, with primary and secondary fuses, with control power source of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
  - 6. Solid-State Overload Relay:
    - a. Switch or dial selectable for motor running overload protection.
    - b. Sensors in each phase.

- c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
- 7. N.C./N.O., isolated overload alarm contact.
- 8. External overload reset push button.
- F. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.
  - Manufacturers: Subject to compliance with requirements, provide products by the following:
    - a. Siemens Industry, Inc.
  - 2. Fusible Disconnecting Means:
    - a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate specified fuses.
    - b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
  - 3. Auxiliary Contacts: (2) sets N.O./N.C., arranged to activate before switch blades open.

## 2.2 ENCLOSURES

- A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.
  - Dry and Clean Indoor Locations: Type 1.
  - 2. Outdoor Locations: Type 3R.
  - 3. Kitchen and Wash-Down Areas: Type 4X,.
  - 4. Other Wet or Damp Indoor Locations: Type 4.
  - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.

## 2.3 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
  - 1. Push Buttons, Pilot Lights, and Selector Switches: Heavy-duty, type.
    - a. Push Buttons: Recessed types; momentary as indicated.
    - b. Pilot Lights: LED types; colors as indicated; push to test.
    - c. Selector Switches: Rotary type.
  - 2. Meters: Panel type, 2-1/2-inch (64-mm) minimum size with 90- or 120-degree scale and plus or minus two percent accuracy. Where indicated, provide selector switches with an off position.
- B. Reversible N.C./N.O. auxiliary contact(s).
- C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- D. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
- E. Cover gaskets for Type 1 enclosures.

## **PART 3 - EXECUTION**

### 3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

# 3.2 INSTALLATION

A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

- B. Seismic Bracing: Comply with requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in each fusible-switch enclosed controller.
- E. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- F. Install heaters in thermal overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.
- G. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- H. Comply with NECA 1.

### 3.3 IDENTIFICATION

- A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
  - Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
  - 2. Label each enclosure with engraved nameplate.
  - 3. Label each enclosure-mounted control and pilot device.

## 3.4 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers and remote devices and facility's central control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control selection devices where applicable.
  - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
  - 2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

# 3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
  - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
  - 2. Test continuity of each circuit.
- C. Tests and Inspections:
  - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
  - 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
  - 3. Test continuity of each circuit.
  - 4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect before starting the motor(s).
  - 5. Test each motor for proper phase rotation.
  - 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
  - 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

- 8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed controllers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

### 3.6 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
- C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Architect before increasing settings.
- D. Set field-adjustable switches and program microprocessors for required start and stop sequences in reduced-voltage solid-state controllers.

## 3.7 PROTECTION

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until enclosed controllers are ready to be energized and placed into service.
- B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

### 3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

## **END OF SECTION 262913**

# SECTION 265100 INTERIOR LIGHTING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. This Section includes the following:
  - 1. Interior lighting fixtures, lamps, and ballasts.
  - 2. Emergency lighting units.
  - 3. Exit signs.
  - 4. Lighting fixture supports.
- B. Related Sections include the following:
  - 1. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
  - 2. Division 26 Section "Network Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.
  - 3. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps.

## 1.3 **DEFINITIONS**

- A. BF: Ballast factor.
- B. CRI: Color-rendering index.
- C. CU: Coefficient of utilization.
- D. LER: Luminaire efficacy rating.
- E. Luminaire: Complete lighting fixture, including ballast housing if provided.
- F. RCR: Room cavity ratio.

# 1.4 SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
  - 1. Physical description of lighting fixture including dimensions.
  - 2. Emergency lighting units including battery and charger.
  - 3. Energy-efficiency data.
  - 4. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles."
  - 5. Life, output, and energy-efficiency data for lamps.
  - 6. Photometric data, in IESNA format, based on laboratory tests of each lighting fixture type, outfitted with lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
- B. Shop Drawings: Show details of nonstandard or custom lighting fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories.
  - 1. Wiring Diagrams: Power wiring.
- C. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, signed by product manufacturer.
- D. Qualification Data: For agencies providing photometric data for lighting fixtures.
- E. Field quality-control test reports.

- F. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
- G. Warranties: Special warranties specified in this Section.

### 1.5 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.
- D. FMG Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FMG.

### 1.6 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

## 1.7 WARRANTY

- A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
  - 1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
  - 2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years.

#### **PART 2 - PRODUCTS**

### 2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
- B. In Interior Lighting Fixture Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection:
  - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

### 2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS

- A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
- B. LED Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE5 and NEMA LE5A as applicable
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- F. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:
  - 1. White Surfaces: 85 percent.

- 2. Specular Surfaces: 83 percent.
- 3. Diffusing Specular Surfaces: 75 percent.
- 4. Laminated Silver Metallized Film: 90 percent.
- G. Plastic Diffusers, Covers, and Globes:
  - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
    - a. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless different thickness is indicated.
    - b. UV stabilized.
  - 2. Glass: Annealed crystal glass, unless otherwise indicated.

### 2.3 LED LUMINAIRES

- A. Solid State Drivers and LED: Comply with DOE LM 79
  - 1. Total Harmonic Distortion Rating: Less than 10 percent
  - 2. Transient Voltage protection
  - 3. Power factor: 0.90 or higher
  - 4. Temperatures: Minus 40 deg F (minus 40 deg C) and higher
  - 5. Heat sink to remove heat from circuits
  - 6. L70 compliant to 70,000 hours minimum
  - 7. Dimmable
    - a. Dimming Range: 100 to 1 percent of rated lamp lumens
    - b. Input watts: Can be reduced to 20 percent of normal
    - c. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.

# 2.4 EMERGENCY POWER UNIT

- A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.
  - 1. Emergency Connection: Operate LED fixture(s) continuously at an output of 1400 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture driver.
  - 2. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
    - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
    - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
  - 3. Battery: Sealed, maintenance-free, nickel-cadmium type.
  - 4. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
  - 5. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and flashing red LED.

### 2.5 EXIT SIGNS

- A. Description: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
  - 1. Lamps for AC Operation: LEDs, 70,000 hours minimum rated lamp life.
  - 2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
    - a. Battery: Sealed, maintenance-free, nickel-cadmium type.
    - b. Charger: Fully automatic, solid-state type with sealed transfer relay.
    - c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored,

- relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
- d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
- e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
- f. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and flashing red LED.

### 2.6 LIGHTING FIXTURE SUPPORT COMPONENTS

- A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel-and angle-iron supports and nonmetallic channel and angle supports.
- B. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
- C. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage (2.68 mm).

## **PART 3 - EXECUTION**

### 3.1 INSTALLATION

- A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.
- B. Support for Lighting Fixtures in or on Grid-Type Suspended Ceilings: Use grid as a support element.
  - 1. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners.
  - 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
  - 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
  - 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
- C. Suspended Lighting Fixture Support:
  - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
  - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.
  - 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- D. Adjust aimable lighting fixtures to provide required light intensities.
- E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

# 3.2 FIELD QUALITY CONTROL

- A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
- B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

# **END OF SECTION 265100**

# SECTION 265600 EXTERIOR LIGHTING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Exterior luminaires with lamps and ballasts.
  - 2. Luminaire-mounted photoelectric relays.
  - Poles and accessories.
- B. Related Sections:
  - 1. Section 265100 "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

## 1.3 **DEFINITIONS**

- A. CCT: Correlated color temperature.
- B. CRI: Color-rendering index.
- C. HID: High-intensity discharge.
- D. LER: Luminaire efficacy rating.
- E. Luminaire: Complete lighting fixture, including ballast housing if provided.
- F. Pole: Luminaire support structure, including tower used for large area illumination.
- G. Standard: Same definition as "Pole" above.

## 1.4 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION

- A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4-M.
- B. Ice Load: Load of 3 lbf/sq. ft. (145 Pa), applied as stated in AASHTO LTS-4-M Ice Load Map.
- C. Wind Load: Pressure of wind on pole and luminaire and banners and banner arms, calculated and applied as stated in AASHTO LTS-4-M.
  - Basic wind speed for calculating wind load for poles 50 feet (15 m) high or less is 110 mph (50 m/s).
    - a. Wind Importance Factor: 1.0.
    - b. Minimum Design Life: 25 years.
    - c. Velocity Conversion Factors: 1.0.

### 1.5 ACTION SUBMITTALS

- A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
  - 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
  - 2. Details of attaching luminaires and accessories.
  - 3. Details of installation and construction.
  - 4. Luminaire materials.
  - 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
    - a. Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

- b. Manufacturer Certified Data: Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- 6. Photoelectric relays.
- 7. Ballasts, including energy-efficiency data.
- 8. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data.
- 9. Materials, dimensions, and finishes of poles.
- 10. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
- 11. Anchor bolts for poles.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
  - Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 2. Anchor-bolt templates keyed to specific poles and certified by manufacturer.
  - 3. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based.
  - 4. Wiring Diagrams: For power, signal, and control wiring.

## 1.6 INFORMATIONAL SUBMITTALS

- A. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements in AASHTO LTS-4-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations by a professional engineer.
- B. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.
- C. Field quality-control reports.

### 1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and poles to include in emergency, operation, and maintenance manuals.

### 1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Lamps: One for every 100 of each type and rating installed. Furnish at least one of each type.
  - 2. Glass and Plastic Lenses, Covers, and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
  - 3. Drivers: One for every 100 of each type and rating installed. Furnish at least one of each type.
  - 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

## 1.9 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with IEEE C2, "National Electrical Safety Code."
- E. Comply with NFPA 70.

# 1.10 DELIVERY, STORAGE, AND HANDLING

- A. Store poles on decay-resistant-treated skids at least 12 inches (300 mm) above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.
- B. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

### **PART 2 - PRODUCTS**

### 2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide product indicated on Drawings.

## 2.2 GENERAL REQUIREMENTS FOR LUMINAIRES

- A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
  - LED Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE5 and NEMA LE5A as applicable
- B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
- F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
- G. Exposed Hardware Material: Stainless steel.
- H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
- J. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
  - 1. White Surfaces: 85 percent.
  - 2. Specular Surfaces: 83 percent.
  - 3. Diffusing Specular Surfaces: 75 percent.
- K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
  - Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."
  - 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
    - a. Color: As selected from manufacturer's standard catalog of colors.

## 2.3 LED LUMINAIRES

- A. Solid State Drivers and LED: Comply with DOE LM 79
  - 1. Total Harmonic Distortion Rating: Less than 10 percent
  - 2. Transient Voltage protection
  - 3. Power factor: 0.90 or higher
  - 4. Temperatures: Minus 40 deg F (minus 40 deg C) and higher
  - 5. Heat sink to remove heat from circuits
  - 6. L70 compliant to 70,000 hours minimum
  - 7. Color Rendering Index: 80 CRI minimum
  - Dimmable
    - a. Dimming Range: 100 to 1 percent of rated lamp lumens
    - b. Input watts: Can be reduced to 20 percent of normal
    - c. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.

# 2.4 GENERAL REQUIREMENTS FOR POLES AND SUPPORT COMPONENTS

- A. Structural Characteristics: Comply with AASHTO LTS-4-M.
  - Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in "Structural Analysis Criteria for Pole Selection" Article.
  - 2. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis.
- B. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.
- C. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.
  - 1. Materials: Shall not cause galvanic action at contact points.
  - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication unless otherwise indicated.
  - 3. Anchor-Bolt Template: Plywood or steel.
- D. Handhole: Oval-shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws.
- E. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."

## 2.5 ALUMINUM POLES

- A. Poles: Seamless, extruded structural tube complying with ASTM B 429/B 429M, Alloy 6063-T6 with access handhole in pole wall.
- B. Poles: ASTM B 209 (ASTM B 209M), 5052-H34 marine sheet alloy with access handhole in pole wall.
  - 1. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- C. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
- D. Brackets for Luminaires: Detachable, with pole and adapter fittings of cast aluminum. Adapter fitting welded to pole and bracket, then bolted together with stainless-steel bolts.
  - 1. Tapered oval cross section, with straight tubular end section to accommodate luminaire.
  - 2. Finish: Same as luminaire.

- E. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
  - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
  - 2. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
    - a. Color: As selected by Architect from manufacturer's full range.

### 2.6 POLE ACCESSORIES

A. Base Covers: Manufacturers' standard metal units, arranged to cover pole's mounting bolts and nuts. Finish same as pole.

### **PART 3 - EXECUTION**

### 3.1 LUMINAIRE INSTALLATION

- A. Install lamps in each luminaire.
- B. Fasten luminaire to indicated structural supports.
  - 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

## 3.2 POLE INSTALLATION

- A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.
- B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on Drawings:
  - 1. Fire Hydrants and Storm Drainage Piping: 60 inches (1520 mm).
  - 2. Water, Gas, Electric, Communication, and Sewer Lines: 10 feet (3 m).
  - 3. Trees: 15 feet (5 m) from tree trunk.
- C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Section 033000 "Cast-in-Place Concrete."
- D. Embedded Poles with Concrete Backfill: Set poles in augered holes to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
  - 1. Make holes 6 inches (150 mm) in diameter larger than pole diameter.
  - 2. Fill augered hole around pole with air-entrained concrete having a minimum compressive strength of 3000 psi (20 MPa) at 28 days, and finish in a dome above finished grade.
  - 3. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through concrete dome. Arrange to drain condensation from interior of pole.
  - 4. Cure concrete a minimum of 72 hours before performing work on pole.
- E. Poles and Pole Foundations Set in Concrete Paved Areas: Install poles with minimum of 6-inch-(150-mm-) wide, unpaved gap between the pole or pole foundation and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch (25 mm) below top of concrete slab.
- F. Raise and set poles using web fabric slings (not chain or cable).

## 3.3 CORROSION PREVENTION

A. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

## 3.4 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES

A. Install on concrete base with top above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

## 3.5 GROUNDING

- A. Ground metal poles and support structures according to Section 260526 "Grounding and Bonding for Electrical Systems."
  - 1. Install grounding electrode for each pole unless otherwise indicated.
  - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.
- B. Ground nonmetallic poles and support structures according to Section 260526 "Grounding and Bonding for Electrical Systems."
  - 1. Install grounding electrode for each pole.
  - 2. Install grounding conductor and conductor protector.
  - 3. Ground metallic components of pole accessories and foundations.

# 3.6 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
  - 1. Verify operation of photoelectric controls.
- C. Illumination Tests:
  - 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s):
    - a. IESNA LM-5, "Photometric Measurements of Area and Sports Lighting Installations."
    - b. IESNA LM-50, "Photometric Measurements of Roadway Lighting Installations."
    - c. IESNA LM-52. "Photometric Measurements of Roadway Sign Installations."
    - d. IESNA LM-64, "Photometric Measurements of Parking Areas."
    - e. IESNA LM-72, "Directional Positioning of Photometric Data."
- D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

## 3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices.

# **END OF SECTION 265600**

# **DIVISION 27 - COMMUNICATIONS**

| 270526 | GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS   |
|--------|----------------------------------------------------|
| 270528 | PATHWAYS FOR COMMUNICATIONS SYSTEMS                |
| 270529 | HANGERS AND SUPPORTS FOR COMMUNICATIONS SYSTEMS    |
| 270536 | CABLE TRAYS FOR COMMUNICATIONS SYSTEMS             |
| 270553 | IDENTIFICATION FOR COMMUNICATIONS SYSTEMS          |
| 271100 | COMMUNICATIONS EQUIPMENT ROOM FITTINGS             |
| 271116 | COMMUNICATIONS RACKS, FRAMES, AND ENCLOSURES       |
| 271313 | COMMUNICATIONS COPPER BACKBONE CABLING             |
| 271323 | COMMUNICATIONS OPTICAL FIBER BACKBONE CABLING      |
| 271333 | COMMUNICATIONS COAXIAL BACKBONE CABLING            |
| 271513 | COMMUNICATIONS COPPER HORIZONTAL CABLING           |
| 271533 | COMMUNICATIONS COAXIAL HORIZONTAL CABLING          |
| 275123 | EDUCATIONAL INTERCOMMUNICATIONS AND PRORAM SYSTEMS |
| 275313 | CLOCK SYSTEMS                                      |

# **END OF TABLE OF CONTENTS**

Logan City School District

## **SECTION 270526**

## **GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS**

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section Includes:
  - 1. Grounding conductors.
  - 2. Grounding connectors.
  - 3. Grounding busbars.
  - 4. Grounding rods.
  - 5. Grounding labeling.

### 1.3 DEFINITIONS

- A. BCT: Bonding conductor for telecommunications.
- B. TGB: Telecommunications grounding busbar.
- C. TMGB: Telecommunications main grounding busbar.
- D. Service Provider: The operator of a service that provides telecommunications transmission delivered over access provider facilities.

### 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

### 1.5 INFORMATIONAL SUBMITTALS

- A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:
  - 1. Ground rods.
  - 2. Ground and roof rings.
  - 3. BCT, TMGB, TGBs, and routing of their bonding conductors.
- B. Qualification Data: For Installer, installation supervisor, and field inspector.
- C. Field quality-control reports.

### 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
  - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
    - a. Result of the ground-resistance test, measured at the point of BCT connection.
    - b. Result of the bonding-resistance test at each TGB and its nearest grounding electrode.

## 1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
  - 1. Installation Supervision: Installation shall be under the direct supervision of ITS Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
  - 2. Field Inspector: Currently registered by BICSI as Technician to perform the on-site inspection.

## **PART 2 - PRODUCTS**

## 2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.
- C. Comply with TIA-607-B.

### 2.2 CONDUCTORS

- A. Comply with UL 486A-486B.
- B. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
  - 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
  - 2. Cable Tray Equipment Grounding Wire: No. 6 AWG.
- C. Cable Tray Grounding Jumper:
  - 1. Not smaller than No. 6 AWG and not longer than 12 inches (300 mm). If jumper is a wire, it shall have a crimped grounding lug with two holes and long barrel for two crimps. If jumper is a flexible braid, it shall have a one-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.
- D. Bare Copper Conductors:
  - 1. Solid Conductors: ASTM B 3.
  - 2. Stranded Conductors: ASTM B 8.
  - 3. Tinned Conductors: ASTM B 33.
  - 4. Bonding Cable: 28 kcmils (14.2 sq. mm), 14 strands of No. 17 AWG conductor, and 1/4 inch (6.3 mm) in diameter.
  - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
  - 6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

## 2.3 CONNECTORS

- A. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.
- B. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.
  - 1. Electroplated tinned copper, C and H shaped.
- C. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.
- D. Busbar Connectors: Cast silicon bronze, solderless compression-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch (15.8- or 25.4-mm) centers for a two-bolt connection to the busbar.
- E. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

## 2.4 GROUNDING BUSBARS

- A. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with TIA-607-B.
  - 1. Predrilling shall be with holes for use with lugs specified in this Section.
  - 2. Mounting Hardware: Stand-off brackets that provide a 4-inch (100-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.

- 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
- B. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches (6.3 by 50 mm) in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with TIA-607-B.
  - 1. Predrilling shall be with holes for use with lugs specified in this Section.
  - 2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch (50-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
  - 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
- C. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with TIA-607-B. Predrilling shall be with holes for use with lugs specified in this Section.
  - 1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
  - 2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch (483- or 584-mm) equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
  - 3. Rack-Mounted Vertical Busbar: 72 or 36 inches (1827 or 914 mm) long, with stainless-steel or copper-plated hardware for attachment to the rack.

## 2.5 GROUND RODS

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet (19 mm by 3 m) in diameter.

## 2.6 IDENTIFICATION

A. Comply with requirements for identification products in Section 270553 "Identification for Communications Systems."

# **PART 3 - EXECUTION**

## 3.1 EXAMINATION

- A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.
- B. Inspect the test results of the ac grounding system measured at the point of BCT connection.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

### 3.2 INSTALLATION

- A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.
- B. Comply with NECA 1.
- C. Comply with TIA-607-B.

### 3.3 APPLICATION

- A. Conductors: Install solid or stranced conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
  - 1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
  - 2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.

- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2 AWG minimum.
- C. Conductor Terminations and Connections:
  - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
  - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
  - 3. Connections to Ground Rods: Bolted connectors.
  - 4. Connections to Structural Steel: Welded connectors.

### D. Conductor Support:

Secure grounding and bonding conductors at intervals of not less than 36 inches (900 mm).

# E. Grounding and Bonding Conductors:

- 1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
- 2. Install without splices.
- 3. Support at not more than 36-inch (900-mm) intervals.
- 4. Install grounding and bonding conductors in 3/4-inch (21-mm) PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.
  - a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

## 3.4 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 3/0 AWG.

# 3.5 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 12 inches (300 mm) above finished floor unless otherwise indicated.

### 3.6 CONNECTIONS

- A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.
- B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.
- C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
  - 1. Use crimping tool and the die specific to the connector.
  - 2. Pretwist the conductor.
  - 3. Apply an antioxidant compound to all bolted and compression connections.
- D. Primary Protector: Bond to the TMGB with insulated bonding conductor.
- E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot (1 sq. mm/linear meter) of conductor length, up to a maximum size of No. 3/0 AWG unless otherwise indicated.
- F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install top-mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB No. 2 AWG bonding conductors.

- G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.
- H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.
- I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA-568-C.1 and TIA-568-C.2 when grounding shielded balanced twisted-pair cables.
- J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

# 3.7 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.
- B. Comply with IEEE C2 grounding requirements.
- C. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) extends above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.
- D. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect grounding conductors to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

# 3.8 IDENTIFICATION

- A. Labels shall be preprinted or computer-printed type.
  - 1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.
  - 2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.
  - 3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

## 3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
  - Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
  - 2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.
    - a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.

- 3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.
  - a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB and in each TGB. Maximum acceptable ac current level is 1 A.
- C. Excessive Ground Resistance: If resistance to ground at the BCT exceeds [5] < Insert value > ohms, notify Architect promptly and include recommendations to reduce ground resistance.
- D. Grounding system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

**END OF SECTION 270526** 

## **SECTION 270528**

## PATHWAYS FOR COMMUNICATIONS SYSTEMS

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section Includes:
  - 1. Metal conduits and fittings.
  - 2. Nonmetallic conduits and fittings.
  - 3. Optical-fiber-cable pathways and fittings.
  - 4. Boxes, enclosures, and cabinets.
  - 5. Polymer-concrete handholes and boxes for exterior underground cabling.

### 1.3 DEFINITIONS

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid conduit.
- C. IMC: Intermediate metal conduit.
- D. RTRC: Reinforced thermosetting resin conduit.

## 1.4 ACTION SUBMITTALS

- A. Product data for the following:
  - 1. Wireways and fittings.
  - 2. Boxes, enclosures, and cabinets.
  - 3. Underground handholes and boxes.
- B. Shop Drawings: For custom enclosures and cabinets and custom underground handholes and boxes. Include plans, elevations, sections, and attachment details.

## 1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Provide seismic bracing for all pathway racks, enclosures, cabinets, equipment racks, and their mounting provisions, including those for internal components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which certification is based and their installation requirements.
  - 4. Detailed description of conduit support devices and interconnections on which certification is based and their installation requirements.
- B. Source quality-control reports.

## **PART 2 - PRODUCTS**

# 2.1 METAL CONDUITS AND FITTINGS

- A. Description: Metal raceway of circular cross section with manufacturer-fabricated fittings.
- B. General Requirements for Metal Conduits and Fittings:
  - 1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
  - 2. Comply with TIA-569-D.
- C. GRC: Comply with ANSI C80.1 and UL 6.

- D. IMC: Comply with ANSI C80.6 and UL 1242.
- E. PVC-Coated Steel Conduit: PVC-coated GRC.
  - 1. Comply with NEMA RN 1.
  - 2. Coating Thickness: 0.040 inch (1 mm), minimum.
- F. EMT: Comply with ANSI C80.3 and UL 797.
- G. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
  - Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
  - 2. Fittings for EMT:
    - a. Material: Steel.
    - Type: Set screw or compression.
  - 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.
  - 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- H. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

## 2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Description: Nonmetallic raceway of circular section with manufacturer-fabricated fittings.
- B. General Requirements for Nonmetallic Conduits and Fittings:
  - 1. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
  - 2. Comply with TIA-569-D.
- C. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- D. Rigid HDPE: Comply with UL 651A.
- E. Continuous HDPE: Comply with UL 651A.
- F. Fittings: Comply with NEMA TC 3; match to conduit or tubing type and material.
- G. Solvents and Adhesives: As recommended by conduit manufacturer.

# 2.3 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

- A. Description: Comply with UL 2024; flexible-type pathway with a circular cross section, approved for plenum riser or general-use installation unless otherwise indicated.
- B. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- C. Comply with TIA-569-D.

### 2.4 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal trough of rectangular cross section fabricated to required size and shape, without holes or knockouts, and with hinged or removable covers.
- B. General Requirements for Metal Wireways and Auxiliary Gutters:
  - Comply with UL 870 and NEMA 250, Type 12 unless otherwise indicated, and sized according to NFPA 70.
  - 2. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
  - 3. Comply with TIA-569-D.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Flanged-and-gasketed type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

## 2.5 HOOKS

- A. Description: Prefabricated sheet metal cable supports for telecommunications cable.
- B. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- C. Comply with TIA-569-D.
- D. Galvanized steel.
- E. J shape.

# 2.6 BOXES, ENCLOSURES, AND CABINETS

- A. Description: Enclosures for communications.
- B. General Requirements for Boxes, Enclosures, and Cabinets:
  - 1. Comply with TIA-569-D.
  - 2. Boxes, enclosures, and cabinets installed in wet locations shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for use in wet locations.
  - 3. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
  - 4. Device Box Dimensions: As indicated on drawings.
  - 5. Gangable boxes are prohibited.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Metal Floor Boxes: Comply with Division 26 section "Raceways and Boxes for Electrical Systems"
- F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.
- H. Hinged-Cover Enclosures: ee Division 26 section "Raceways and Boxes for Electrical Systems"
- I. Cabinets: Comply with Division 26 section "Raceways and Boxes for Electrical Systems"

### 2.7 POLYMER-CONCRETE HANDHOLES

- A. Description: Molded of sand and aggregate; bound together with polymer resin; and reinforced with steel, fiberglass, or a combination of the two.
- B. General Requirements for Polymer Concrete Handholes: Comply with Division 26 section "Raceways and Boxes for Electrical Systems"

# 2.8 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Comply with Division 26 section "Raceways and Boxes for Electrical Systems"

## **PART 3 - EXECUTION**

## 3.1 PATHWAY APPLICATION

- A. Comply with Division 26 section "Raceways and Boxes for Electrical Systems" unless otherwise indicated below.
- B. Indoors:
  - 1. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical-fiber-cable pathway or EMT.
  - 2. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: Risertype, optical-fiber-cable pathway or EMT.
  - 3. Pathways for Concealed General-Purpose Distribution of Optical-Fiber or Communications Cable: Plenum-type, optical-fiber-cable pathway or EMT.

C. Minimum Pathway Size: 1 inch (25 mm) for optical-fiber cables.

## 3.2 INSTALLATION

- A. Comply with Division 26 section "Raceways and Boxes for Electrical Systems" unless otherwise indicated below.
- B. Comply with the following standards for installation requirements except where requirements on Drawings or in this Section are stricter:
  - 1. NECA 1.
  - 2. NECA/BICSI 568.
  - 3. TIA-569-D.
  - 4. NECA 101
  - 5. NECA 102.
  - 6. NECA 105.
- C. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- D. Comply with requirements in Section 270529 "Hangers and Supports for Communications Systems" for hangers and supports.
- E. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling" for sleeves and sleeve seals for communications.
- F. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal pathway runs above water and steam piping.
- G. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches (300 mm) of changes in direction. Utilize long radius ells for all optical-fiber cables.
- H. Pathways for Optical-Fiber and Communications Cable: Install pathways, metal and nonmetallic, rigid and flexible, as follows:
  - 1. 1-Inch (25-mm) Trade Size and Larger: Install pathways in maximum lengths of 75 feet (23 m).
  - 2. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

## I. Hooks:

- 1. Size to allow a minimum of 50 percent future capacity without exceeding design capacity limits.
- 2. Shall be supported by dedicated support wires. Do not use ceiling grid support wire or support rods.
- 3. Hook spacing shall allow no more than 6 inches (150 mm) of slack. The lowest point of the cables shall be no less than 6 inches (150 mm) adjacent to ceilings, mechanical ductwork and fittings, luminaires, power conduits, power and telecommunications outlets, and other electrical and communications equipment.
- 4. Space hooks no more than 4 feet (1.2 m) o.c.
- 5. Provide a hook at each change in direction.

## 3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Comply with Division 26 section "Raceways and Boxes for Electrical Systems"

# 3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Comply with Division 26 section "Raceways and Boxes for Electrical Systems"

# 3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

# 3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

## 3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage or deterioration.
  - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
  - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

# **END OF SECTION 270528**

Logan City School District

## **SECTION 270529**

## HANGERS AND SUPPORTS FOR COMMUNICATIONS SYSTEMS

### PART 1 - GENERAL

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section Includes:
  - 1. Steel slotted support systems for communication raceways.
  - 2. Conduit and cable support devices.
  - 3. Support for conductors in vertical conduit.
  - 4. Structural steel for fabricated supports and restraints.
  - 5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
  - 6. Fabricated metal equipment support assemblies.

# B. Related Requirements:

1. Section 270548 "Seismic Controls for Communications Systems" for products and installation requirements necessary for compliance with seismic criteria.

# **PART 2 - PRODUCTS**

## 2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
  - 2. Component Importance Factor: 1.5.
- C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
  - 1. Flame Rating: Class 1.
  - 2. Self-extinguishing according to ASTM D 635.

# 2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Comply with Division 26 section "Raceways and Boxes for Electrical Systems" unless otherwise indicated below.

## **PART 3 - EXECUTION**

## 3.1 APPLICATION

A. Comply with Division 26 section "Raceways and Boxes for Electrical Systems" unless otherwise indicated below.

- B. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
  - 1. NECA 1.
  - 2. NECA/BICSI 568.
  - 3. TIA-569-D.
  - 4. NECA 101.
  - 5. NECA 102.
  - 6. NECA 105.
  - 7. NECA 111.
- C. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- D. Comply with requirements for pathways specified in Section 270528 "Pathways for Communications Systems."

## 3.2 SUPPORT INSTALLATION

A. Comply with Division 26 section "Raceways and Boxes for Electrical Systems" unless otherwise indicated below.

## **END OF SECTION 270529**

## **SECTION 270536**

## CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

## **PART 1 - GENERAL**

## 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

- A. Section Includes:
  - 1. Ladder cable tray.
  - 2. Cable tray accessories.
  - 3. Warning signs.
- B. Related Requirements:
  - 1. Section 260536 "Cable Trays for Electrical Systems" for cable trays and accessories serving electrical systems.

### 1.3 ACTION SUBMITTALS

- A. Product Data: For each type of cable tray.
  - 1. Include data indicating dimensions and finishes for each type of cable tray indicated.
- B. Shop Drawings: For each type of cable tray.
  - Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.
  - 2. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
    - a. Vertical and horizontal offsets and transitions.
    - b. Clearances for access above and to sides of cable trays.
    - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
    - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
- C. Delegated-Design Submittal: For seismic restraints.
  - 1. Seismic-Restraint Details: Signed and sealed by a qualified professional engineer, licensed in the state where Project is located, who is responsible for their preparation.
  - 2. Design Calculations: Calculate requirements for selecting seismic restraints.
  - 3. Detail fabrication, including anchorages and attachments to structure and to supported cable trays.

## 1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
  - 1. Scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
  - 2. Vertical and horizontal offsets and transitions.
  - 3. Clearances for access above and to side of cable trays.
  - 4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.
- B. Seismic Qualification Data: Certificates, for cable trays, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

# **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cable tray supports and seismic bracing.
- B. Seismic Performance: Cable trays and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the cable trays will remain in place without separation of any parts when subjected to the seismic forces specified."
  - 2. Component Importance Factor: 1.5.
- C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes in cable tray installed outdoors.
  - Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

#### 2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS

- A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.
  - 1. Source Limitations: Obtain cable trays and components from single manufacturer.
- B. Sizes and Configurations: See the Cable Tray Schedule on Drawings for specific requirements for types, materials, sizes, and configurations.
- C. Structural Performance: See articles for individual cable tray types for specific values for the following parameters:
  - Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.
  - 2. Concentrated Load: A load applied at midpoint of span and centerline of tray.
  - 3. Load and Safety Factors: Applicable to both side rails and rung capacities.

#### 2.3 LADDER CABLE TRAY

#### A. Description:

- 1. Configuration: Two longitudinal side rails with transverse rungs swaged or welded to side rails, complying with NEMA VE 1.
- 2. Width: As indicated on drawings
- 3. Minimum Usable Load Depth: 6 inches (150 mm).
- 4. Straight Section Lengths: 12 feet (3.7 m), except where shorter lengths are required to facilitate tray assembly.
- 5. Rung Spacing: 9 inches (225 mm) o.c.
- 6. Radius-Fitting Rung Spacing: 9 inches (225 mm) at center of tray's width.
- 7. Minimum Cable-Bearing Surface for Rungs: 7/8-inch (22-mm) width with radius edges.
- 8. No portion of the rungs shall protrude below the bottom plane of side rails.
- 9. Structural Performance of Each Rung: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb (90-kg) concentrated load, when tested according to NEMA VE 1.
- 10. Fitting Minimum Radius: 24 inches (600 mm).
- 11. Class Designation: Comply with NEMA VE 1, Class 12A.
- 12. Splicing Assemblies: Bolted type using serrated flange locknuts.
- 13. Splice-Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

# B. Materials and Finishes:

1. Aluminum:

- a. Materials: Alloy 6063-T6 according to ANSI H35.1/H 35.1M for extruded components, and Alloy 5052-H32 or Alloy 6061-T6 according to ANSI H35.1/H 35.1M for fabricated parts.
- b. Hardware: Stainless steel, Type 316, ASTM F 593 and ASTM F 594.
- Hardware for Aluminum Cable Tray Used Outdoors: Stainless steel, Type 316, ASTM F 593 and ASTM F 594.

#### 2.4 WIRE-MESH CABLE TRAY

#### A. Description:

- 1. Configuration: Galvanized- steel wire mesh, complying with NEMA VE 1.
- 2. Width: As indicated on drawings
- 3. Minimum Usable Load Depth: As indicated on drawings.
- 4. Straight Section Lengths: 12 feet (3.7 m), except where shorter lengths are required to facilitate tray assembly.
- 5. Structural Performance: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb (90-kg) concentrated load, when tested according to NEMA VE 1.
- 6. Class Designation: Comply with NEMA VE 1, Class 12A.
- 7. Splicing Assemblies: Bolted type using serrated flange locknuts.
- 8. Splice-Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

#### B. Materials and Finishes:

- 1. Steel:
  - a. Straight Sections and Fittings: Steel complies with the minimum mechanical properties of ASTM A 1011/A 1011M, SS, Grade 33.
  - b. Steel Tray Splice Plates: ASTM A 1011/A 1011M, HSLAS, Grade 50, Class 1.
  - c. Fasteners: Steel complies with the minimum mechanical properties of ASTM A 510/A 510M, Grade 1008.
  - Finish: Hot-dip galvanized after fabrication, complying with ASTM A123/A123 M, Class B2.
    - Hardware: Stainless steel, Type 316.
  - e. Finish: Electrogalvanized after fabrication, complying with ASTM B 633.
    - 1) Hardware: Galvanized, ASTM B 633.

#### 2.5 CABLE TRAY ACCESSORIES

- A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.
- B. Barrier Strips: Same materials and finishes as for cable tray.
- C. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

#### 2.6 WARNING SIGNS

- A. Comply with requirements for identification in Section 270553 "Identification for Communications Systems."
- B. Lettering: 1-1/2-inch- (40-mm-) high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."

#### 2.7 SOURCE QUALITY CONTROL

A. Testing: Test and inspect cable trays according to NEMA VE 1.

#### **PART 3 - EXECUTION**

#### 3.1 CABLE TRAY INSTALLATION

A. Install cable trays according to NEMA VE 2.

- B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.
- C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.
- D. Remove burrs and sharp edges from cable trays.
- E. Join aluminum cable tray with splice plates; use four square neck-carriage bolts and locknuts.
- F. Fasten cable tray supports to building structure and install seismic restraints.
- G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb (90 kg). Comply with requirements in Section 270529 "Hangers and Supports for Communications Systems."
- H. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.
- I. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.
- J. Support bus assembly to prevent twisting from eccentric loading.
- K. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.
- L. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.
- M. Support wire-basket cable trays with trapeze hangers or wall brackets.
- N. Support trapeze hangers for wire-basket trays with 1/4-inch- (6-mm-) diameter rods.
- O. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.
- P. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.
- Q. Make changes in direction and elevation using manufacturer's recommended fittings.
- R. Make cable tray connections using manufacturer's recommended fittings.
- S. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping."
- T. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.
- U. Install cable trays with enough workspace to permit access for installing cables.
- V. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15 000 V.
- W. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.
- X. Clamp covers on cable trays installed outdoors with heavy-duty clamps.
- Y. Install warning signs in visible locations on or near cable trays after cable tray installation.

#### 3.2 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems."

- B. Cable trays shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.
- C. Cable trays with single-conductor power conductors shall be bonded together with a grounding conductor run in the tray along with the power conductors and bonded to the tray at 72-inch (1800-mm) intervals. The grounding conductor shall be sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors," and Article 392, "Cable Trays."
- D. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.
- E. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

# 3.3 CABLE INSTALLATION

- A. Install cables only when each cable tray run has been completed and inspected.
- B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket. Install cable ties with a tool that includes an automatic pressure-limiting device.
- C. Fasten cables on vertical runs to cable trays every 18 inches (450 mm).
- D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches (1800 mm).
- E. Tie MI cables down every 36 inches (900 mm) where required to provide a 2-hour fire rating and every 72 inches (1800 mm) elsewhere.
- F. In existing construction, remove inactive or dead cables from cable trays.

#### 3.4 CONNECTIONS

- A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.
- B. Connect pathways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

#### 3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
  - 1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.
  - 2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
  - 3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.
  - 4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable trav.
  - 5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.
  - 6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.
  - 7. Check for improperly sized or installed bonding jumpers.
  - 8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.

- 9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.
- B. Prepare test and inspection reports.

# 3.6 PROTECTION

- A. Protect installed cable trays and cables.
  - Install temporary protection for cables in open trays to safeguard exposed cables against
    falling objects or debris during construction. Temporary protection for cables and cable
    tray can be constructed of wood or metal materials and shall remain in place until the risk
    of damage is over.
  - 2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
  - 3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

**END OF SECTION 270536** 

#### **SECTION 270553**

#### **IDENTIFICATION FOR COMMUNICATIONS SYSTEMS**

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Color and legend requirements for labels and signs.
  - 2. Labels
  - 3. Bands and tubes.
  - 4. Tapes.
  - 5. Signs.
  - 6. Cable ties.
  - 7. Fasteners for labels and signs.

#### 1.3 ACTION SUBMITTALS

- A. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- B. Identification Schedule:
  - 1. Outlets: Scaled drawings indicating location and proposed designation.
  - 2. Backbone Cabling: Riser diagram showing each communications room, backbone cable, and proposed backbone cable designation.
  - 3. Racks: Scaled drawings indicating location and proposed designation.
  - 4. Patch Panels: Enlarged scaled drawings showing rack row, number, and proposed designations.

#### **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. Comply with NFPA 70 and TIA 606-B.
- B. Comply with ANSI Z535.4 for safety signs and labels.
- C. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
  - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

#### 2.2 COLOR AND LEGEND REQUIREMENTS

- A. Equipment Identification Labels:
  - 1. Black letters on a white field.

### 2.3 LABELS

- A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
- B. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, polyester flexible labels with acrylic pressure-sensitive adhesive.
  - 1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating protective shields over the legend. Labels sized such that the clear shield overlaps the entire printed legend.

- 2. Marker for Labels: Machine-printed, permanent, waterproof black ink recommended by printer manufacturer.
- C. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
  - 1. Minimum Nominal Size:
    - a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
    - b. 76 by 127 mm (3-1/2 by 5 inches) for equipment.
    - c. As required by authorities having jurisdiction.

## 2.4 UNDERGROUND-LINE WARNING TAPE

- A. Tape:
  - 1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground communications utility lines.
  - 2. Printing on tape shall be permanent and shall not be damaged by burial operations.
  - 3. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
- B. Color and Printing:
  - 1. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, and ANSI Z535.4.
  - 2. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL-FIBER CABLE" < Insert inscription >.

#### 2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

#### **PART 3 - EXECUTION**

#### 3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying communications identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

# 3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- G. Vinyl Wraparound Labels:
  - 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
  - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
  - 3. Provide label 150 mm (6 inches) from cable end.
- H. Self-Adhesive Labels:
  - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.

- 2. Unless otherwise indicated, provide a single line of text with 13-mm- (1/2-inch-) high letters on 38-mm- (1-1/2-inch-) high label; where two lines of text are required, use labels 50 mm (2 inches) high.
- I. Snap-Around, Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- J. Underground-Line Warning Tape:
  - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 150 to 200 mm (6 to 8 inches) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 400 mm (16 inches) overall.
  - 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

#### 3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations with high visibility. Identify by system and circuit designation.
- C. Accessible Fittings for Raceways and Cables within Buildings: Identify covers of each junction and pull box with self-adhesive labels containing wiring system legend.
  - 1. System legends shall be as follows:
    - a. Telecommunications.
- D. Faceplates: Label individual faceplates with self-adhesive labels. Place label at top of faceplate. Each faceplate shall be labeled with its individual, sequential designation, numbered clockwise when entering room from primary egress, composed of the following, in the order listed:
  - 1. Wiring closet designation.
  - 2. Colon.
  - 3. Faceplate number.
- E. Equipment Room Labeling:
  - 1. Racks, Frames, and Enclosures: Identify front and rear of each with self-adhesive labels containing equipment designation.
  - 2. Patch Panels: Label individual rows and outlets, starting at to left and working down, with self-adhesive labels.
  - Data Outlets: Label each outlet with a self-adhesive label indicating the following, in the order listed:
    - a. Room number being served.
    - b. Colon.
    - c. Faceplate number.
- F. Backbone Cables: Label each cable with a self-adhesive wraparound label indicating the location of the far or other end of the backbone cable. Patch panel or punch down block where cable is terminated should be labeled identically.
- G. Horizontal Cables: Label each cable with a self-adhesive wraparound label indicating the following, in the order listed:
  - 1. Room number.
  - 2. Colon.
  - 3. Faceplate number.
- H. Locations of Underground Lines: Underground-line warning tape for copper, coaxial, hybrid copper/fiber, and optical-fiber cable.
- I. Equipment Identification Labels:
  - 1. Indoor Equipment: Self-adhesive label.
  - 2. Outdoor Equipment: Laminated-acrylic or melamine-plastic sign.
  - 3. Equipment to Be Labeled:
    - a. Communications cabinets.

# Logan City School District

- b. Uninterruptible power supplies.
- C.
- Computer room air conditioners. Fire-alarm and suppression equipment. d.
- Egress points. e.
- Power distribution components. f.

# **END OF SECTION 270553**

#### **SECTION 271100**

#### COMMUNICATIONS EQUIPMENT ROOM FITTINGS

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - Backboards.
  - 2. Boxes, enclosures, and cabinets.
  - 3. Power strips.

## B. Related Requirements:

- Section 270536 "Cable Trays for Communications Systems" for cable trays and accessories.
- 2. Section 271313 "Communications Copper Backbone Cabling" for copper data cabling associated with system panels and devices.
- 3. Section 271323 "Communications Optical Fiber Backbone Cabling" for optical-fiber data cabling associated with system panels and devices.
- 4. Section 271333 "Communications Coaxial Backbone Cabling" for coaxial data cabling associated with system panels and devices.
- 5. Section 271513 "Communications Copper Horizontal Cabling" for copper data cabling associated with system panels and devices.
- 6. Section 271533 "Communications Coaxial Horizontal Cabling" for coaxial data cabling associated with system panels and devices.

#### 1.3 **DEFINITIONS**

- A. Access Provider: An operator that provides a circuit path or facility between the service provider and user. An access provider can also be a service provider.
- B. BICSI: Building Industry Consulting Service International.
- C. RCDD: Registered communications distribution designer.
- D. Service Provider: The operator of a telecommunications transmission service delivered through access provider facilities.
- E. TGB: Telecommunications grounding bus bar.
- F. TMGB: Telecommunications main grounding bus bar.

#### 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
  - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
  - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
  - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
  - 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

#### 1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- B. Seismic Qualification Data: Certificates, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

#### 1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling installer must have personnel certified by BICSI on staff.
  - Layout Responsibility: Preparation of Shop Drawings shall be under direct supervision of Technician.
  - 2. Installation Supervision: Installation shall be under direct supervision of Installer 2, Copper or Fiber, who shall be present at all times when Work of this Section is performed at Project site.
  - 3. Field Inspector: Currently registered by BICSI as Technician to perform the on-site inspection.

#### **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Equipment shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

#### 2.2 BACKBOARDS

- A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm).
- B. Backboard Paint: Light-colored interior latex paint.

#### 2.3 POWER STRIPS

- A. Comply with requirements in Section 271116 "Communications Racks, Frames, and Enclosures."
- B. Power Strips: Comply with UL 1363.
  - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
  - 2. Rack mounting, with detachable flanges.
  - 3. Height: 1 RU..
  - 4. Housing: Metal.
  - 5. Six, 20-A, 120-V ac, NEMA WD 6, Configuration 5-20R receptacles.
  - 6. Rear-facing receptacles.
  - 7. LED indicator lights for power and protection status.
  - 8. LED indicator lights for reverse polarity and open outlet ground.
  - 9. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
  - 10. Close-coupled, direct plug-in line cord.
  - 11. Rocker-type on-off switch, illuminated when in on position.
  - 12. Surge Protection: UL 1449, Type 3.
    - a. Maximum Surge Current, Line to Neutral: 72 kA < Insert value>.
    - b. Protection modes shall be line to neutral, line to ground, and neutral to ground.

c. UL 1449 Voltage Protection Rating for line to neutral and line to ground shall be 600 V and 500 V, for neutral to ground.

#### **PART 3 - EXECUTION**

# 3.1 ENTRANCE FACILITIES

- A. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.
- B. Comply with requirements in Section 270528 "Pathways for Communications Systems" for materials and installation requirements for underground pathways.

#### 3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Comply with BICSI's "Telecommunications Distribution Methods Manual" for layout of communications equipment spaces.
- C. Comply with BICSI's "Information Technology Systems Installation Methods Manual" for installation of equipment in communications equipment spaces.
- D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- E. Coordinate layout and installation of communications equipment in tracks and in room. Coordinate service entrance configuration with service provider.
  - 1. Meet jointly with systems providers, equipment suppliers, and Owner to exchange information and agree on details of equipment configurations and installation interfaces.
  - 2. Record agreements reached in meetings and distribute them to other participants.
  - 3. Adjust configurations and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize configurations and space requirements of communications equipment.
  - 4. Adjust configurations and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in equipment room.
- F. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

#### G. Backboards:

- 1. Install from 6 inches (150 mm) to 8 feet, 6 inches (2588 mm) above finished floor. If plywood is fire rated, ensure that fire-rating stamp is visible after installation.
- 2. Paint all sides of backboard with two coats of paint.
- 3. Comply with requirements for backboard installation in BICSI's "Information Technology Systems Installation Methods Manual" and TIA-569-D.

### 3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

#### 3.4 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with BICSI's "Information Technology Systems Installation Methods Manual," "Firestopping Practices" Ch.

#### **END OF SECTION 271100**

Logan City School District

#### **SECTION 271116**

# **COMMUNICATIONS RACKS, FRAMES, AND ENCLOSURES**

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. 19-inch equipment racks
  - 2. Open Rack equipment racks.
  - 3. Grounding.
  - 4. Labeling.

# B. Related Requirements:

- Section 271110 "Communications Equipment Room Fittings" for backboards and accessories.
- Section 270526 "Grounding and Bonding for Telecommunications Equipment" for TMGBs and TGBs.
- 3. Section 270536 "Cable Trays for Communications Systems" for cable trays and cable tray accessories.
- 4. Section 271313 "Communications Copper Backbone Cabling" for copper data cabling associated with system panels and devices.
- 5. Section 271323 "Communications Optical Fiber Backbone Cabling" for optical-fiber data cabling associated with system panels and devices.
- 6. Section 271333 "Communications Coaxial Backbone Cabling" for coaxial data cabling associated with system panels and devices.
- 7. Section 271513 "Communications Copper Horizontal Cabling" for copper data cabling associated with system panels and devices.
- 8. Section 271533 "Communications Coaxial Horizontal Cabling" for coaxial data cabling associated with system panels and devices.

#### 1.3 DEFINITIONS

- A. Access Provider: An operator that provides a circuit path or facility between the service provider and user. An access provider can also be a service provider.
- B. BICSI: Building Industry Consulting Service International.
- C. LAN: Local area network.
- D. RCDD: Registered communications distribution designer.
- E. Service Provider: The operator of a telecommunications transmission service delivered through access provider facilities.
- F. TGB: Telecommunications grounding bus bar.
- G. TMGB: Telecommunications main grounding bus bar.

#### 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
  - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
  - 2. Include rated capacities, operating characteristics, electrical characteristics, certifications, standards compliance, and furnished specialties and accessories.

- B. Shop Drawings: For communications racks, frames, and enclosures. Include plans, elevations, sections, details, and attachments to other work.
  - Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
  - 3. Grounding: Indicate location of TGB and its mounting detail showing standoff insulators and wall-mounting brackets.

## 1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- B. Seismic Qualification Data: Certificates, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

#### 1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling installer must have personnel certified by BICSI on staff.
  - Layout Responsibility: Preparation of Shop Drawings shall be under direct supervision of Technician.
  - 2. Installation Supervision: Installation shall be under direct supervision of Installer 2, Copper or Fiber, who shall be present at all times when Work of this Section is performed at Project site.
  - 3. Field Inspector: Currently registered by BICSI as Technician to perform on-site inspection.

# **PART 2 - PRODUCTS**

# 2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Equipment shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
- B. UL listed.
- C. RoHS compliant.
- D. Compliant with requirements of the Payment Card Industry Data Security Standard.

# 2.2 19-INCH EQUIPMENT RACKS

A. Description: Two- and four- post racks with threaded rails designed for mounting telecommunications equipment. Width is compatible with EIA/ECIA 310-E, 482.6-mm (19-inch) equipment mounting with an opening of 450-mm (17.72-inches) between rails.

- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Belden Inc.
  - 2. Black Box Corporation.
  - 3. B-line, an Eaton business.
  - 4. CommScope, Inc.
  - 5. Emerson Network Power Connectivity Solutions.
  - 6. Hubbell Premise Wiring.
  - 7. Leviton Manufacturing Co., Inc.
  - 8. Siemon Co. (The).

#### C. General Requirements:

- 1. Frames: Modular units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
- 2. Material: Extruded aluminum.
- 3. Finish: Manufacturer's standard, baked-polyester powder coat.
- 4. Color: Black.

#### D. Floor-Mounted Racks:

- Overall Height: As indicated on Drawings.
- 2. Overall Depth: 584.2 mm (23 inches).
- 3. Upright Depth: 152.4 mm (6 inches).
- 4. Two-Post Load Rating: 181 kg (400 lb).
- 5. Four-Post Load Rating: 907 kg (2000 lb).
- 6. Number of Rack Units per Rack: Minimum of 58.
  - a. Numbering: Every rack units, on interior of rack.
- 7. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip.
- 8. Base shall have a minimum of four mounting holes for permanent attachment to floor.
- 9. Top shall have provisions for attaching to cable tray or ceiling.
- 10. Self-leveling.

#### E. Cable Management:

- 1. Metal, with integral wire retaining fingers.
- 2. Baked-polyester powder coat finish.
- 3. Vertical cable management panels shall have front and rear channels, with covers.
- 4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

# 2.3 GROUNDING

A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

#### 2.4 LABELING

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

#### **PART 3 - EXECUTION**

#### 3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Comply with BICSI TDMM for layout of communications equipment spaces.
- C. Comply with BICSI ITSIMM for installation of communications equipment spaces.
- D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- E. Coordinate layout and installation of communications equipment in racks and room. Coordinate service entrance configuration with service provider.

- 1. Meet jointly with system providers, equipment suppliers, and Owner to exchange information and agree on details of equipment configurations and installation interfaces.
- 2. Record agreements reached in meetings and distribute them to other participants.
- 3. Adjust configurations and locations of distribution frames, cross-connects, and patch panels in equipment spaces to accommodate and optimize configuration and space requirements of telecommunications equipment.
- 4. Adjust configurations and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in equipment room.
- F. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

#### 3.2 GROUNDING

- A. Comply with NECA/BICSI 607.
- B. Install grounding according to BICSI ITSIMM, "Bonding, Grounding (Earthing) and Electrical Protection" Ch.
- C. Locate TGB to minimize length of bonding conductors. Fasten to wall, allowing at least 50 mm (2 inches) of clearance behind TGB. Connect TGB with a minimum No. 4 AWG grounding electrode conductor from TGB to suitable electrical building ground. Connect rack TGB to near TGB or the TMGB.
  - 1. Bond the shield of shielded cable to patch panel, and bond patch panel to TGB or TMGB.

#### 3.3 IDENTIFICATION

- A. Coordinate system components, wiring, and cabling complying with TIA-606-B. Comply with requirements in Section 270553 "Identification for Electrical Systems."
- B. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- C. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 3 level of administration.
- D. Labels shall be machine printed. Type shall be 3 mm (1/8 inch) in height.

#### **END OF SECTION 271116**

# SECTION 271313 COMMUNICATIONS COPPER BACKBONE CABLING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Category 5e twisted pair cable.
  - 2. Twisted pair cable hardware, including plugs, jacks, patch panels, and cross-connects.
  - 3. Grounding provisions for twisted pair cable.
  - 4. Cabling identification.
  - 5. Source quality control requirements for twisted pair cable.

# B. Related Requirements:

1. Section 270513 "Conductors and Cables for Communications Systems" for data cabling associated with system panels and devices.

#### 1.3 DEFINITIONS

- A. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- B. EMI: Electromagnetic interference.
- C. F/FTP: Overall foil screened cable with foil screened twisted pair.
- D. FTP: Shielded twisted pair.
- E. F/UTP: Overall foil screened cable with unscreened twisted pair.
- F. IDC: Insulation displacement connector.
- G. Jack: Also commonly called an "outlet," it is the fixed, female connector.
- H. LAN: Local area network.
- I. Plug: Also commonly called a "connector," it is the removable, male telecommunications connector.
- J. RCDD: Registered Communications Distribution Designer.
- K. Screen: A metallic layer, either a foil or braid, placed around a pair or group of conductors.
- L. S/FTP: Overall braid screened cable with foil screened twisted pair.
- M. Shield: A metallic layer, either a foil or braid, placed around a pair or group of conductors.
- N. S/UTP: Overall braid screened cable with unscreened twisted pairs.
- O. UTP: Unscreened (unshielded) twisted pair.

# 1.4 COPPER BACKBONE CABLING DESCRIPTION

- A. Copper backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.
- B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

#### 1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

- B. Shop Drawings: Reviewed and stamped by RCDD.
  - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
  - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
  - 3. Cabling administration Drawings and printouts.
  - 4. Wiring diagrams to show typical wiring schematics, including the following:
    - a. Telecommunications rooms plans and elevations.
    - b. Telecommunications pathways.
    - c. Telecommunications system access points.
    - d. Telecommunications grounding system
    - e. Cross-connects.
    - f. Patch panels.
    - g. Patch cords.
  - 5. Cross-Connects and Patch Panels: Detail mounting assemblies, and show elevations and physical relationship between the installed components.
- C. Twisted pair cable testing plan.

# 1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For RCDD, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Product Certificates: For each type of product.
- D. Field quality-control reports.

#### 1.7 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For splices and connectors to include in maintenance manuals.
- B. Software and Firmware Operational Documentation:
  - 1. Software operating and upgrade manuals.
  - 2. Program Software Backup: On USB media or compact disk, complete with data files.
  - 3. Device address list.
  - 4. Printout of software application and graphic screens.

# 1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Connecting Blocks: One of each type.
  - 2. Patch-Panel Units: One of each type.
  - 3. Plugs: Ten of each type.
  - 4. Jacks: Ten of each type.

#### 1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
  - 1. Layout Responsibility: Preparation of Shop Drawings by an RCDD.
  - 2. Installation Supervision: Installation shall be under the direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.
  - 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

# 1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
  - 1. Test each pair of twisted pair cable for open and short circuits.

## 1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

#### 1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

#### **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Backbone cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.
- B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
  - 1. Flame-Spread Index: 25 or less.
  - 2. Smoke-Developed Index: 50 or less.
- C. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- D. Grounding: Comply with TIA-607-B.

#### 2.2 GENERAL CABLE CHARACTERISTICS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:
  - 1. Communications, Riser Rated: Type CMP or Type CMR in listed plenum or riser communications raceway.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
  - 1. Flame-Spread Index: 25 or less.
  - 2. Smoke-Developed Index: 50 or less.
- C. RoHS compliant.

# 2.3 HIGH-COUNT CATEGORY 5e TWISTED PAIR CABLE

- A. Description: 25-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 5e cable at frequencies up to 100 MHz.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. AMP NETCONNECT; a TE Connectivity Ltd. company.
  - 2. Belden Inc.
  - 3. CommScope, Inc.
  - 4. Hitachi Cable America Inc.
  - 5. Mohawk; a division of Belden Networking, Inc.
  - SYSTIMAX Solutions; a CommScope Inc. brand.
- C. Standard: Comply with ICEA S-90-661, NEMA WC 63.1, and TIA-568-C.2 for Category 5e cables.
- D. Conductors: 100-ohm, 24 AWG solid copper.
- E. Shielding/Screening: Unshielded balanced twisted pairs (UTP).
- F. Cable Rating: Riser.
- G. Jacket: Gray thermoplastic.

#### 2.4 TWISTED PAIR CABLE HARDWARE

- A. Description: Hardware designed to connect, splice, and terminate twisted pair copper communications cable.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. American Technology Systems Industries, Inc.
  - 2. AMP NETCONNECT; a TE Connectivity Ltd. company.

- 3. Belden CDT Networking Division/NORDX.
- 4. CommScope, Inc.
- 5. Hubbell Premise Wiring.
- 6. KRONE Incorporated.
- 7. Leviton Manufacturing Co., Inc.
- 8. Siemon Co. (The).
- C. General Requirements for Cable Connecting Hardware:
  - Twisted pair cable hardware shall meet the performance requirements of Category 5e.
  - Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
  - 3. Cables shall be terminated with connecting hardware of same category or higher.
  - 4. Source Limitations: Obtain twisted pair cable hardware from same manufacturer as twisted pair cable, from single source.
- D. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus percent spare, integral with connector bodies, including plugs and jacks where indicated.
- E. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
  - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- F. Plugs and Plug Assemblies:
  - 1. Male; eight position (8P8C); color-coded modular telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded twisted pair cable.
  - 2. Standard: Comply with TIA-568-C.2.
  - 3. Marked to indicate transmission performance.
- G. Jacks and Jack Assemblies:
  - 1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded twisted pair cable.
  - 2. Designed to snap-in to a patch panel or faceplate.
  - 3. Standard: Comply with TIA-568-C.2.
  - 4. Marked to indicate transmission performance.
- H. Patch Cords: Factory-made, four-pair cables; terminated with an eight-position modular plug at each end.
  - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
  - 2. Patch cords shall have color-coded boots for circuit identification.

#### 2.5 CABLING IDENTIFICATION

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

#### 2.6 GROUNDING

- A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with TIA-607-B.

#### 2.7 SOURCE QUALITY CONTROL

- A. Factory test cables on reels according to TIA-568-C.1.
- B. Factory test cables according to TIA-568-C.2.
- C. Cable will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

#### **PART 3 - EXECUTION**

# 3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

#### 3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays, except within consoles, cabinets, desks, and counters. Conceal raceway and cables, except in unfinished spaces.
  - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
  - 2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."
- B. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools. Install cables parallel with or at right angles to sides and back of enclosure.

#### 3.3 INSTALLATION OF PATHWAYS

- A. Comply with requirements for demarcation point, cabinets, and racks specified in Section 271100 "Communications Equipment Room Fittings."
- B. Comply with Section 270528 "Pathways for Communications Systems."
- C. Comply with Section 270529 "Hangers and Supports for Communications Systems."
- D. Comply with Section 270536 "Cable Trays for Communications Systems."
- E. Drawings indicate general arrangement of pathways and fittings.

#### 3.4 INSTALLATION OF COPPER BACKBONE CABLES

- A. Comply with NECA 1 and NECA/BICSI 568.
- B. General Requirements for Cabling:
  - 1. Comply with TIA-568-C.0, TIA-568-C.1, and TIA-568-C.2.
  - 2. Comply with BICSI's "Information Transport Systems Installation Methods Manual (ITSIMM)," Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section.
  - 3. Install 110-style IDC termination hardware unless otherwise indicated.
  - 4. Do not untwist twisted pair cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
  - 5. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
  - 6. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
  - 7. Install lacing bars to restrain cables, prevent straining connections, and prevent bending cables to smaller radii than minimums recommended by manufacturer.
  - 8. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section Use lacing bars and distribution spools.
  - 9. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation, and replace it with new cable.
  - 10. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
  - 11. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
  - 12. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Pulling and Installing Cable" Section. Monitor cable pull tensions.

- C. Open-Cable Installation:
  - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
  - 2. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- D. Group connecting hardware for cables into separate logical fields.
- E. Separation from EMI Sources:
  - 1. Comply with recommendations from BICSI's "Telecommunications Distribution Methods Manual" and TIA-569-D for separating unshielded copper communication cable from potential EMI sources, including electrical power lines and equipment.
  - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
    - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
    - Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
    - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
  - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
    - Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
    - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
    - Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
  - 4. Separation between communications cables in grounded metallic raceways, power lines, and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
    - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
    - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
    - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
  - 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
  - 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

#### 3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
  - 1. Visually inspect jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.1.
  - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
  - 3. Test cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
    - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

- D. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similarly to Table 10.1 in BICSI's "Telecommunications Distribution Methods Manual," or shall be transferred from the instrument to the computer, saved as text files, printed, and submitted.
- E. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- F. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

**END OF SECTION 271313** 

Logan City School District

#### **SECTION 271323**

#### COMMUNICATIONS OPTICAL FIBER BACKBONE CABLING

#### PART 1 - GENERAL

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. 62.5/125-micrometer, multimode, optical fiber cable (OM1).
  - 2. Optical fiber cable connecting hardware, patch panels, and cross-connects.
  - 3. Cabling identification products.

#### 1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- C. RCDD: Registered Communications Distribution Designer.

#### 1.4 OPTICAL FIBER BACKBONE CABLING DESCRIPTION

- A. Optical fiber backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.
- B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

# 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Reviewed and stamped by RCDD.
  - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
  - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
  - 3. Cabling administration drawings and printouts.
  - 4. Wiring diagrams to show typical wiring schematics including the following:
    - a. Telecommunications rooms plans and elevations.
    - b. Telecommunications pathways.
    - c. Telecommunications system access points.
    - d. Telecommunications grounding system.
    - e. Cross-connects.
    - f. Patch panels.
    - a. Patch cords.
  - 5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
- C. Optical fiber cable testing plan.

# 1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For RCDD, Installer, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Product Certificates: For each type of product.

D. Field quality-control reports.

# 1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For optical fiber cable, splices, and connectors to include in maintenance manuals.

#### 1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Patch-Panel Units: One of each type.
  - 2. Plugs: Ten of each type.
  - 3. Jacks: Ten of each type.

#### 1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
  - Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings by an RCDD.
  - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
  - 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

# 1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
  - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
  - 2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.

# 1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

# 1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

### **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Backbone cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.
- B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
  - 1. Flame-Spread Index: 25 or less.
  - 2. Smoke-Developed Index: 50 or less.
- C. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- D. Grounding: Comply with TIA-607-B.

# 2.2 62.5/125-MICROMETER, MULTIMODE, OPTICAL FIBER CABLE (OM1)

- A. Description: Multimode, 62.5/125-micrometer, 4-fiber, nonconductive, tight buffer, optical fiber cable.
- B. Subject to project requirements, provide products by one of the following manufacturers:
  - Corning Cable Systems.

#### C. Standards:

- 1. Comply with ICEA S-83-596 for mechanical properties.
- 2. Comply with TIA-568-C.3 for performance specifications.
- 3. Comply with TIA-492AAAA for detailed specifications.
- D. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
- E. Minimum Overfilled Modal Bandwidth-Length Product: 200 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

#### F. Jacket:

- 1. Jacket Color: Orange.
- 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-D.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).
- G. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
  - 1. Plenum Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit.
  - 2. Riser Rated, Nonconductive: Type OFNR or Type OFNP, complying with UL 1666.

#### 2.3 OPTICAL FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Corning Cable Systems.

#### B. Standards:

- Comply with Fiber Optic Connector Intermateability Standard (FOCIS) specifications of the TIA-604 series.
- 2. Comply with TIA-568-C.3.
- C. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
  - 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
- D. Patch Cords: Factory-made, dual-fiber cables in 36-inch (900-mm) lengths.
- E. Connector Type: Type LC complying with TIA-604-10-B, connectors.
- F. Plugs and Plug Assemblies:
  - 1. Male; color-coded modular telecommunications connector designed for termination of a single optical fiber cable.
  - 2. Insertion loss not more than 0.25 dB.
  - 3. Marked to indicate transmission performance.
- G. Jacks and Jack Assemblies:
  - 1. Female; quick-connect, simplex and duplex; fixed telecommunications connector designed for termination of a single optical fiber cable.
  - 2. Insertion loss not more than 0.25 dB.
  - 3. Marked to indicate transmission performance.
  - 4. Designed to snap-in to a patch panel or faceplate.

#### 2.4 GROUNDING

- A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with TIA-607-B.

## 2.5 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

#### 2.6 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test multimode optical fiber cables according to TIA-526-14-B and TIA-568-C.3.
- C. Factory test pre-terminated optical fiber cable assemblies according to TIA-526-14-B and TIA-568-C.3.
- D. Cable will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

#### **PART 3 - EXECUTION**

#### 3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

#### 3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
  - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
  - 2. Comply with requirements for pathways specified in Section 270528 "Pathways for Communications Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

#### 3.3 INSTALLATION OF OPTICAL FIBER BACKBONE CABLES

- A. Comply with NECA 1, NECA 301, and NECA/BICSI 568.
- B. General Requirements for Optical Fiber Cabling Installation:
  - 1. Comply with TIA-568-C.1 and TIA-568-C.3.
  - 2. Comply with BICSI ITSIMM, Ch. 6, "Cable Termination Practices."
  - 3. Terminate all cables; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
  - 4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
  - 5. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
  - 6. Bundle, lace, and train cable to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
  - 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
  - 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
  - 9. In the communications equipment room, provide a 10-foot- (3-m-) long service loop on each end of cable.
  - 10. Pulling Cable: Comply with BICSI ITSIMM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
  - 11. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

- C. Open-Cable Installation:
  - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
  - 2. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- D. Group connecting hardware for cables into separate logical fields.

#### 3.4 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with BICSI ITSIMM, "Firestopping" Chapter.

# 3.5 GROUNDING

- A. Install grounding according to BICSI ITSIMM, "Grounding (Earthing), Bonding, and Electrical Protection" Chapter.
- B. Comply with TIA-607-B and NECA/BICSI-607.
- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

#### 3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 270553 "Identification for Communications Systems."
- B. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

### 3.7 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
  - 1. Visually inspect optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.1.
  - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
  - 3. Optical Fiber Cable Tests:
    - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
    - b. Link End-to-End Attenuation Tests:
      - Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in one direction according to TIA-526-14-B, Method B, One Reference Jumper.
      - 2) Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than those calculated according to equation in TIA-568-C.1.

- D. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- E. Remove and replace cabling where test results indicate that it does not comply with specified requirements.
- F. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

**END OF SECTION 271323** 

#### **SECTION 271333**

#### COMMUNICATIONS COAXIAL BACKBONE CABLING

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Communications coaxial cable.
  - 2. Coaxial cable hardware.
  - 3. Grounding.
  - 4. Identification products.

#### 1.3 **DEFINITIONS**

- A. BICSI: Building Industry Consulting Service International.
- B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- C. EMI: Electromagnetic interference.
- D. IDC: Insulation displacement connector.
- E. LAN: Local area network.
- F. RCDD: Registered Communications Distribution Designer.

#### 1.4 COAXIAL BACKBONE CABLING DESCRIPTION

- A. Coaxial cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone crossconnection.
- B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities.

#### 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
  - Nominal OD.
  - 2. Minimum bending radius.
  - 3. Maximum pulling tension.
- B. Shop Drawings:
  - System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
  - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
  - 3. Cabling administration drawings and printouts.

#### 1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For RCDD, Installer, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Field quality-control reports.
- D. Maintenance Data: For splices and connectors to include in maintenance manuals.

#### 1.7 CLOSEOUT SUBMITTALS

- A. Software and Firmware Operational Documentation:
  - 1. Software operating and upgrade manuals.
  - 2. Program Software Backup: On USB media or online.
  - Device address list.
  - 4. Printout of software application and graphic screens.
- B. Maintenance Data: For coaxial cable, splices, and connectors to include in maintenance manuals.

#### 1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Connecting Blocks: One of each type.

#### 1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
  - Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
  - 2. Installation Supervision: Installation shall be under the direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.

# 1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
  - 1. Test each coaxial cable on the reel for continuity.

#### 1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

# 1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

#### **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard, and the requirements of TIA-568-C.4.
- B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- C. Grounding: Comply with TIA-607-B.

#### 2.2 GENERAL CABLE CHARACTERISTICS

- A. Communications Cable: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:
  - Communications, Riser Rated: Type CMP complying with UL 1685, or Type CMR complying with UL 1666 and ICEA S-103-701 in listed plenum or riser communications raceway.

#### 2.3 COMMUNICATIONS COAXIAL CABLE

- A. Description: Coaxial cable with a 75-ohm characteristic impedance designed for broadband data transmission.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Alpha Wire.
- 2. Belden CDT Networking Division/NORDX.
- 3. Coleman Cable, Inc.
- 4. CommScope, Inc.
- Draka USA.
- C. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 13, and with NFPA 70, "Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power-Limited Circuits" and "Communications Circuits" articles. Types are as follows:
  - 1. RG-11/U: UL Type CMP and CL2P.
    - a. No. 14 AWG, solid, copper-covered steel conductor.
    - b. Plenum rated. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
    - c. Gas-injected, foam-PE insulation.
    - d. Double shielded with 100 percent aluminum foil shield, 60 percent aluminum braided inner shield, and 40 percent aluminum braided outer shield.
    - e. Jacketed with sunlight-resistant, black PVC or PE.

#### 2.4 COAXIAL CABLE HARDWARE

- A. Description: Hardware designed to connect, splice, and terminate coaxial cable with a 75-ohm characteristic impedance.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Aim Electronics.
  - 2. Leviton Manufacturing Co., Inc.
  - 3. Siemon Co. (The).
- C. Coaxial-Cable Connectors: Type BNC, 75 ohms.
- D. Patch Cords: Factory-made cables; terminated with modular Type BNC connector at each end.

#### 2.5 GROUNDING

- A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with TIA-607-B.

#### 2.6 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

# 2.7 SOURCE QUALITY CONTROL

- A. Cable will be considered defective if it does not pass tests and inspections.
- B. Prepare test and inspection reports.

#### **PART 3 - EXECUTION**

#### 3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

#### 3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
  - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
  - 2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

## 3.3 INSTALLATION OF PATHWAYS

- A. Comply with requirements specified in Section 271100 "Communications Equipment Room Fittings." Comply with requirements in Section 270528 "Pathways for Communications Systems" for installation of conduits and wireways.
- B. Comply with Section 270528.29"Hangers and Supports for Communications Systems."
- C. Drawings indicate general arrangement of pathways and fittings.
- D. Comply with NFPA 70 for pull-box sizing and length of conduit and number of bends between pull points.
- E. Install manufactured conduit sweeps and long-radius elbows whenever possible.
- F. Pathway Installation in Communications Equipment Rooms:
  - 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
  - 2. Install cable trays to route cables if conduits cannot be located in these positions.
  - 3. Secure conduits to backboard when entering room from overhead.
  - 4. Extend conduits 3 inches (76 mm) above finished floor.
  - 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

# 3.4 INSTALLATION OF COAXIAL BACKBONE CABLES

- A. Comply with NECA 1 and NECA/BICSI 568.
- B. General Requirements for Cabling:
  - Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, crossconnects, and patch panels.
  - 2. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and patch panels.
  - 3. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
  - 4. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
  - 5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Use lacing bars and distribution spools.
  - 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
  - 7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
  - 8. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
  - 9. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Pulling Cable" Section. Monitor cable pull tensions.
- C. Outdoor Coaxial Cable Installation:
  - 1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.

- 2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).
- D. Group connecting hardware for cables into separate logical fields.
- E. Separation from EMI Sources:
  - Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
    - Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
    - b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 12 inches (300 mm).
    - Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).
  - 2. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
    - Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64
    - b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 6 inches (150 mm).
    - Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
  - 3. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
    - Electrical Equipment Rating Less Than 2 kVA: No requirement.
    - Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 3 inches (76 b. mm).
    - Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
  - 4. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
  - Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 5. inches (127 mm).

#### 3.5 **FIRESTOPPING**

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- В. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

#### 3.6 **GROUNDING**

- Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" A. Chapter.
- В. Comply with TIA-607-B and NECA/BICSI-607.
- C. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

#### 3.7 **IDENTIFICATION**

- Identify system components, wiring, and cabling complying with TIA-606-B. Comply with Α. requirements for identification specified in Section 270553 "Identification for Communications Systems."
- B. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA 606-B, for the following:
  - Cables use flexible vinyl or polyester that flexes as cables are bent.

#### 3.8 FIELD QUALITY CONTROL

- Α. Perform the following tests and inspections.
- Tests and Inspections: В.
  - Visually inspect coaxial jacket materials for NRTL certification markings.

- 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- 3. Test coaxial backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination.
- C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

**END OF SECTION 271333** 

# SECTION 271513 COMMUNICATIONS COPPER HORIZONTAL CABLING

# **PART 1 - GENERAL**

# 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Category 6a twisted pair cable.
  - 2. Twisted pair cable hardware, including plugs and jacks.
  - 3. Multiuser telecommunications outlet assembly.
  - 4. Cable management system.
  - 5. Cabling identification products.
  - 6. Grounding provisions for twisted pair cable.
  - 7. Source quality control requirements for twisted pair cable.
- B. Related Requirements:
  - 1. Section 270513 "Conductors and Cables for Communications Systems" for data cabling associated with system panels and devices.

# 1.3 DEFINITIONS

- Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- B. EMI: Electromagnetic interference.
- C. FTP: Shielded twisted pair.
- D. F/FTP: Overall foil screened cable with foil screened twisted pair.
- E. F/UTP: Overall foil screened cable with unscreened twisted pair.
- F. IDC: Insulation displacement connector.
- G. LAN: Local area network.
- H. Jack: Also commonly called an "outlet," it is the fixed, female connector.
- I. Plug: Also commonly called a "connector," it is the removable, male telecommunications connector.
- J. RCDD: Registered Communications Distribution Designer.
- K. Screen: A metallic layer, either a foil or braid, placed around a pair or group of conductors.
- L. Shield: A metallic layer, either a foil or braid, placed around a pair or group of conductors.
- M. S/FTP: Overall braid screened cable with foil screened twisted pair.
- N. S/UTP: Overall braid screened cable with unscreened twisted pairs.
- O. UTP: Unscreened (unshielded) twisted pair.

#### 1.4 COPPER HORIZONTAL CABLING DESCRIPTION

- A. Horizontal cable cabling system shall provide interconnections between Distributor A, Distributor B, or Distributor C, and the equipment outlet, otherwise known as "Cabling Subsystem 1," in the telecommunications cabling system structure. Cabling system consists of horizontal cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for horizontal-to-horizontal cross-connection.
  - 1. TIA-568-C.1 requires that a minimum of two equipment outlets be installed for each work area.

- 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications equipment outlet.
- 3. Bridged taps and splices shall not be installed in the horizontal cabling.
- B. A work area is approximately 100 sq. ft. (9.3 sq. m), and includes the components that extend from the equipment outlets to the station equipment.
- C. The maximum allowable horizontal cable length is 295 feet (90 m). This maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) to the workstation equipment or in the horizontal cross-connect.

# 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Reviewed and stamped by RCDD.
  - System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
  - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
  - 3. Cabling administration Drawings and printouts.
  - 4. Wiring diagrams and installation details of telecommunications equipment, to show location and layout of telecommunications equipment, including the following:
    - a. Telecommunications rooms plans and elevations.
    - b. Telecommunications pathways.
    - c. Telecommunications system access points.
    - d. Telecommunications grounding system.
    - e. Telecommunications conductor drop locations.
    - f. Typical telecommunications details.
    - g. Mechanical, electrical, and plumbing systems.
- C. Twisted pair cable testing plan.
- D. Samples: For telecommunications jacks and plugs, in specified finish, one for each type and configuration and faceplates for color selection and evaluation of technical features.

# 1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For RCDD, installation supervisor, and field inspector.
- B. Product Certificates: For each type of product.
- C. Source quality-control reports.
- D. Field quality-control reports.

# 1.7 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For splices and connectors to include in maintenance manuals.
- B. Software and Firmware Operational Documentation:
  - 1. Software operating and upgrade manuals.
  - 2. Program Software Backup: On USB media or compact disk, complete with data files.
  - 3. Device address list.
  - 4. Printout of software application and graphic screens.

#### 1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Connecting Blocks: One of each type.
  - 2. Faceplates: One of each type.
  - 3. Jacks: Ten of each type.
  - 4. Patch-Panel Units: One of each type.
  - 5. Plugs: Ten of each type.

# 1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
  - 1. Layout Responsibility: Preparation of Shop Drawings and cabling administration Drawings, cabling administration Drawings, and field testing program development by an RCDD.
  - 2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.
  - 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

# 1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
  - 1. Test each pair of twisted pair cable for open and short circuits.

#### 1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

# 1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

#### **PART 2 - PRODUCTS**

# 2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.
- B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- C. Grounding: Comply with TIA-607-B.

# 2.2 GENERAL CABLE CHARACTERISTICS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:
  - 1. Communications, Plenum Rated: Type CMP complying with UL 1685 or Type CMP in listed plenum communications raceway or Type CMP in listed cable routing assembly.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
  - Flame-Spread Index: 25 or less.
  - 2. Smoke-Developed Index: 50 or less.
- C. RoHS compliant.
- D. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Belden CDT Networking Division/NORDX.
  - 2. CommScope, Inc.
  - 3. Hitachi Cable America Inc.
  - 4. Leviton.
  - 5. Mohawk: a division of Belden Networking. Inc.
  - 6. Siemon Co. (The).
  - 7. SYSTIMAX Solutions; a CommScope Inc. brand.

# 2.3 CATEGORY 6a TWISTED PAIR CABLE

- A. Description: Four-pair, balanced-twisted pair cable, with internal spline, certified to meet transmission characteristics of Category 6a cable at frequencies up to 500MHz.
- B. Standard: Comply with TIA-568-C.2 for Category 6a cables.

- C. Conductors: 100-ohm, 23 AWG solid copper.
- D. Shielding/Screening: Screened twisted pairs (F/UTP).
- E. Cable Rating: Plenum.
- F. Jacket: Thermoplastic.
  - 1. Color per owner's cabling standards for system served.

#### 2.4 TWISTED PAIR CABLE HARDWARE

- A. Description: Hardware designed to connect, splice, and terminate twisted pair copper communications cable.
- B. General Requirements for Twisted Pair Cable Hardware:
  - 1. Comply with the performance requirements of Category 6a.
  - Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
  - 3. Cables shall be terminated with connecting hardware of same category or higher.
- C. Source Limitations: Obtain twisted pair cable hardware from same manufacturer as twisted pair cable, from single source.
- D. Connecting Blocks:
  - 1. 110-style IDC for Category 6a.
  - 2. Provide blocks for the number of cables terminated on the block, plus 50 percent spare, integral with connector bodies, including plugs and jacks where indicated.
- E. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
  - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- F. Patch Panel: Modular panels housing numbered jack units with IDC-type connectors at each jack location for permanent termination of pair groups of installed cables.
  - Features:
    - a. Universal T568A and T568B wiring labels.
    - b. Labeling areas adjacent to conductors.
    - c. Replaceable connectors.
    - d. 48 ports.
  - 2. Construction: 16-gauge steel and mountable on 19-inch (483 mm) equipment racks.
  - 3. Number of Jacks per Field: One for each four-pair cable indicated.
- G. Patch Cords: Factory-made, four-pair cables; terminated with an eight-position modular plug at each end.
  - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure performance. Patch cords shall have latch guards to protect against snagging.
  - 2. Patch cords shall have color-coded boots for circuit identification.
- H. Plugs and Plug Assemblies:
  - 1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
  - 2. Standard: Comply with TIA-568-C.2.
  - 3. Marked to indicate transmission performance.
- I. Jacks and Jack Assemblies:
  - 1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
  - 2. Designed to snap-in to a patch panel or faceplate.
  - 3. Standard: Comply with TIA-568-C.2.
  - 4. Marked to indicate transmission performance.
- J. Faceplate:
  - 1. Four port, vertical single gang faceplates designed to mount to single gang wall boxes.
  - 2. Eight port, vertical double gang faceplates designed to mount to double gang wall boxes.

- 3. Plastic Faceplate: High-impact plastic. Coordinate color with Section 262726 "Wiring Devices."
- Metal Faceplate: Stainless steel, complying with requirements in Section 262726 "Wiring Devices."
- 5. For use with snap-in jacks accommodating any combination of twisted pair, optical fiber, and coaxial work area cords.
  - a. Flush mounting jacks, positioning the cord at a 45-degree angle.

# K. Legend:

- 1. Machine printed, in the field, using adhesive-tape label.
- 2. Snap-in, clear-label covers and machine-printed paper inserts.

#### 2.5 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

#### 2.6 GROUNDING

- A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with TIA-607-B.

#### 2.7 SOURCE QUALITY CONTROL

- A. Factory test cables on reels according to TIA-568-C.1.
- B. Factory test twisted pair cables according to TIA-568-C.2.
- C. Cable will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

# **PART 3 - EXECUTION**

#### 3.1 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays, except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, attics, and gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables, except in unfinished spaces.
  - 1. Install plenum-rated cable only.
  - 2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools. Install conductors parallel with or at right angles to sides and back of enclosure.

# 3.2 INSTALLATION OF PATHWAYS

- A. Comply with requirements for demarcation point, cabinets, and racks specified in Section 271100 "Communications Equipment Room Fittings."
- B. Comply with Section 270528 "Pathways for Communications Systems."
- C. Comply with Section 270529 "Hangers and Supports for Communications Systems."
- D. Comply with Section 270536 "Cable Trays for Communications Systems."
- E. Drawings indicate general arrangement of pathways and fittings.

# 3.3 INSTALLATION OF TWISTED-PAIR HORIZONTAL CABLES

- A. Comply with NECA 1 and NECA/BICSI 568.
- B. General Requirements for Cabling:

- 1. Comply with TIA-568-C.0, TIA-568-C.1, and TIA-568-C.2.
- 2. Comply with BICSI's "Information Transport Systems Installation Methods Manual (ITSIMM), Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section.
- 3. Install 110-style IDC termination hardware unless otherwise indicated.
- 4. Do not untwist twisted pair cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- 5. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
- 6. Consolidation points may be used only for making a direct connection to equipment outlets:
  - a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
  - b. Locate consolidation points for twisted-pair cables at least 49 feet (15 m) from communications equipment room.
- 7. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 8. Install lacing bars to restrain cables, prevent straining connections, and prevent bending cables to smaller radii than minimums recommended by manufacturer.
- 9. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI Information Transport Systems Installation Methods Manual, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Use lacing bars and distribution spools.
- 10. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation, and replace it with new cable.
- 11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 12. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
- 13. Pulling Cable: Comply with BICSI Information Transport Systems Installation Methods Manual, Ch. 5, "Copper Structured Cabling Systems," "Pulling and Installing Cable" Section. Monitor cable pull tensions.

# C. Open-Cable Installation:

- 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
- 2. Suspend twisted pair cabling, not in a wireway or pathway, a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 48 inches (1225 mm) apart.
- 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- D. Group connecting hardware for cables into separate logical fields.
- E. Separation from EMI Sources:
  - 1. Comply with recommendations from BICSI's "Telecommunications Distribution Methods Manual" and TIA-569-D for separating unshielded copper communication cable from potential EMI sources, including electrical power lines and equipment.
  - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
    - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
    - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
    - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
  - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:

- Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
- Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
- Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
- 4. Separation between communications cables in grounded metallic raceways, power lines, and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
  - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
  - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
  - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

# 3.4 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with "Firestopping Systems" Article in BISCI's "Telecommunications Distribution Methods Manual."

#### 3.5 GROUNDING

- A. Install grounding according to the "Grounding, Bonding, and Electrical Protection" chapter in BICSI's "Telecommunications Distribution Methods Manual."
- B. Comply with TIA-607-B and NECA/BICSI-607.
- C. Bond metallic equipment to the grounding bus bar, using not smaller than a No. 6 AWG equipment grounding conductor.

#### 3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 270553 "Identification for Communications Systems."

# 3.7 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
  - Visually inspect jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.1.
  - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
  - 3. Test twisted pair cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
    - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

- D. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similarly to Table 10.1 in BICSI's "Telecommunications Distribution Methods Manual," or shall be transferred from the instrument to the computer, saved as text files, printed, and submitted.
- E. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- F. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

**END OF SECTION 271513** 

# **SECTION 271533**

# COMMUNICATIONS COAXIAL HORIZONTAL CABLING

# **PART 1 - GENERAL**

# 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Communications coaxial cable.
  - CATV coaxial cable.
  - 3. Coaxial cable hardware.
  - 4. Grounding.
  - 5. Identification products.

#### 1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. LAN: Local area network.
- E. RCDD: Registered Communications Distribution Designer.

# 1.4 COAXIAL HORIZONTAL CABLING DESCRIPTION

A. Coaxial horizontal cabling system shall provide interconnections between Distributor A, Distributor B, or Distributor C and the equipment outlet, otherwise known as "Cabling Subsystem 1" in the telecommunications cabling system structure. Cabling system consists of horizontal cables, mechanical terminations, and patch cords or jumpers used for horizontal-to-horizontal cross-connection.

# 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
  - 1. Nominal OD.
  - 2. Minimum bending radius.
  - 3. Maximum pulling tension.
- B. Shop Drawings:
  - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
  - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
  - 3. Cabling administration drawings and printouts.

# 1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For RCDD, Installer, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Field quality-control reports.
- D. Maintenance Data: For splices and connectors to include in maintenance manuals.

# 1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For coaxial cable, splices, and connectors to include in maintenance manuals.

# 1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
  - 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings, Cabling Administration Drawings, and field testing program development by an RCDD.
  - 2. Installation Supervision: Installation shall be under the direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.

# 1.9 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
  - 1. Test each coaxial cable on the reel for continuity.

# 1.10 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

# 1.11 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

#### **PART 2 - PRODUCTS**

# 2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard, and the requirements of TIA-568-C.4.
- B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- C. Grounding: Comply with TIA-607-B.

# 2.2 GENERAL CABLE CHARACTERISTICS

- A. Communications Cable: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:
  - 1. Communications, Plenum Rated: Type CMP complying with UL 1685 or Type CMP in listed plenum communications raceway or Type CMP in listed cable routing assembly.

#### 2.3 COMMUNICATIONS COAXIAL CABLE

- A. Description: Coaxial cable with a 75-ohm characteristic impedance designed for broadband data transmission.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - Alpha Wire.
  - 2. Belden CDT Networking Division/NORDX.
  - 3. Coleman Cable, Inc.
  - 4. CommScope, Inc.
  - Draka USA.
- C. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 13, and with NFPA 70, "Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power-Limited Circuits" and "Communications Circuits" articles. Types are as follows:
  - 1. RG-6/U: UL Type CMP and CL2P.
    - a. No. 16 AWG, solid, copper-covered steel conductor.
    - b. Plenum rated.
    - c. Gas-injected, foam-PE insulation.
    - d. Shielded with 100 percent aluminum tape and 40 percent aluminum braid.

- e. Double shielded with 100 percent aluminum foil shield, 60 percent aluminum braided inner shield, and 40 percent aluminum braided outer shield.
- f. Jacketed with white PVC or PE.
- g. Suitable for indoor installations.

#### 2.4 COAXIAL CABLE HARDWARE

- A. Description: Hardware designed to connect, splice, and terminate coaxial cable with a 75-ohm characteristic impedance.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Emerson Network Power Connectivity Solutions.
  - 2. Leviton Manufacturing Co., Inc.
  - 3. Siemon Co. (The).
- C. Coaxial-Cable Connectors: Type BNC, 75 ohms.
- D. Jacks and Jack Assemblies: Modular, color-coded, with female Type BNC connectors.
- E. Patch Cords: Factory-made cables; terminated with a male Type BNC connector at each end.
- F. Faceplates:
  - 1. Plastic Faceplate: High-impact plastic. Coordinate color with Section 262726 "Wiring Devices."
  - Metal Faceplate: Stainless steel, complying with requirements in Section 262726 "Wiring Devices."
  - 3. For use with snap-in jacks accommodating any combination of twisted pair, optical-fiber, and coaxial work area cords.
    - a. Flush-mounted jacks, positioning the cord at a 90-degree angle from faceplate surface.
  - 4. Legend:
    - a. Factory labeled by silk-screening or engraving for faceplates.
    - b. Snap-in, clear-label covers and machine-printed paper inserts.

# 2.5 GROUNDING

- A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with TIA-607-B.

# 2.6 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

#### 2.7 SOURCE QUALITY CONTROL

- A. Cable will be considered defective if it does not pass tests and inspections.
- B. Prepare test and inspection reports.

# **PART 3 - EXECUTION**

#### 3.1 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
  - 1. Install plenum-rated cable only.
  - 2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

# 3.2 INSTALLATION OF COAXIAL HORIZONTAL CABLES

- A. Comply with NECA 1 and NECA/BICSI 568.
- B. General Requirements for Cabling:
  - 1. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section.
  - 2. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and patch panels.
  - 3. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
  - 4. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
  - 5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Use lacing bars and distribution spools.
  - 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
  - 7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
  - 8. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
  - 9. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Pulling Cable" Section. Monitor cable pull tensions.

#### C. Open-Cable Installation:

- 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
- 2. Suspend coaxial cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 48 inches (1225 mm) apart.
- 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- D. Group connecting hardware for cables into separate logical fields.
- E. Separation from EMI Sources:
  - 1. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
    - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
    - b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 12 inches (300 mm).
    - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).
  - 2. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
    - Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
    - b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 6 inches (150 mm).
    - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
  - 3. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
    - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.

- b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 3 inches (76 mm).
- c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 4. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 5. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

# 3.3 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

#### 3.4 GROUNDING

- A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. Comply with TIA-607-B and NECA/BICSI-607.
- C. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

#### 3.5 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

# 3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections.
- B. Tests and Inspections:
  - 1. Visually inspect coaxial jacket materials for NRTL certification markings.
  - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
  - 3. Test coaxial horizontal copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination.
- C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

#### **END OF SECTION 271533**

Logan City School District

#### **SECTION 275123**

#### **EDUCATIONAL INTERCOMMUNICATIONS AND PROGRAM SYSTEMS**

# **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

# 1.2 SUMMARY

- A. Section includes microprocessor-switched, IP-based telephone/intercommunications and program systems with the following components:
  - 1. Administrative console.
  - 2. Call control console.
  - 3. Staff telephone stations.
  - 4. Speaker-microphone stations.
  - 5. Call-switch unit.
  - 6. All-call amplifier.
  - 7. Intercommunication amplifier.
  - 8. Paging amplifier.
  - 9. Loudspeakers/speaker microphones.
  - 10. Conductors and cables.
  - 11. Raceways.
  - 12. Local Area Network (LAN): Expansion of existing system.

#### B. Related Requirements:

- 1. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2 and 3 control cables.
- Section 271513 "Communications Horizontal Cabling" for cabling used for voice and data circuits.

#### 1.3 DEFINITIONS

- A. DHCP: Dynamic Host Configuration Protocol.
- B. FXO: Foreign eXchange Office.
- C. H.323: Audio and Video Protocol.
- D. SIP: Session Initiation Protocol.

# 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For educational intercommunications and program systems.
  - 1. Include plans, elevations, sections, and mounting details.
  - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
  - 3. Include scaled drawings for administrative console and speaker-microphone station station arrangement of built-in equipment.
  - 4. Include diagrams for power, signal, and control wiring.
    - a. Identify terminals to facilitate installation, operation, and maintenance.
    - b. Single-line diagram showing interconnection of components.
    - c. Cabling diagram showing cable routing.

# 1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Field quality-control reports.

# 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For educational intercommunications and program systems to include in operation and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
  - 1. A record of final matching transformer-tap settings and signal ground-resistance measurement certified by Installer.
  - 2. A record of Owner's equipment-programming option decisions.
  - 3. Plans, drawn to scale, indicating location, designation, and connection of intercommunications system components.
- B. Software and Firmware Operational Documentation:
  - Software operating and upgrade manuals.
  - 2. Program Software Backup: On USB media or compact disk, complete with data files.
  - Device address list.
  - 4. Printout of software application and graphic screens.

#### 1.7 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

#### 1.8 COORDINATION

A. Coordinate layout and installation of ceiling-mounted speaker microphones and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

# **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURERS

- A. Subject to the project requirements, provide products by one of the following:
  - Rauland (TCU system)

# 2.2 SYSTEM DESCRIPTION

- A. Equipment: Modular type using solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied at 110 to 130 V, 60 Hz in a satisfactory manner without the requirement of any external power conditioning equipment. Comply with UL 813.
- B. Expansion Capability: Increase number of stations in the future by 25 percent above those indicated without adding any internal or external components or main trunk cable conductors.
- C. Integration: Coordinate features and select components to form an integrated system. Match components and interconnections for optimum performance of specified functions.
- D. Local Area Network: The system will utilize a LAN for the connectivity of all devices and components within the facility for the transmission of electronic data. The LAN will be an expansion to the existing or a separate standalone structure in support of the intercommunication system as dictated by the project design documents.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for location and application.
- F. Weather-Resistant Equipment: Listed and labeled by an NRTL for duty outdoors or in damp locations.

# 2.3 FUNCTIONAL DESCRIPTION OF IP-BASED TELEPHONE/INTERCOMMUNICATION SYSTEMS

- A. Integrated central system with the following:
  - Direct-dial, full duplex private telephone communications between all locations equipped with telephones and IP-addressable speaker-microphone. Call initiation among administrative consoles and between administrative consoles and remote stations by dialing station's number on a 12-digit keypad.

- 2. 16 channels for unrestricted simultaneous communications.
- 3. Initial system operation with one administrative console and remote stations, expandable to 720 stations.
- 4. Direct-dial, two-way amplified voice intercommunication between administrative console telephones and remote stations without use of press-to-talk or talk-listen switches.
- 5. Automatic queuing for intercommunication channels, with automatic call waiting.
- 6. Call transfer among administrative consoles.
- 7. Display of selected station and answering calling station by pressing a single "response button."
- 8. Simultaneous communication with other stations on system by dialing a designated number on a 12-digit keypad.
- 9. Automatic gain control to ensure constant intercom speech level.
- 10. Simultaneous distribution of emergency announcements to all locations equipped with speakers by dialing a predetermined code number.
- 11. User-selectable facility for providing selected telephone stations with dial tone for external telephone calls.
- 12. Assignment of speaker locations within any one or more of eight zones for zone paging or time signal reception.
- 13. Digital readout displays on which up to three incoming calls are displayed with additional calls stored for subsequent display.
- 14. Off-site diagnostics to monitor system functions, operations, and faults through a serial data port on central-control station.
- 15. Control of simultaneous distribution of program material to various combinations of remote stations or groups by using keypad to control sources and distribute programs.
- 16. User-programmable features include the following:
  - a. Station calling by room number.
  - b. Room station call-in priority levels.
  - c. Audible signal schedule functions.
  - d. Schedule characteristics of audible signals.
  - e. Call-in tone characteristic.
  - f. Precedence among administrative consoles as destinations for incoming calls from room stations.
  - g. Grouping rooms and speakers into zones for paging and program distribution purposes.
- 17. Telephone interconnect shall be capable of accepting H.323, SIP, and FXO type protocols and include the following features:
  - a. Direct connection to central office trunk lines with initial system wiring for two trunk lines.
  - b. Routing of outside trunk lines for "attendant answer incoming" and "direct inward line" functions.
  - c. Station programming for access to outside trunk lines to be any of the following:
    - 1) Totally unrestricted access.
    - 2) Restricted access.
    - No access.
  - d. System programming to allow or disallow local prefixes, and to authorize access for as many as three area codes.
  - e. Discriminating ringing for identifying internal and outside calls.
  - f. Circular hunting for outside trunks to prevent excess usage of any one trunk.
  - g. Direct connection of a single trunk to designated telephone with transfer to attendant if unanswered.
  - h. Call parking allowing paged party to remotely pick up outside call from any station.
  - i. Night-answer mode to allow one or all of the following:
    - 1) Incoming call transferred to predetermined extension.
    - 2) Tone transmitted to speakers to notify key personnel to answer telephone.
    - 3) Dial tone to remote stations to allow answering call from all locations.
  - j. Call control console to perform as follows:

- Identify, answer, and route incoming outside calls, with reminder and recall features.
- 2) Directly access outside trunk lines.
- 3) Hold, park, and transfer calls.
- 4) Screen outside calls.

#### B. Remote Stations:

- Staff and Classroom Telephone Station:
  - a. Corded handset or hands-free speakerphone operation.
  - b. Capable of placing outside call.
  - c. Ability to transfer calls.
  - d. Call forwarding functions.
  - e. Paging and emergency call placement.
  - f. Speed-dial programming.
  - g. Programmable restrictive functions.
- 2. Speaker-Microphone Station:
  - a. Having privacy from remote monitoring without a warning tone signal at monitored station. Designated speaker-microphone stations have a privacy switch to prevent another station from listening and to permit incoming calls.
  - b. Communicating hands free.
  - c. Calling administrative console by actuating call switch.
  - d. Returning a busy signal to indicate that station is already in use.
- C. Speakers: Free of noise and distortion during operation and when in standby mode.

#### 2.4 CALL CONTROL CONSOLE

- A. Microprocessor-based instrument to process outside and internal calls with a 12-digit keypad selector.
- B. 20-character alphanumeric display for the following:
  - 1. Simultaneous display of up to three calling stations plus last station dialed.
  - 2. Display of calls in order received with emergency calls taking precedence on the display.
  - 3. Review of calls stored in groups of four.
  - 4. Display of prompt messages to assist in system operation.
- C. Programmable Keys: Minimum of 20 with LED indicators for ringing/busy status; programmable for trunk and operator functions.
- D. Transfer Button: Calls to busy extensions and unanswered calls automatically returned to call control console.
- E. Hold Button: With reminder feature every 30 seconds for parked calls or calls placed on hold.
- F. Release Button: For use with parked calls or calls placed on hold.
- G. Page Button: For engaging system paging functions.
- H. Programmable for night answer, remote answer, and remote pickup features.
- I. Programmable for distribution of emergency announcements, all-page announcements, zone-page announcements, and emergency/evacuation alert.
- J. Central-Control Cabinet Equipment: Central switching equipment, central office adapter module, line link modules, power supplies, chassis adapters, and other switching and control devices required for trunk and internal conversation channels and control functions.

# 2.5 STAFF AND CLASSROOM TELEPHONE STATIONS

- A. Faceplate: Stainless steel or anodized aluminum with tamperproof mounting screws.
- B. Enclosure: Galvanized steel with 2-1/2-inch (64-mm) minimum depth.
- C. 12-Digit Keypad: Input device to initiate calls and commands.
- D. Volume Control: Regulates incoming-call volume.
- E. Tone Annunciation: Momentary audible tone signal announces incoming calls.

- F. LED Annunciation: Identifies calling stations and stations in use. Lamp remains on until call is answered.
- G. Speaker Microphone: Transmits intercom voice signals when used via a voice-operated switch.
  - 1. Minimum Speaker Sensitivity: 91 dB at one meter, with 1-W input.
- H. Handset with Hook Switch: Telephone type with 18-inch- (450-mm-) long, permanently coiled cord. Arrange to disconnect speaker when handset is lifted.

# 2.6 SPEAKER-MICROPHONE STATIONS

- A. Mounting: Flush unless otherwise indicated, and suitable for mounting conditions indicated.
- B. Faceplate: Stainless steel or anodized aluminum with tamperproof mounting screws.
- C. Enclosure: Two-gang galvanized steel with 2-1/2-inch (64-mm) minimum depth.
- D. Speaker: Minimum axial sensitivity shall be 91 dB at one meter, with 1-W input. Voice coil shall be not less than 3 inches (76 mm), 2.3 oz. (65 g) minimum; permanent magnet.
- E. Tone Annunciation: Recurring momentary tone indicates incoming calls.
- F. Call Switch: Mount on faceplate. Permits calls to administrative console.
- G. Privacy Switch: Mount on faceplate. When in on position, switch prevents transmission of sound from remote station to system; when in off position, without further switch manipulation, response can be made to incoming calls.

#### 2.7 CALL-SWITCH UNIT

- A. Mounting: Flush unless otherwise indicated, and suitable for mounting conditions indicated.
- B. Faceplate: Stainless steel or anodized aluminum with tamperproof mounting screws.
- C. Enclosure: Single-gang box with stainless-steel faceplate.
- D. Call Switch: Momentary contact signals system that a call has been placed.
- E. Privacy Switch: Prevents transmission of sound signals from station to system.
- F. Volume Control: Operated by screwdriver blade through a hole in faceplate to adjust output level of associated speaker.

#### 2.8 ALL-CALL AMPLIFIER

- A. Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus an allowance for future stations.
- B. Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to quantity of stations connected in all-call mode of operation.
- C. Minimum Signal-to-Noise Ratio: 60 dB, at rated output.
- D. Frequency Response: Within plus or minus 2 dB from 50 to 12,000 Hz.
- E. Output Regulation: Maintains output level within 2 dB from full to no load.
- F. Input Sensitivity: Compatible with administrative console and central equipment so amplifier delivers full-rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on administrative console, speaker microphones, or handset transmitters.
- G. Amplifier Protection: Prevents damage from shorted or open output.

# 2.9 INTERCOMMUNICATION AMPLIFIER

- A. Minimum Output Power: 15 W; adequate for all functions.
- B. Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to one station connected to output terminals.
- C. Minimum Signal-to-Noise Ratio: 50 dB, at rated output.
- D. Frequency Response: Within plus or minus 3 dB from 70 to 10,000 Hz.
- E. Output Regulation: Maintains output level within 2 dB from full to no load.

- F. Input Sensitivity: Matched to input circuit and to provide full-rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on microphones in administrative console, speaker microphones, or handset transmitters.
- G. Amplifier Protection: Prevents damage from shorted or open output.

# 2.10 PAGING AMPLIFIER

- A. Input Voltage: 120-V ac, 60 Hz.
- B. Frequency Response: Within plus or minus 3 dB from 60 to 10,000 Hz.
- C. Minimum Signal-to-Noise Ratio: 60 dB, at rated output.
- D. Total Harmonic Distortion: Less than 3 percent at rated output power from 70 to 12,000 Hz.
- E. Output Regulation: Less than 2 dB from full to no load.
- F. Controls: On-off, input levels, and low-cut filter.
- G. Input Sensitivity: Matched to input circuit and to provide full-rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on speaker microphones or handset transmitters.
- H. Amplifier Protection: Prevents damage from shorted or open output.

# 2.11 CONE-TYPE LOUDSPEAKERS/SPEAKER MICROPHONES

- A. Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.
- B. Frequency Response: Within plus or minus 3 dB from 70 to 15,000 Hz.
- C. Minimum Dispersion Angle: 100 degrees.
- D. Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
- E. Enclosures: Steel housings or back boxes, acoustically dampened, with front face of at least 0.0478-inch (1.2-mm) steel and whole assembly rust proofed and factory primed; complete with mounting assembly and suitable for surface ceiling, flush ceiling, pendant or wall mounting; with relief of back pressure.
- F. Baffle: For flush speakers, minimum thickness of 0.032-inch (0.8-mm) aluminum with textured white finish.
- G. Size: 8 inches (200 mm) with 1-inch (25-mm) voice coil and minimum 5-oz. (140-g) ceramic magnet.

# 2.12 HORN-TYPE LOUDSPEAKERS/SPEAKER MICROPHONES

- A. Speakers shall be all-metal, weatherproof construction; complete with universal mounting brackets.
- B. Frequency Response: Within plus or minus 3 dB from 275 to 14,000 Hz.
- C. Minimum Power Rating of Driver: 15 W, continuous.
- D. Minimum Dispersion Angle: 110 degrees.
- E. Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.

#### 2.13 IP ADDRESSABLE MODULES

- A. Modules utilized for the operation of the intercommunication and paging functions.
  - 1. POE 802.3af compliant.
  - Support DHCP.
  - 3. RJ45 connectivity.
- B. Speaker Modules:
  - 1. Interface with speaker and multiple call switches.
  - 2. Capable of providing privacy function for speaker/microphone when activated.
  - 3. Rated for installation within air plenum spaces.

# 2.14 CONDUCTORS AND CABLES

- A. Conductors: Jacketed, twisted pair and twisted multipair, untinned solid copper. Sizes as recommended by system manufacturer, but no smaller than No. 22 AWG.
- B. Insulation: Thermoplastic, not less than 1/32 inch (0.8 mm) thick.
- C. Shielding: For speaker-microphone leads and elsewhere where recommended by manufacturer; No. 34 AWG, tinned, soft-copper strands formed into a braid or equivalent foil.
  - 1. Minimum Shielding Coverage on Conductors: 60 percent.
- D. Plenum Cable: Listed and labeled for plenum installation.

# 2.15 RACEWAYS

- A. Educational Intercommunication and Program System Raceways and Boxes: Comply with requirements in Section 270528 "Pathways for Communications Systems."
- B. Educational Intercommunication and Program System Raceways and Boxes: Comply with requirements for electrical branch circuits specified in Section 270528 "Pathways for Communications Systems."
- C. Flexible metal conduit is prohibited.

#### **PART 3 - EXECUTION**

#### 3.1 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters, and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
  - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
  - 2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

#### 3.2 INSTALLATION OF RACEWAYS

- A. Comply with requirements in Section 270528 "Pathways for Communications Systems" for installation of conduits and wireways.
- B. Install manufactured conduit sweeps and long-radius elbows whenever possible.

#### 3.3 INSTALLATION OF CABLES

- A. Comply with NECA 1.
- B. General Requirements:
  - Terminate conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
  - 2. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
  - 3. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
  - 4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
  - 5. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.

# C. Open-Cable Installation:

- 1. Install cabling with horizontal and vertical cable guides in telecommunication spaces with terminating hardware and interconnection equipment.
- 2. Suspend cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceiling by cable supports not more than 60 inches (1524 mm) apart.
- 3. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- D. Separation of Wires: Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches (300 mm) apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

#### 3.4 INSTALLATION

- A. Match input and output impedances and signal levels at signal interfaces. Provide matching networks where required.
- B. Identification of Conductors and Cables: Color-code conductors and apply wire and cable marking tape to designate wires and cables so they identify media in coordination with system wiring diagrams.
- C. Weatherproof Equipment: For units that are mounted outdoors, in damp locations, or where exposed to weather, install consistent with requirements of weatherproof rating.
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- E. Mounting of Stations: Surface mount at 54 inches (137.2 cm) above finished floor to center of station unless otherwise indicated.

# 3.5 GROUNDING

- A. Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.
- C. Install grounding electrodes as specified in Section 270526 "Grounding and Bonding for Communications Systems."

# 3.6 SYSTEM PROGRAMMING

A. Programming: Fully brief Owner on available programming options. Record Owner's decisions and set up initial system program. Prepare a written record of decisions, implementation methodology, and final results.

#### 3.7 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative:
- C. Tests and Inspections:
  - 1. Schedule tests with at least seven days' advance notice of test performance.
  - 2. After installing educational intercommunications and program systems and after electrical circuitry has been energized, test for compliance with requirements.
  - 3. Operational Test: Test originating station-to-station, all-call, and page messages at each intercommunication station. Verify proper routing and volume levels and that system is free of noise and distortion. Test each available message path from each station on system.

- 4. Frequency Response Test: Determine frequency response of two transmission paths, including all-call and paging, by transmitting and recording audio tones. Minimum acceptable performance is within 3 dB from 150 to 2500 Hz.
- 5. Signal-to-Noise Ratio Test: Measure signal-to-noise ratio of complete system at normal gain settings as follows:
  - a. Disconnect speaker microphone and replace it in the circuit with a signal generator using a 1000-Hz signal. Measure signal-to-noise ratio at paging speakers.
  - b. Repeat test for three speaker microphones, and one administrative console microphone, and for each separately controlled zone of paging loudspeakers.
  - Minimum acceptable ratio is 45 dB.
- 6. Distortion Test: Measure distortion at normal gain settings and rated power. Feed signals at frequencies of 150, 200, 400, 1000, and 2500 Hz into each intercom, paging, and all-call amplifier. For each frequency, measure distortion in the paging and all-call amplifier outputs. Maximum acceptable distortion at any frequency is 5 percent total harmonics.
- 7. Acoustic Coverage Test: Feed pink noise into system using octaves centered at 500 and 4000 Hz. Use sound-level meter with octave-band filters to measure level at five locations in each paging zone. Maximum permissible variation in level is plus or minus 3 dB; in levels between adjacent zones, plus or minus 5 dB.
- 8. Power Output Test: Measure electrical power output of each paging amplifier at normal gain settings of 150, 1000, and 2500 Hz. Maximum variation in power output at these frequencies is plus or minus 3 dB.
- Signal Ground Test: Measure and report ground resistance at system signal ground. Comply with testing requirements in Section 270526 "Grounding and Bonding for Communications Systems."
- D. Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified. Prepare a list of final tap settings of paging and independent room speaker-line matching transformers.
- E. Educational intercommunications and program systems will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

# 3.8 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service and initial system programming.
  - 1. Verify that electrical wiring installation complies with manufacturer's submittal and installation requirements.
  - 2. Complete installation and startup checks according to manufacturer's written instructions.

# 3.9 ADJUSTING

- A. On-Site Assistance: Engage a factory-authorized service representative to provide on-site assistance in adjusting sound levels, resetting transformer taps, and adjusting controls to meet occupancy conditions.
- B. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

# 3.10 DEMONSTRATION

- A. Train Owner's maintenance personnel to adjust, operate, and maintain the educational intercommunications and program systems.
  - 1. Train Owner's maintenance personnel on programming equipment for starting up and shutting down, troubleshooting, servicing, and maintaining the system and equipment.

#### **END OF SECTION 275123**

Logan City School District

# SECTION 275313 CLOCK SYSTEMS

# **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

# 1.2 SUMMARY

- A. Section Includes:
  - 1. Master clock and program control unit.
  - 2. Secondary indicating clocks.
  - 3. Program signal devices.
  - 4. Clock circuit power boosters.
  - 5. Interface with intercom system.
  - 6. System wire and cable.

# 1.3 DEFINITIONS

- A. NIST: The National Institute of Science and Technology.
- B. PC: Personal computer.
- C. UTC: Universal time coordinated. The precisely measured time at zero degrees longitude; a worldwide standard for time synchronization.

# 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes (including available colors) for each product indicated and describe features and operating sequences, both automatic and manual, for the following:
  - 1. Master unit.
  - 2. Indicating clocks.
  - 3. Signal equipment.
  - 4. Equipment enclosures and back boxes.
  - Accessory components.
- B. Shop Drawings: For clock systems. Include plans, elevations, sections, details, and attachments to other work.
  - 1. Wiring Diagrams: For power, signal, and control wiring and correction circuits.
    - Identify terminals and wiring color codes to facilitate installation, operation, and maintenance.
    - b. Indicate recommended wire types and sizes, and circuiting arrangements for field-installed system wiring. Show protection from overcurrent, static discharge, and voltage surge.
  - 2. Details of seismic restraints including mounting, anchoring, and fastening devices for the following system components:
    - a. Surface-mounted and semirecessed secondary indicating clocks.
    - b. Master clock enclosures.
    - Clock circuit power boosters.
  - 3. Details of seismic strengthening of master clock enclosures.
  - 4. Dimensioned Outline Drawings of the Mounting Rack for the Master Clock: Show internal seismic bracing, and locate center of gravity of fully equipped and assembled unit. Locate and describe mounting and anchorage provisions.
- C. Samples for Initial Selection:
  - 1. Manufacturer's color photographs or color chips showing the full range of colors available for clocks, signal equipment, and control panels.

# 1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Data: Certificates, for the master clock, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.

# 1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For clock and program control to include in emergency, operation, and maintenance manuals.

# 1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

# **PART 2 - PRODUCTS**

#### 2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Master clock and housing shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

# 2.2 MASTER AND SECONDARY CLOCK SYSTEM

- A. Subject to the project requirements, provide products by one of the following:
  - Rauland (TCU system)
- B. System Functions and Features:
  - Supply power to remote indicating clocks except those indicated to have correction signals applied through a data circuit.
  - 2. Maintain correct synchronized time and transmit time-correction signals over dedicated system wiring from a master clock to any type(s) of secondary indicating clocks, including the following:
    - a. Analog Synchronous Clocks: Correct for minute- and second-hand synchronization at least once each hour and for hour-hand synchronization at least once each day.
  - 3. Initiate and execute programs for scheduled automatic operation of remote devices. Include audible signal devices and visual signal devices and on and off switching of equipment and circuits.
  - 4. Provide for manual control of programmed signal and equipment-switching circuits.
  - 5. Communicate with remote PC for access to UTC time base and to permit programming from remote location.
  - 6. Maintain system access security with a minimum of three levels of user-access control to restrict use of system controls to authorized personnel. Levels of access apply to both local access and access from a remote computer. Access to user programming and control functions is accomplished by entering a minimum three-digit code. Access levels include the following:
    - a. Access to review existing programs only.
    - b. Access to normal system operating controls.
    - c. Access to all user-programming and control functions.
  - 7. Regulate system timing functions using power-line frequency, backed up for power outages by an internal battery-powered, crystal-controlled oscillator.

- 8. Regulate system timing functions using power-line frequency, backed up for power outages by an internal battery-powered, crystal-controlled oscillator, and automated periodic reference to NIST or UTC time signals via internal modem and network or microcomputer Internet access. Reference time signals shall be automatically accessed at programmable intervals.
- 9. Provide for programming multiple independent event schedules into memory and running them simultaneously for different output circuits.
  - a. Quantity of Programmable Schedules: 18, minimum.
  - b. Number of Weekly Events That Can Be Programmed for Each Schedule: 128, minimum.
  - c. Simultaneous operation of independent schedules shall be limited only by the number of signal-device and equipment-switching output circuits.
  - d. Advance Programming for Automatic Holiday Schedule Changes: Number of schedule changes that can be programmed to suit holidays and vacations shall be 50, and each change may be programmed up to a year in advance to occur on any day of the calendar year.
- 10. Automatically check functioning of LEDs, switches, input keys, central processor, readonly memory, random access memory, and output circuits. A display on the control panel or a remote computer with the proper access code shall indicate failure by identifying faulty component or circuit and shall recommend corrective action.
- 11. Provide programming for automatic daylight savings time correction.
- 12. Provide for adjustments to master clock output signals. Duration of momentary signal shall be individually programmable for each signal and equipment-control output circuit from 1 to 99 seconds. Signals shall be programmable for either on or off switching to suit equipment-operation scheduling.

# 2.3 MASTER CLOCK

- A. Description: Microprocessor-based, software-controlled unit complying with Class A device requirements in 47 CFR 15.
  - 1. Programming and control switches.
  - 2. Informational Display: LED or backlit LCD type.
    - a. Normally shows current time, date, and day of week display.
    - b. Provides programming cues when system is being programmed.
  - 3. Output Circuits for Power and Correction of Secondary Indicating Clocks:
    - Wired Synchronous Clock Power-and-Correction Circuits: For analog clocks; a minimum of two required. Relay controlled.
    - b. Wired Synchronous Digital Clock Power-and-Correction Circuits: One required.
  - 4. Data Output Port for Digital Secondary Clock Correction Circuit: RS485 or similar circuit for scheduled periodic correction signals.
  - 5. Modem and PC interface software suitable for remote programming and automatic NIST or UTC synchronization.
  - 6. Circuits for Audible and Visual Signal Devices: Relay controlled, manually switchable, using controls on the master clock. Rated 120-V ac, five A minimum. A minimum of four circuits.
  - 7. Circuits for Programmable Switching of Remote Equipment and Circuits: Relay controlled, manually switchable, using controls on the master clock. Rated 120-V ac, 5 A minimum. A minimum of six circuits.
  - 8. Power Supplies: Capacity for internal loads and power-and correction circuits of connected clocks.
  - 9. Enclosure: Metal cabinet with locking front panel. When cabinet is locked, display indication shall be visible on or through front panel face. Arrange cabinet for surface, semirecessed, or flush mounting as indicated.
  - 10. Housing: Rack-mounting metal enclosure with display indication visible on front panel face.
    - a. Reinforce mounting and attachment capable of resisting seismic forces described in Section 270548.16 "Seismic Controls for Communications Systems."

- 11. Battery Backup for Time Base: Lithium battery to maintain the timekeeping function and retain the programs in memory during outage of normal ac power supply for up to 10 years.
- 12. Electrostatic Discharge Resistance: Master clock shall be tested and certified according to IEC 61000-4-2 in both human-discharge and direct-injection modes.

# 2.4 PROGRAM SIGNAL DEVICES

- A. Bells: Heavy-duty, modular, vibrating type with the following sound-output ratings measured at 10 feet (3 m):
  - 1. 4-Inch (100-mm) Bell: 90 dB.
  - 2. 6-Inch (150-mm) Bell: 95 dB.
  - 3. 10-Inch (250-mm) Bell: 104 dB.
- B. Clock Buzzers: Adjustable output signal device designed for mounting within clock housing or outlet box.
  - 1. Sound-Output Rating Measured at 3 Feet (1 m): 75 dB.
  - Audible Tone Frequency: Manufacturer's standard between 120 Hz and 2 kHz.
- C. Horns: Modular, adjustable-output, vibrating type with minimum full-intensity-rated sound output of 103 dB measured at 10 feet (3 m).
- D. Loudspeakers for Audible Tones: See Section 275116 "Public Address and Mass Notification Systems."
- E. Combination Audible and Visible Signal Devices: Factory-integrated horn and strobe light in a single mounting assembly.
- F. Outdoor Signal Equipment: Weatherproof models listed for outdoor use.
- G. Mounting Arrangement for Signal Devices: Designed for attachment with screws on the mounting plate of a flush-mounted back box unless otherwise indicated.
- H. Enclosures for Flush-Mounting Bells and Horns: Enclosure, mounting plate, and grille assembly shall be furnished by device manufacturer to match features of the device to be mounted. Enclosure shall be recessed in wall, completely enclosing the device, with grille mounting over the open side of the enclosure and flush with the wall.
- I. Connection Provision for Signal-Indicating Devices: Wire pigtail or compression splice.

# 2.5 BACK BOXES FOR SECONDARY INDICATING CLOCKS AND PROGRAM DEVICES

A. Description: Box and cover-plate assembly shall be furnished by device manufacturer and be suitable for device to be mounted. Back boxes shall be equipped with knockouts and hanger straps or mounting adapters arranged for flush mounting the device unless otherwise indicated.

# 2.6 CONDUCTORS AND CABLES

- A. Conductors: Jacketed, twisted pair and twisted multipair, untinned solid copper. Sizes as recommended by system manufacturer, but not smaller than No. 22 AWG. Voltage drop for signal, control, and clock correction circuits shall not exceed 10 percent under peak load conditions.
- B. 120-V AC and Class 1 Signal and Control Circuits: Stranded, single conductors of size and type recommended by system manufacturer. Materials and installation requirements are specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 2 and Class 3 Signal and Control Circuits: Single conductor or twisted-pair cable, unshielded, unless manufacturer recommends shielded cable. Materials and installation requirements are specified in Section 260523 "Control-Voltage Electrical Power Conductors and Cables."
- D. Data Circuits: Category 6A minimum, unshielded, twisted-pair cable, unless manufacturer recommends shielded cable.
- E. Insulation: Thermoplastic, not less than 1/32 inch (0.8 mm) thick.
- F. Plenum Cable: Listed and labeled for plenum installation.

- G. Conductor Color-Coding: Uniformly identified and coordinated with wiring diagrams.
- H. Shielding: For speaker-microphone leads and at other locations recommended by manufacturer; No. 34 AWG tinned, soft-copper strands formed into a braid or equivalent foil.
  - 1. Minimum Shielding Coverage on Conductors: 60 percent.

# 2.7 PATHWAYS

- A. Intercommunication and Program System Raceways and Boxes: Comply with requirements in Section 270528 "Pathways for Communications Systems."
- B. Flexible metal conduit is prohibited.

# **PART 3 - EXECUTION**

#### 3.1 INSTALLATION

A. Mount system components with fastening methods and devices designed to resist the seismic forces indicated in Section 270548.16 "Seismic Controls for Communications Systems."

#### 3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
  - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
  - 2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
- D. Support cables not enclosed in raceways on J-Hooks. Install, size, and space J-Hooks to comply with TIA-568-C.

# 3.3 ELECTRICAL CONNECTIONS

- A. Make splices, taps, and terminations on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- B. Use splices for connections to clocks and signal devices.
- C. Ground clocks, programming equipment, and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

# 3.4 IDENTIFICATION

- A. Comply with Section 270553 "Identification for Communications Systems."
- B. Color-code wires, and apply wire and cable marking tape to designate wires and cables so they are uniformly identified and coordinated with wiring diagrams throughout the system.

# 3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installation, including connections.
- B. Perform tests and inspections.
  - Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:

- 1. Perform operational-system tests to verify compliance with the Specifications and make adjustments to bring system into compliance. Include operation of all modes of clock correction and all programming and manually programmed signal and relay operating functions.
- 2. Verify that units and controls are properly labeled and interconnecting wires and terminals are identified.
- D. Clock system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

# 3.6 ADJUSTING

- A. Program system according to Owner's requirements. Set system so signal devices operate on Owner-required schedules and are activated for durations selected by Owner. Program equipment-control output circuits to suit Owner's operating schedule for equipment controlled.
- B. Adjust sound-output level of adjustable signal devices to suit Owner's requirements.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

#### 3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain clock-and-program-control system components.

# **END OF SECTION 275313**

# **DIVISION 28 - ELECTRONIC SAFETY AND SECURITY**

| 280500 | COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY   |
|--------|----------------------------------------------------------|
| 280513 | CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY |
| 280528 | PATHWAYS FOR ELECTRONIC SAFETY AND SECURITY              |
| 281300 | ACCESS CONTROL                                           |
| 284621 | ADDRESSABLE FIRE-ALARM SYSTEMS                           |

# **END OF TABLE OF CONTENTS**

Logan City School District

# **SECTION 280500**

# COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

# 1.2 SUMMARY

- A. Section Includes:
  - 1. Electronic safety and security equipment coordination and installation.
  - 2. Sleeves for raceways and cables.
  - Sleeve seals.
  - 4. Grout.
  - 5. Common electronic safety and security installation requirements.

#### 1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

#### 1.4 COORDINATION

- Coordinate arrangement, mounting, and support of electronic safety and security equipment:
  - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
  - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
  - 3. To allow right of way for piping and conduit installed at required slope.
  - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."."

#### **PART 2 - PRODUCTS**

#### 2.1 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel.
  - Minimum Metal Thickness:
    - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
    - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

#### 2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between

sleeve and raceway or cable.

- 1. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
- 2. Pressure Plates: Carbon steel or Stainless steel. Include two for each sealing element.
- 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

#### 2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

# **PART 3 - EXECUTION**

# 3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

#### 3.2 SLEEVE INSTALLATION FOR ELECTRONIC SAFETY AND SECURITY PENETRATIONS

- A. Electronic safety and security penetrations occur when raceways, pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- E. Cut sleeves to length for mounting flush with both surfaces of walls.
- F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
  - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."
- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel or cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

# 3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

#### 3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

**END OF SECTION 280500** 

Logan City School District

#### **SECTION 280513**

## CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

## **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. UTP cabling.
  - 2. Coaxial cabling.
  - 3. RS-232 cabling.
  - 4. RS-485 cabling.
  - 5. Control-voltage cabling.
  - 6. Control-circuit conductors.
  - 7. Fire alarm wire and cable.
  - 8. Identification products.

#### 1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. IDC: Insulation displacement connector.
- C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- D. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- E. RCDD: Registered Communications Distribution Designer.

## 1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordinate layout and installation of electronic safety and security cabling with Owner's telecommunications and LAN equipment and service suppliers.
- B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

## 1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
  - 1. Installation data for UTP and optical-fiber cables as specified in TIA 569-C-1.
  - 2. For coaxial cable, include the following installation data for each type used:
    - a. Nominal OD.
    - b. Minimum bending radius.
    - c. Maximum pulling tension.

## B. Shop Drawings:

- 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
- 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
- 3. Cabling administration drawings and printouts.
- 4. Wiring diagrams to show typical wiring schematics, including the following:
  - a. Cross-connects.
  - b. Patch panels.
  - c. Patch cords.
- 5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

## 1.6 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
  - 1. Test each pair of UTP cable for open and short circuits.

## **PART 2 - PRODUCTS**

## 2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
  - 1. Flame-Spread Index: 25 or less.
  - 2. Smoke-Developed Index: 50 or less.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

## 2.2 UTP CABLE

A. Comply with Division 27 "Communications Horizontal Cabling"

#### 2.3 UTP CABLE HARDWARE

A. Comply with Division 27 "Communications Horizontal Cabling"

#### 2.4 COAXIAL CABLE

A. Comply with Division 27 "Communications Coaxial Horizontal Cabling"

## 2.5 COAXIAL-CABLE HARDWARE

A. Comply with Division 27 "Communications Coaxial Horizontal Cabling"

#### 2.6 RS-232 CABLE

- A. Plenum-Rated Cable: NFPA 70, Type CMP.
  - 1. Nine, No. 22 AWG, stranded (7x30) tinned copper conductors.
  - 2. PE insulation.
  - 3. Aluminum foil-polyester tape shield with 100 percent shield coverage.
  - 4. Fluorinated ethylene propylene jacket.
  - Conductors are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
  - 6. Flame Resistance: Comply with NFPA 262.

## 2.7 RS-485 CABLE

- A. Plenum-Rated Cable: NFPA 70, Type CMP.
  - 1. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
  - 2. Fluorinated ethylene propylene insulation.
  - 3. Unshielded
  - 4. Fluorinated ethylene propylene jacket.
  - Flame Resistance: NFPA 262, Flame Test.

## 2.8 CONTROL-VOLTAGE CABLE

- A. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
  - 1. One pair, twisted, No. 16 AWG, stranded (19x29) and No. 18 AWG, stranded (19x30) tinned copper conductors.
  - 2. PVC insulation.
  - 3. Unshielded.
  - 4. PVC jacket.
  - Flame Resistance: Comply with NFPA 262.

## 2.9 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in pathway XLP/PVC tray cable, complying with UL 83, in cable tray.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, complying with UL 83, in pathway.

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF in pathway, complying with UL 83.

## 2.10 IDENTIFICATION PRODUCTS

- A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- B. Comply with requirements in Section 260553 "Identification for Electrical Systems."

## **PART 3 - EXECUTION**

## 3.1 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for installation of supports for cables.

#### 3.2 WIRING METHOD

- A. Install wiring in metal pathways and wireways.
  - 1. Minimum conduit size shall be 3/4 inch (21 mm). Control and data-transmission wiring shall not share conduits with other building wiring systems.
  - 2. Comply with requirements in Section 280528 "Pathways for Electronic Safety and Security."
  - 3. Comply with requirements in Section 270536 "Cable Trays for Communications Systems."
- B. Install cable, concealed in accessible ceilings, walls, and floors when possible.
- C. Wiring on Racks and within Enclosures:
  - 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM's "Cabling Termination Practices" chapter. Cable ties shall not be excessively tightened such that the transmission characteristics of the cable are altered.
  - 2. Install lacing bars and distribution spools.
  - 3. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer.
  - 4. Install conductors parallel with or at right angles to sides and back of enclosure.
  - 5. Connect conductors associated with intrusion system that are terminated, spliced, or interrupted in any enclosure onto terminal blocks.
  - 6. Mark each terminal according to system's wiring diagrams.
  - 7. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

## 3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1 and NFPA 70.
- B. Conductors: Size according to system manufacturer's written instructions unless otherwise indicated.
- C. Do not install conductors and cables that are wet, moisture damaged, or mold damaged.
- D. Install UTP, optical-fiber, and coaxial cables and connecting materials after spaces are complete and dry, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
- E. General Requirements for Cabling:
  - 1. Comply with TIA-568-C.1.
  - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
  - 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels. Leave a minimum of 6 inches (150 mm) of slack at outlet terminations and coil loosely into box after termination on outlet fitting.

- 4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 5. Maintain minimum cable bending radius during installation and termination of cables.
- 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 8. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions. Do not exceed manufacturer's rated cable-pulling tension.
- 9. Riser Cable: Riser cable support intervals shall be in accordance with manufacturer's recommendations.
- Comply with Section 280544 "Sleeves and Sleeve Seals for Electronic Safety and Security Pathways and Cabling."

## F. Open-Cable Installation:

- 1. Install cabling with horizontal and vertical cable guides in telecommunication spaces with terminating hardware and interconnection equipment.
- 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1525 mm) apart. Cable supports shall be fastened to structural members or floor slabs in accordance with Section 260529 "Hangers and Supports for Electrical Systems."
- 3. Cable shall not be run in contact with pipes, ducts, or other potentially damaging items. Cables shall not be run through structural members or use structural members, pipes, ducts, or equipment as a support.

## G. Separation from EMI Sources:

- 1. Comply with BICSI TDMM and TIA-569-C recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
- 2. Separation between open communication cables or cables in nonmetallic pathways and unshielded power conductors and electrical equipment shall be as follows:
  - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
  - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
  - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
- 3. Separation between communication cables in grounded metallic pathways and unshielded power lines or electrical equipment shall be as follows:
  - Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
  - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
  - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
- 4. Separation between cables in grounded metallic pathways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
  - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
  - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
  - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or hp and Larger: A minimum of 48 inches (1200 mm).
- 6. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

# 3.4 POWER AND CONTROL-CIRCUIT CONDUCTORS

A. 120-V Power Wiring: Install according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables" unless otherwise indicated.

- B. Minimum Conductor Sizes:
  - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
  - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
  - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

#### 3.5 CONNECTIONS

- A. Comply with requirements in Section 281300 "Access Control" for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Section 282300 "Video Surveillance" for connecting, terminating, and identifying wires and cables.

## 3.6 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-C, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

## 3.7 GROUNDING

- A. For communication wiring, comply with J-STD-607-A and with BICSI TDMM's "Grounding, Bonding, and Electrical Protection" chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Section 280526 "Grounding and Bonding for Electronic Safety and Security."

#### 3.8 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

## 3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
  - 1. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- B. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- C. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

## **END OF SECTION 280513**

Logan City School District

#### **SECTION 280528**

#### PATHWAYS FOR ELECTRONIC SAFETY AND SECURITY

#### **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

#### 1.2 SUMMARY

- A. Section Includes:
  - 1. Metal conduits, tubing, and fittings.
  - 2. Boxes, enclosures, and cabinets.
- B. Related Requirements:
  - 1. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wireways, surface raceways, boxes, enclosures, cabinets, handholes, and faceplate adapters serving electrical systems.
  - 2. Section 270528 "Pathways for Communications Systems" for conduits, surface pathways, innerduct, boxes, and faceplate adapters serving communications systems.

#### 1.3 DEFINITIONS

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid steel conduit.
- C. IMC: Intermediate metal conduit.

## **PART 2 - PRODUCTS**

## 2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. General Requirements for Metal Conduits and Fittings:
  - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
  - 2. Comply with TIA-569-B.
- B. GRC: Comply with ANSI C80.1 and UL 6.
- C. EMT: Comply with ANSI C80.3 and UL 797.
- D. FMC: Comply with UL 1; zinc-coated steel.
- E. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
  - 1. Fittings for EMT:
    - a. Material: Steel.
    - b. Type: Setscrew or compression.
  - 2. Expansion Fittings: PVC or steel to match conduit type, complying with UL 467, rated for environmental conditions where installed, and including flexible external bonding jumper.
  - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
- F. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

## 2.2 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets:
  - 1. Comply with TIA-569-B.
  - 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations
- B. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

- C. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- E. Device Box Dimensions: 4-inches square by 2-1/8 inches deep (100 mm square by 60 mm deep).
- F. Gangable boxes are prohibited.
- G. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250 Type as required by installed location with continuous-hinge cover with flush latch unless otherwise indicated.
  - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
  - 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

#### H. Cabinets:

- NEMA 250, Type as required by installed location, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.

#### **PART 3 - EXECUTION**

#### 3.1 PATHWAY APPLICATION

- A. Indoors: Apply pathway products as specified below unless otherwise indicated:
  - 1. Exposed, Not Subject to Physical Damage: EMT.
  - 2. Exposed and Subject to Physical Damage: GRC. Pathway locations include the following:
    - a. Mechanical rooms.
    - b. Gymnasiums
  - 3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
  - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric-Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
  - 5. Damp or Wet Locations: GRC.
  - 6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- B. Minimum Pathway Size: 1/2-inch (16-mm) trade size. Minimum size for optical-fiber cables is 1 inch (27 mm).
- C. Pathway Fittings: Compatible with pathways and suitable for use and location.
- D. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- E. Install surface pathways only where indicated on Drawings.
- F. Do not install nonmetallic conduit.

## 3.2 INSTALLATION

- A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.
- B. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal pathway runs above water and steam piping.
- C. Complete pathway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications wiring conduits for which only two 90-degree bends are allowed. Support within 12 inches (300 mm) of changes in direction.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- H. Support conduit within 12 inches (300 mm) of enclosures to which attached.
- Stub-ups to Above Recessed Ceilings:
  - 1. Use EMT for pathways.
  - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.
- K. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.
- L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.
- M. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to conduit assembly to assure a continuous ground path.
- O. Cut conduit perpendicular to the length. For conduits of 2-inch (53-mm) trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.
- P. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.
- Q. Surface Pathways:
  - Install surface pathway for surface electrical outlet boxes only where indicated on Drawings.
  - 2. Install surface pathway with a minimum 2-inch (50-mm) radius control at bend points.
  - 3. Secure surface pathway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight pathway section. Support surface pathway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- R. Expansion-Joint Fittings:
  - 1. Install in each run of aboveground EMT that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground EMT conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
  - 2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
  - 3. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

- 4. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- S. Flexible Conduit Connections: Comply with NEMA RV 3. Use maximum of 72 inches (1830 mm) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
  - 1. Use LFMC in damp or wet locations.
- T. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to top of box unless otherwise indicated.
- U. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- V. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- W. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- X. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

# 3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRONIC SAFETY AND SECURITY PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electronic Safety and Security Pathways and Cabling."

## 3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

# 3.5 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
  - Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
  - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

## **END OF SECTION 280528**

# SECTION 281300 ACCESS CONTROL

## **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section Includes:
  - 1. Security access central-control station.
  - 2. One or more security access networked workstations.
  - 3. Security access operating system and application software.
  - Security access controllers connected to high-speed electronic-data transmission network.

#### 1.3 DEFINITIONS

- A. CCTV: Closed-circuit television.
- B. CPU: Central processing unit.
- C. Credential: Data assigned to an entity and used to identify that entity.
- D. dpi: Dots per inch.
- E. DTS: Digital Termination Service. A microwave-based, line-of-sight communication provided directly to the end user.
- F. GFI: Ground fault interrupter.
- G. Identifier: A credential card; keypad personal identification number; or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- H. I/O: Input/Output.
- I. LAN: Local area network.
- J. Location: A Location on the network having a PC-to-controller communications link, with additional controllers at the Location connected to the PC-to-controller link with a TIA 485-A communications loop. Where this term is presented with an initial capital letter, this definition applies.
- K. PC: Personal computer. Applies to the central station, workstations, and file servers.
- L. PCI Bus: Peripheral Component Interconnect. A peripheral bus providing a high-speed data path between the CPU and the peripheral devices such as a monitor, disk drive, or network.
- M. PDF: Portable Document Format. The file format used by the Acrobat document-exchange-system software from Adobe.
- N. RAS: Remote access services.
- O. RF: Radio frequency.
- P. ROM: Read-only memory. ROM data are maintained through losses of power.
- Q. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- R. TWAIN: Technology without an Interesting Name. A programming interface that lets a graphics application, such as an image editing program or desktop publishing program, activate a scanner, frame grabber, or other image-capturing device.
- S. UPS: Uninterruptible power supply.
- T. USB: Universal serial bus.

- U. WAN: Wide area network.
- V. WAV: The digital audio format used in Microsoft Windows.
- W. WMP: Windows media player.
- X. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.
- Y. Windows: Operating system by Microsoft Corporation.
- Z. Workstation: A PC with software that is configured for specific, limited security-system functions.
- AA. WYSIWYG: What You See Is What You Get. Text and graphics appear on the screen the same as they will in print.

## 1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Reference each product to a location on Drawings. Test and evaluation data presented in Product Data shall comply with SIA BIO-01.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
  - 1. Diagrams for cable management system.
  - 2. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
  - 3. Wiring Diagrams. For power, signal, and control wiring. Show typical wiring schematics including the following:
    - a. Workstation outlets, jacks, and jack assemblies.
    - b. Patch cords.
    - c. Patch panels.
    - Cable Administration Drawings: As specified in "Identification" Article.
  - 5. Battery and charger calculations for central station, workstations, and controllers.
- C. Product Schedules

4.

D. Samples: For workstation outlets, jacks, jack assemblies, and faceplates. For each exposed product and for each color and texture specified.

#### 1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

#### 1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For security system to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
  - 1. Microsoft Windows software documentation.
  - 2. PC installation and operating documentation, manuals, and software for the PC and all installed peripherals. Software shall include system restore, emergency boot diskettes, and drivers for all installed hardware. Provide separately for each PC.
  - 3. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files on CD-ROM of the hard-copy submittal.
  - 4. System installation and setup guides with data forms to plan and record options and setup decisions.

## 1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Alarm Printer Black/Red Ribbons: Package of 12.
  - 2. Laser Printers: Three toner cassettes and one replacement drum unit.
  - 3. Credential card blanks, ready for printing. Include enough credential cards for all personnel to be enrolled at the site plus an extra 50 percent for future use.

4. Fuses of all kinds, power and electronic, equal to 10 percent of amount installed for each size used, but no fewer than three units.

## 1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers trained and approved by manufacturer.
  - 1. Cable installer must have on staff a registered communication distribution designer certified by Building Industry Consulting Service International.
- B. Source Limitations: Obtain central station, workstations, controllers, Identifier readers, and all software through one source from single manufacturer.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70, "National Electrical Code."
- E. Comply with SIA DC-01 and SIA DC-03.

## 1.9 DELIVERY, STORAGE, AND HANDLING

- A. Central Station, Workstations, and Controllers:
  - 1. Store in temperature- and humidity-controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 50 and 85 deg F (10 and 30 deg C), and not more than 80 percent relative humidity, noncondensing.
  - 2. Open each container; verify contents against packing list; and file copy of packing list, complete with container identification, for inclusion in operation and maintenance data.
  - 3. Mark packing list with the same designations assigned to materials and equipment for recording in the system labeling schedules that are generated by software specified in "Cable and Asset Management Software" Article.
  - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

## 1.10 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
  - 1. Control Station: Rated for continuous operation in ambient conditions of 60 to 85 deg F (16 to 30 deg C) and a relative humidity of 20 to 80 percent, noncondensing.
  - 2. Indoor, Controlled Environment: NEMA 250, Type 1 enclosure. System components, except the central-station control unit, installed in temperature-controlled indoor environments shall be rated for continuous operation in ambient conditions of 36 to 122 deg F (2 to 50 deg C) dry bulb and 20 to 90 percent relative humidity, noncondensing.
  - 3. Outdoor Environment: NEMA 250, NEMA 250, Type 3R enclosures. System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of minus 30 to plus 122 deg F (minus 34 to plus 50 deg C) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 85 mph (137 km/h) and snow cover up to 24 inches (610 mm) thick.

## **PART 2 - PRODUCTS**

# 2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Bosch Security Systems, Inc.
  - 2. Continental Instruments.
  - 3. GE Security, Inc.
  - 4. HES, Inc.; an ASSA ABLOY Group company.
  - Hirsch Electronics Corporation.
  - 6. Honeywell International Inc.
  - 7. Schneider Electric USA, Inc.

## 2.2 DESCRIPTION

- A. Security Access System: PC-based central station, one or more networked PC-based workstations, and field-installed controllers, connected by a high-speed electronic-data transmission network.
- B. System Software: Based on 32 or 64-bit, windows central-station, workstation operating system, server operating system, and application software. Software shall have the following capabilities:
  - 1. Multiuser and multitasking to allow for independent activities and monitoring to occur simultaneously at different workstations.
  - 2. Graphical user interface to show pull-down menus and a menu-tree format that complies with interface guidelines of Microsoft Windows.
  - 3. System license for the entire system including capability for future additions that are within the indicated system size limits specified in this Section.
  - 4. Open-architecture system that allows importing and exporting of data and interfacing with other systems that are compatible with Microsoft Windows.
  - 5. Password-protected operator login and access.
  - 6. Open-database-connectivity compliant.
- C. Network connecting the central station and workstations shall be a LAN using Microsoft Windows-based TCP/IP with a capacity of connecting up to 99 workstations. System shall be portable across multiple communication platforms without changing system software.
- D. Network(s) connecting PCs and controllers shall consist of one or more of the following:
  - Local area, IEEE 802.3 Fast Ethernet, star topology network based on TCP/IP.
  - 2. Direct-connected, RS-232 cable from the COM port of the central station to the first controller, then RS-485 cable to interconnect the remaining controllers at that Location.
  - 3. Dial-up and cable modem connection using a standard cable or dial-up telephone line.

## 2.3 OPERATION

- A. Security access system shall use a single database for access-control and credential-creation functions.
- B. Distributed Processing: A fully distributed processing system.
  - Access-control information, including time, date, valid codes, access levels, and similar data, shall be downloaded to controllers so each controller can make access-control decisions.
  - 2. Intermediate controllers for access control are prohibited.
  - 3. In the event that communications with the central controller are lost, controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the central station.
- C. Number of Locations:
  - 1. Support at least 32,000 separate Locations using a single PC with combinations of direct-connect, dial-up, or TCP/IP LAN connections to each Location.
  - 2. Each Location shall have its own database and history in the central station.
  - 3. Locations may be combined to share a common database.
- D. Data Capacity:
  - 1. 130 different card-reader formats.
  - 2. 999 comments.
  - 3. 48 graphic file types for importing maps.
- E. Location Capacity:
  - 1. 64 reader-controlled doors.
  - 2. 25,000 total-access credentials.
  - 3. 1024 supervised alarm inputs.
  - 4. 1024 programmable outputs.
  - 5. 16,000 custom action messages per Location to instruct operator on action required when alarm is received.

## F. System Network Requirements:

- 1. System components shall be interconnected and shall provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
- 2. Communication shall not require operator initiation or response and shall return to normal after partial- or total-network interruption such as power loss or transient upset.
- 3. System shall automatically annunciate communication failures to the operator and shall identify the communications link that has experienced a partial or total failure.
- G. Central station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central station shall control system networks to interconnect all system components, including workstations and field-installed controllers.
- H. Field equipment shall include controllers, sensors, and controls.
  - Controllers shall serve as an interface between the central station and sensors and controls.
  - 2. Data exchange between the central station and the controllers shall include down-line transmission of commands, software, and databases to controllers.
  - 3. The up-line data exchange from the controller to the central station shall include status data such as intrusion alarms, status reports, and entry-control records.
  - 4. Controllers are classified as alarm-annunciation or entry-control type.

## I. System Response to Alarms:

- 1. Field device network shall provide a system end-to-end response time of one second(s) or less for every device connected to the system.
- 2. Alarms shall be annunciated at the central station within one second of the alarm occurring at a controller or at a device controlled by a local controller, and within 100 ms if the alarm occurs at the central station.
- 3. Alarm and status changes shall be displayed within 100 ms after receipt of data by the central station.
- 4. All graphics shall be displayed, including graphics-generated map displays, on the console monitor within five seconds of alarm receipt at the security console.
- 5. This response time shall be maintained during system heavy load.
- J. False-Alarm Reduction: The design of the central station and controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.

## K. Error Detection:

- Use a cyclic code method to detect single- and double-bit errors, burst errors of eight bits or fewer, and at least 99 percent of all other multibit and burst errors between controllers and the central station.
- 2. Interactive or product error-detection codes alone will not be acceptable.
- 3. A message shall be in error if one bit is received incorrectly.
- 4. Retransmit messages with detected errors.
- 5. Allow for an operator-assigned two-digit decimal number to each communications link representing the number of retransmission attempts.
- 6. Central station shall print a communication failure alarm message when the number of consecutive retransmission attempts equals the assigned quantity.
- 7. Monitor the frequency of data transmission failure for display and logging.
- L. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.

## M. Door Hardware Interface:

- Comply with requirements in Section 087100 "Door Hardware" and Section 087111 "Door Hardware (Descriptive Specification)" for door hardware required to be monitored or controlled by the security access system.
- 2. Electrical characteristics of controllers shall match the signal and power requirements of door hardware.

## 2.4 APPLICATION SOFTWARE

- A. System Software: System Software: Based on 32 or 64-bit, windows central-station, and workstation operating system and application software.
  - 1. Multiuser multitasking shall allow independent activities and monitoring to occur simultaneously at different workstations.
  - 2. Graphical user interface shall show pull-down menus and a menu-tree format.
  - 3. Capability for future additions within the indicated system size limits.
  - 4. Open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with operating system.
  - 5. Password-protected operator login and access.
- B. Application Software: Interface between the alarm annunciation and entry-control controllers to monitor sensors, operate displays, report alarms, generate reports, and help train system operators.
  - 1. Reside at the central station, workstations, and controllers as required to perform specified functions.
  - 2. Operate and manage peripheral devices.
  - 3. Manage files for disk I/O, including creating, deleting, and copying files; and automatically maintain a directory of all files, including size and location of each sequential and random-ordered record.
  - 4. Import custom icons into graphics to represent alarms and I/O devices.
  - 5. Globally link I/O so that any I/O can link to any other I/O within the same Location without requiring interaction with the host PC. This operation shall be at the controller.
  - 6. Globally code I/O links so that any access-granted event can link to any I/O with the same Location without requiring interaction with the host PC. This operation shall be at the controller.
  - 7. Messages from PC to controllers and controllers to controllers shall be on a polled network that utilizes check summing and acknowledgment of each message. Communication shall be automatically verified, buffered, and retransmitted if message is not acknowledged.
  - 8. Selectable poll frequency and message time-out settings shall handle bandwidth and latency issues for TCP/IP, RF, and other PC-to-controller communications methods by changing the polling frequency and the amount of time the system waits for a response.
  - 9. Automatic and encrypted backups for database and history backups shall be automatically stored at a selected workstation and encrypted with a nine-character alphanumeric password that must be used to restore or read data contained in backup.
  - 10. Operator audit trail for recording and reporting all changes made to database and system software
  - 11. Support network protocol and topology, TCP/IP, Novel Netware, Digital Pathworks, Banyan Vines, LAN/WAN, and RAS.

## C. Workstation Software:

- 1. Password levels shall be individually customized at each workstation to allow or disallow operator access to program functions for each Location.
- 2. Workstation event filtering shall allow user to define events and alarms that will be displayed at each workstation. If an alarm is unacknowledged (not handled by another workstation) for a preset amount of time, the alarm will automatically appear on the filtered workstation.

## D. Controller Software:

- 1. Controllers shall operate as autonomous, intelligent processing units.
  - Controllers shall make decisions about access control, alarm monitoring, linking functions, and door-locking schedules for their operation, independent of other system components.
  - b. Controllers shall be part of a fully distributed processing-control network.

- c. The portion of the database associated with a controller, and consisting of parameters, constraints, and the latest value or status of points connected to that controller, shall be maintained in the controller.
- 2. The following functions shall be fully implemented and operational within each controller:
  - a. Monitoring inputs.
  - b. Controlling outputs.
  - c. Automatically reporting alarms to the central station.
  - d. Reporting of sensor and output status to the central station on request.
  - e. Maintaining real time, automatically updated by the central station at least once a day.
  - f. Communicating with the central station.
  - g. Executing controller resident programs.
  - h. Diagnosing.
  - i. Downloading and uploading data to and from the central station.
- 3. Controller Operations at a Location:
  - a. Up to 64 controllers connected to TIA 485-A communications loop. Globally operating I/O linking and anti-passback functions between controllers within the same Location without central-station or workstation intervention. Linking and anti-passback shall remain fully functional within the same Location even when the central station or workstations are off-line.
  - b. In the event of communication failure between the central station and a Location, there shall be no degradation in operations at the controllers at that Location. Controllers at each Location shall be connected to a memory buffer with a capacity to store up to 10,000 events; there shall be no loss of transactions in system history files until the buffer overflows.
  - c. Buffered events shall be handled in a first-in-first-out mode of operation.
- 4. Individual Controller Operation:
  - a. Controllers shall transmit alarms, status changes, and other data to the central station when communications circuits are operable. If communications are not available, controllers shall function in a stand-alone mode; operational data, including the status and alarm data normally transmitted to the central station, shall be stored for later transmission to the central station. Storage capacity for the latest 1024 events shall be provided at each controller.
  - b. Card-reader ports of a controller shall be custom configurable for at least 120 different card-reader or keypad formats. Multiple reader or keypad formats may be used simultaneously at different controllers or within the same controller.
  - c. Controllers shall provide a response to card readers or keypad entries in less than 0.25 seconds, regardless of system size.
  - d. Controllers that are reset, or powered up from a nonpowered state, shall automatically request a parameter download and reboot to their proper working state. This shall happen without any operator intervention.
  - e. Initial Startup: When controllers are brought on-line, database parameters shall be automatically downloaded to them. After initial download is completed, only database changes shall be downloaded to each controller.
  - f. On failure for any reason, controllers shall perform an orderly shutdown and force controller outputs to a predetermined failure-mode state, consistent with the failure modes shown and the associated control device.
  - g. After power is restored, following a power failure, startup software shall initiate self-test diagnostic routines, after which controllers shall resume normal operation.
  - h. After controller failure, if the database and application software are no longer resident, controllers shall not restart but shall remain in the failure mode until repaired. If database and application programs are resident, controllers shall immediately resume operation. If not, software shall be restored automatically from the central station.
- 5. Communications Monitoring:

- a. System shall monitor and report status of TIA 485-A communications loop of each Location.
- b. Communication status window shall display which controllers are currently communicating, a total count of missed polls since midnight, and which controller last missed a poll.
- c. Communication status window shall show the type of CPU, the type of I/O board, and the amount of RAM for each controller.
- 6. Operating systems shall include a real-time clock function that maintains seconds, minutes, hours, day, date, and month. The real-time clock shall be automatically synchronized with the central station at least once a day to plus or minus 10 seconds. The time synchronization shall be automatic, without operator action and without requiring system shutdown.

## E. PC-to-Controller Communications:

- 1. Central-station or workstation communications shall use the following:
  - a. Direct connection using serial ports of the PC.
  - b. TCP/IP LAN interface cards.
  - c. Dial-up or cable modems for connections to Locations.
- 2. Each serial port used for communications shall be individually configurable for "direct communications," "modem communications incoming and outgoing," or "modem communications incoming only," or as an ASCII output port. Serial ports shall have adjustable data transmission rates and shall be selectable under program control.
- 3. Use multiport communications board if more than two serial ports are needed.
  - a. Use a 4-, 8-, or 16-serial port configuration that is expandable to 32- or 64-serial ports.
  - b. Connect the first board to an internal PCI bus adapter card.
- 4. Direct serial, TCP/IP, and dial-up, cable, or satellite communications shall be alike in the monitoring or control of the system except for the connection that must first be made to a dial-up or voice-over IP Location.
- 5. TCP/IP network interface card (NIV) shall have an option to set the poll-frequency and message-response time-out settings.
- 6. PC-to-controller and controller-to-controller communications (direct, dial-up, or TCP/IP) shall use a polled-communication protocol that checks sum and acknowledges each message. All communications in this subparagraph shall be verified and buffered, and retransmitted if not acknowledged.

## F. Direct Serial or TCP/IP PC-to-Controller Communications:

- 1. Communication software on the PC shall supervise the PC-to-controller communications link
- 2. Loss of communications to any controller shall result in an alarm at all PCs running the communication software.
- 3. When communications are restored, all buffered events shall automatically upload to the PC, and any database changes shall be automatically sent to the controller.

## G. Dial-up Modem or Cable Modem PC-to-Controller Communications:

- 1. Communication software on the PC shall supervise the PC-to-controller communications link during dial-up modem connect times.
- 2. Communication software shall be programmable to routinely poll each of the remote dialup or cable modem Locations, collecting event logs and verifying phone lines at operatorselectable time intervals for each Location.
- 3. System shall be programmable for dialing and connecting to all dial-up or cable modem Locations and for retrieving the accrued history transactions on an automatic basis as often as once every 10 minutes and up to once every 9999 minutes.
- 4. Failure to communicate to a dial-up Location three times in a row shall result in an alarm at the PC.
- 5. Time offset capabilities shall be present so that Locations in a different geographical time zone than the host PC will be set to, and maintained at, the proper local time. This feature shall allow for geographical time zones that are ahead of or behind the host PC.

- 6. The controller connected to a dial-up or cable modem shall automatically buffer all normal transactions until its buffer reaches 80 percent of capacity. When the transaction buffer reaches 80 percent, the controller shall automatically initiate a call to the central station and upload all transactions.
- 7. Alarms shall be reported immediately.
- 8. Dial-up or cable modems shall be provided by manufacturer of the system. Modems used at the controller shall be powered by the controller. Power to the modem shall include battery backup if the controller is so equipped.

#### H. Controller-to-Controller Communications:

- 1. TIA 485-A, four-wire, point-to-point, regenerative (repeater) communications network methodology.
- 2. TIA 485-A communications signal shall be regenerated at each controller.

#### I. Database Downloads:

- All data transmissions from PCs to a Location, and between controllers at a Location, shall include a complete database checksum to check the integrity of the transmission. If the data checksum does not match, a full data download shall be automatically retransmitted.
- 2. If a controller is reset for any reason, it shall automatically request and receive a database download from the PC. The download shall restore data stored at the controller to their normal working state and shall take place with no operator intervention.

## J. Operator Interface:

- 1. Inputs in system shall have two icon representations, one for the normal state and one for the abnormal state.
- 2. When viewing and controlling inputs, displayed icons shall automatically change to the proper icon to display the current system state in real time. Icons shall also display the input's state, whether armed or bypassed, and if the input is in the armed or bypassed state due to a time zone or a manual command.
- 3. Outputs in system shall have two icon representations, one for the secure (locked) state and one for the open (unlocked) state.
- 4. Icons displaying status of the I/O points shall be constantly updated to show their current real-time condition without prompting by the operator.
- 5. The operator shall be able to scroll the list of I/Os and press the appropriate toolbar button, or right click, to command the system to perform the desired function.
- 6. Graphic maps or drawings containing inputs, outputs, and override groups shall include the following:
  - a. Database to import and store full-color maps or drawings and allow for input, output, and override group icons to be placed on maps.
  - b. Maps to provide real-time display animation and allow for control of points assigned to them.
  - c. System to allow inputs, outputs, and override groups to be placed on different maps.
  - d. Software to allow changing the order or priority in which maps will be displayed.

## 7. Override Groups Containing I/Os:

- a. System shall incorporate override groups that provide the operator with the status and control over user-defined "sets" of I/Os with a single icon.
- b. Icon shall change automatically to show the live summary status of points in that group.
- c. Override group icon shall provide a method to manually control or set to time-zone points in the group.
- d. Override group icon shall allow the expanding of the group to show icons representing the live status for each point in the group, individual control over each point, and the ability to compress the individual icons back into one summary icon.
- 8. Schedule Overrides of I/Os and Override Groups:

- a. To accommodate temporary schedule changes that do not fall within the holiday parameters, the operator shall have the ability to override schedules individually for each input, output, or override group.
- b. Each schedule shall be composed of a minimum of two dates with separate times for each date.
- c. The first time and date shall be assigned the override state that the point shall advance to when the time and date become current.
- d. The second time and date shall be assigned the state that the point shall return to when the time and date become current.
- 9. Copy command in database shall allow for like data to be copied and then edited for specific requirements, to reduce redundant data entry.

## K. Operator Access Control:

- Control operator access to system controls through three password-protected operator levels. System operators and managers with appropriate password clearances shall be able to change operator levels for operators.
- 2. Three successive attempts by an operator to execute functions beyond their defined level during a 24-hour period shall initiate a software tamper alarm.
- 3. A minimum of 32 passwords shall be available with the system software. System shall display the operator's name or initials in the console's first field. System shall print the operator's name or initials, action, date, and time on the system printer at login and logoff.
- 4. The password shall not be displayed or printed.
- 5. Each password shall be definable and assignable for the following:
  - a. Selected commands to be usable.
  - b. Access to system software.
  - c. Access to application software.
  - d. Individual zones that are to be accessed.
  - e. Access to database.

## L. Operator Commands:

- 1. Command Input: Plain-language words and acronyms shall allow operators to use the system without extensive training or data-processing backgrounds. System prompts shall be a word, a phrase, or an acronym.
- 2. Command inputs shall be acknowledged and processing shall start in not less than one second(s).
- 3. Tasks that are executed by operator's commands shall include the following:
  - a. Acknowledge Alarms: Used to acknowledge that the operator has observed the alarm message.
  - b. Place Zone in Access: Used to remotely disable intrusion-alarm circuits emanating from a specific zone. System shall be structured so that console operator cannot disable tamper circuits.
  - c. Place Zone in Secure: Used to remotely activate intrusion-alarm circuits emanating from a specific zone.
  - d. System Test: Allows the operator to initiate a system-wide operational test.
  - e. Zone Test: Allows the operator to initiate an operational test for a specific zone.
  - f. Print reports.
  - g. Change Operator: Used for changing operators.
  - h. Security Lighting Controls: Allows the operator to remotely turn on or turn off security lights.
  - Display Graphics: Used to show any graphic displays implemented in the system. Graphic displays shall be completed within 20 seconds from time of operator command.
  - j. Run system tests.
  - k. Generate and format reports.
  - I. Request help with the system operation.
    - 1) Include in main menus.

- 2) Provide unique, descriptive, context-sensitive help for selections and functions with the press of one function key.
- 3) Provide navigation to specific topic from within the first help window.
- 4) Help shall be accessible outside the application program.
- m. Entry-Control Commands:
  - 1) Lock (secure) or unlock (open) each controlled entry and exit up to four times a day through time-zone programming.
  - 2) Arm or disarm each monitored input up to four times a day through timezone programming.
  - 3) Enable or disable readers or keypads up to two times a day through timezone programming.
  - 4) Enable or disable cards or codes up to four times a day per entry point through access-level programming.
- 4. Command Input Errors: Show operator input assistance when a command cannot be executed because of operator input errors. Assistance screen shall use plain-language words and phrases to explain why the command cannot be executed. Error responses that require an operator to look up a code in a manual or other document are not acceptable. Conditions causing operator assistance messages include the following:
  - a. Command entered is incorrect or incomplete.
  - b. Operator is restricted from using that command.
  - c. Command addresses a point that is disabled or out of service.
  - d. Command addresses a point that does not exist.
  - e. Command is outside the system's capacity.

## M. Alarms:

- 1. System Setup:
  - Assign manual and automatic responses to incoming-point status change or alarms.
  - b. Automatically respond to input with a link to other inputs, outputs, or operatorresponse plans; unique sound with use of WAV files; and maps or images that graphically represent the point location.
  - c. Sixty-character message field for each alarm.
  - d. Operator-response-action messages shall allow message length of at least 65,000 characters, with database storage capacity of up to 32,000 messages. Setup shall assign messages to access point.
  - e. Secondary messages shall be assignable by the operator for printing to provide further information and shall be editable by the operator.
  - f. Allow 25 secondary messages with a field of four lines of 60 characters each.
  - g. Store the most recent 1000 alarms for recall by the operator using the report generator.
- 2. Software Tamper:
  - a. Annunciate a tamper alarm when unauthorized changes to system database files are attempted. Three consecutive unsuccessful attempts to log onto system shall generate a software tamper alarm.
  - b. Annunciate a software tamper alarm when an operator or other individual makes three consecutive unsuccessful attempts to invoke functions beyond the authorization level.
  - c. Maintain a transcript file of the last 5000 commands entered at each central station to serve as an audit trail. System shall not allow write access to system transcript files by any person, regardless of their authorization level.
  - d. Allow only acknowledgment of software tamper alarms.
- 3. Read access to system transcript files shall be reserved for operators with the highest password authorization level available in system.
- 4. Animated Response Graphics: Highlight alarms with flashing icons on graphic maps; display and constantly update the current status of alarm inputs and outputs in real time through animated icons.

- 5. Multimedia Alarm Annunciation: WAV files to be associated with alarm events for audio annunciation or instructions.
- 6. Alarm Handling: Each input may be configured so that an alarm cannot be cleared unless it has returned to normal, with options of requiring the operator to enter a comment about disposition of alarm. Allow operator to silence alarm sound when alarm is acknowledged.
- 7. Alarm Automation Interface: High-level interface to central-station alarm automation software systems. Allows input alarms to be passed to and handled by automation systems in the same manner as burglar alarms, using a TIA 232-F ASCII interface.
- 8. CCTV Alarm Interface: Allow commands to be sent to CCTV systems during alarms (or input change of state) through serial ports.
- Camera Control: Provides operator ability to select and control cameras from graphic maps.
- N. Alarm Monitoring: Monitor sensors, controllers, and DTS circuits and notify operators of an alarm condition. Display higher-priority alarms first and, within alarm priorities, display the oldest unacknowledged alarm first. Operator acknowledgment of one alarm shall not be considered acknowledgment of other alarms nor shall it inhibit reporting of subsequent alarms.
  - 1. Displayed alarm data shall include type of alarm, location of alarm, and secondary alarm messages.
  - 2. Printed alarm data shall include type of alarm, location of alarm, date and time (to nearest second) of occurrence, and operator responses.
  - 3. Maps shall automatically display the alarm condition for each input assigned to that map if that option is selected for that input location.
  - 4. Alarms initiate a status of "pending" and require the following two handling steps by operators:
    - a. First Operator Step: "Acknowledged." This action shall silence sounds associated with the alarm. The alarm remains in the system "Acknowledged" but "Un-Resolved."
    - b. Second Operator Step: Operators enter the resolution or operator comment, giving the disposition of the alarm event. The alarm shall then clear.
  - 5. Each workstation shall display the total pending alarms and total unresolved alarms.
  - 6. Each alarm point shall be programmable to disallow the resolution of alarms until the alarm point has returned to its normal state.
  - 7. Alarms shall transmit to the central station in real time except for allowing connection time for dial-up locations.
  - 8. Alarms shall be displayed and managed from a minimum of four different windows.
    - a. Input Status Window: Overlay status icon with a large red blinking icon. Selecting the icon will acknowledge the alarm.
    - b. History Log Transaction Window: Display name, time, and date in red text. Selecting red text will acknowledge the alarm.
    - c. Alarm Log Transaction Window: Display name, time, and date in red. Selecting red text will acknowledge the alarm.
    - d. Graphic Map Display: Display a steady colored icon representing each alarm input location. Change icon to flashing red when the alarm occurs. Change icon from flashing red to steady red when the alarm is acknowledged.
  - 9. Once an alarm is acknowledged, the operator shall be prompted to enter comments about the nature of the alarm and actions taken. Operator's comments may be manually entered or selected from a programmed predefined list, or a combination of both.
  - 10. For locations where there are regular alarm occurrences, provide programmed comments. Selecting that comment shall clear the alarm.
  - 11. The time and name of the operator who acknowledged and resolved the alarm shall be recorded in the database.
  - 12. Identical alarms from the same alarm point shall be acknowledged at the same time the operator acknowledges the first alarm. Identical alarms shall be resolved when the first alarm is resolved.
  - 13. Alarm functions shall have priority over downloading, retrieving, and updating database from workstations and controllers.

- 14. When a reader-controlled output (relay) is opened, the corresponding alarm point shall be automatically bypassed.
- O. Monitor Display: Display text and graphic maps that include zone status integrated into the display. Colors are used for the various components and current data. Colors shall be uniform throughout the system.
  - 1. Color Code:
    - a. FLASHING RED: Alerts operator that a zone has gone into an alarm or that primary power has failed.
    - b. STEADY RED: Alerts operator that a zone is in alarm and alarm has been acknowledged.
    - c. YELLOW: Advises operator that a zone is in access.
    - d. GREEN: Indicates that a zone is secure and that power is on.
  - 2. Graphics:
    - a. Support 32,000 graphic display maps and allow import of maps from a minimum of 16 standard formats from another drawing or graphics program.
    - b. Allow I/O to be placed on graphic maps by the drag-and-drop method.
    - c. Operators shall be able to view the inputs, outputs, and the point's name by moving the mouse cursor over the point on the graphic map.
    - d. Inputs or outputs may be placed on multiple graphic maps. The operator shall be able to toggle to view graphic maps associated with I/Os.
    - e. Each graphic map shall have a display-order sequence number associated with it to provide a predetermined order when toggled to different views.
    - f. Camera icons shall have the ability to be placed on graphic maps that, when selected by an operator, will open a video window, display the camera associated with that icon, and provide pan-tilt-zoom control.
    - g. Input, output, or camera placed on a map shall allow the ability to arm or bypass an input, open or secure an output, or control the pan-tilt-zoom function of the selected camera.
- P. System test software enables operators to initiate a test of the entire system or of a particular portion of the system.
  - 1. Test Report: The results of each test shall be stored for future display or printout. The report shall document the operational status of system components.
- Q. Report-Generator Software: Include commands to generate reports for displaying, printing, and storing on disk and tape. Reports shall be stored by type, date, and time. Report printing shall be the lowest-priority activity. Report-generation mode shall be operator selectable but set up initially as periodic, automatic, or on request. Include time and date printed and the name of operator generating the report. Report formats may be configured by operators.
  - 1. Automatic Printing: Setup shall specify, modify, or inhibit the report to be generated; the time the initial report is to be generated; the time interval between reports; the end of the period; and the default printer.
  - 2. Printing on Request: An operator may request a printout of any report.
  - 3. Alarm Reports: Reporting shall be automatic as initially set up. Include alarms recorded by system over the selected time and information about the type of alarm (such as door alarm, intrusion alarm, tamper alarm, etc.), the type of sensor, the location, the time, and the action taken.
  - 4. Access and Secure Reports: Document zones placed in access, the time placed in access, and the time placed in secure mode.
  - 5. Custom Reports: Reports tailored to exact requirements of who, what, when, and where. As an option, custom report formats may be stored for future printing.
  - 6. Automatic History Reports: Named, saved, and scheduled for automatic generation.
  - 7. Cardholder Reports: Include data, or selected parts of the data, as well as the ability to be sorted by name, card number, imprinted number, or by any of the user-defined fields.
  - 8. Cardholder by Reader Reports: Based on who has access to a specific reader or group of readers by selecting the readers from a list.

- Cardholder by Access-Level Reports: Display everyone that has been assigned to the specified access level.
- 10. Who Is "In" (Muster) Report:
  - a. Emergency Muster Report: One-click operation on toolbar launches report.
  - b. Cardholder Report. Contain a count of persons who are "In" at a selected Location and a detailed listing of name, date, and time of last use, sorted by the last reader used or by the group assignment.
- 11. Panel Labels Reports: Printout of control-panel field documentation including the actual location of equipment, programming parameters, and wiring identification. Maintain system installation data within system database so that data are available on-site at all times
- 12. Activity and Alarm On-Line Printing: Activity printers for use at workstations; prints all events, or alarms only.
- 13. History Reports: Custom reports that allow the operator to select any date, time, event type, device, output, input, operator, Location, name, or cardholder to be included or excluded from the report.
  - a. Initially store history on the hard disk of the host PC.
  - b. Permit viewing of the history on workstations or print history to any system printer.
  - c. The report shall be definable by a range of dates and times with the ability to have a daily start and stop time over a given date range.
  - d. Each report shall depict the date, time, event type, event description, and device; or I/O name, cardholder group assignment, and cardholder name or code number.
  - e. Each line of a printed report shall be numbered to ensure that the integrity of the report has not been compromised.
  - f. Total number of lines of the report shall be given at the end of the report. If the report is run for a single event such as "Alarms," the total shall reflect how many alarms occurred during that period.
- 14. Reports shall have the following four options:
  - View on screen.
  - b. Print to system printer. Include automatic print spooling and "Print To" options if more than one printer is connected to the system.
  - c. "Save to File" with full path statement.
  - d. System shall have the ability to produce a report indicating status of system inputs and outputs or of inputs and outputs that are abnormal, out of time zone, manually overridden, not reporting, or in alarm.
- 15. Custom Code List Subroutine: Allow the access codes of system to be sorted and printed according to the following criteria:
  - a. Active, inactive, or future activate or deactivate.
  - b. Code number, name, or imprinted card number.
  - c. Group, Location access levels.
  - d. Start and stop code range.
  - e. Codes that have not been used since a selectable number of days.
  - f. In, out, or either status.
  - g. Codes with trace designation.
- 16. The reports of system database shall allow options so that every data field may be printed.
- 17. The reports of system database shall be constructed so that the actual position of the printed data shall closely match the position of the data on the data-entry windows.
- R. Anti-Passback:
  - 1. System shall have global and local anti-passback features, selectable by Location. System shall support hard and soft anti-passback.
  - Hard Anti-Passback: Once a credential holder is granted access through a reader with one type of designation (IN or OUT), the credential holder may not pass through that type of reader designation until the credential holder passes through a reader of opposite designation.

- 3. Soft Anti-Passback: Should a violation of the proper IN or OUT sequence occur, access shall be granted, but a unique alarm shall be transmitted to the control station, reporting the credential holder and the door involved in the violation. A separate report may be run on this event.
- 4. Timed Anti-Passback: A controller capability that prevents an access code from being used twice at the same device (door) within a user-defined amount of time.
- 5. Provide four separate zones per Location that can operate without requiring interaction with the host PC (done at controller). Each reader shall be assignable to one or all four anti-passback zones. In addition, each anti-passback reader can be further designated as "Hard," "Soft," or "Timed" in each of the four anti-passback zones. The four anti-passback zones shall operate independently.
- 6. The anti-passback schemes shall be definable for each individual door.
- 7. The Master Access Level shall override anti-passback.
- 8. System shall have the ability to forgive (or reset) an individual credential holder or the entire credential-holder population anti-passback status to a neutral status.

## S. Visitor Assignment:

- 1. Provide for and allow an operator to be restricted to only working with visitors. The visitor badging subsystem shall assign credentials and enroll visitors. Allow only those access levels that have been designated as approved for visitors.
- 2. Provide an automated log of visitor name, time and doors accessed, and name of person contacted.
- 3. Allow a visitor designation to be assigned to a credential holder.
- 4. Security access system shall be able to restrict the access levels that may be assigned to credentials issued to visitors.
- 5. Allow operator to recall visitors' credential-holder file once a visitor is enrolled in the system.
- 6. The operator may designate any reader as one that deactivates the credential after use at that reader. The history log shall show the return of the credential.
- 7. System shall have the ability to use the visitor designation in searches and reports. Reports shall be able to print all or any visitor activity.

#### T. Time and Attendance:

- 1. Time and attendance reporting shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length designated in the report.
- 2. Shall be provided to match IN and OUT reads and display cumulative time in for each day and cumulative time in for length designated in the report.
- 3. System software setup shall allow designation of selected access-control readers as time and attendance hardware to gather the clock-in and clock-out times of the users at these readers.
  - a. Reports shall show in and out times for each day, total time in for each day, and a total time in for period specified by the user.
  - b. Allow the operator to view and print the reports, or save the reports to a file.
  - c. Alphabetically sort reports on the person's last name, by Location or location group. Include all credential holders or optionally select individual credential holders for the report.
- U. Training Software: Enables operators to practice system operation, including alarm acknowledgment, alarm assessment, response force deployment, and response force communications. System shall continue normal operation during training exercises and shall terminate exercises when an alarm signal is received at the console.
- V. Entry-Control Enrollment Software: Database management functions that allow operators to add, delete, and modify access data as needed.
  - 1. The enrollment station shall not have alarm response or acknowledgment functions.
  - 2. Provide multiple, password-protected access levels. Database management and modification functions shall require a higher operator access level than personnel enrollment functions.

- 3. The program shall provide means to disable the enrollment station when it is unattended, to prevent unauthorized use.
- 4. The program shall provide a method to enter personnel identifying information into the entry-control database files through enrollment stations. In the case of personnel identity-verification subsystems, this shall include biometric data. Allow entry of personnel identifying information into the system database using menu selections and data fields. The data field names shall be customized during setup to suit user and site needs. Personnel identity-verification subsystems selected for use with the system shall fully support the enrollment function and shall be compatible with the entry-control database files
- 5. Cardholder Data: Provide 99 user-defined fields. System shall have the ability to run searches and reports using any combination of these fields. Each user-defined field shall be configurable, using any combination of the following features:
  - a. MASK: Determines a specific format with which data must comply.
  - b. REQUIRED: Operator is required to enter data into field before saving.
  - c. UNIQUE: Data entered must be unique.
  - d. DEACTIVATE DATE: Data entered will be evaluated as an additional deactivate date for all cards assigned to this cardholder.
  - NAME ID: Data entered will be considered a unique ID for the cardholder.
- 6. Personnel Search Engine: A report generator with capabilities such as search by last name, first name, group, or any predetermined user-defined data field; by codes not used in definable number of days; by skills; or by seven other methods.
- 7. Multiple Deactivate Dates for Cards: User-defined fields to be configured as additional stop dates to deactivate any cards assigned to the cardholder.
- 8. Batch card printing.
- Default card data can be programmed to speed data entry for sites where most card data are similar.
- 10. Enhanced ASCII File Import Utility: Allows the importing of cardholder data and images.
- Card Expire Function: Allows readers to be configured to deactivate cards when a card is used at selected devices.

## 2.5 SYSTEM DATABASE

- A. Database and database management software shall define and modify each point in database using operator commands. Definition shall include parameters and constraints associated with each system device.
- B. Database Operations:
  - System data management shall be in a hierarchical menu-tree format, with navigation through expandable menu branches and manipulated with use of menus and icons in a main menu and system toolbar.
  - 2. Navigational Aids:
    - a. Toolbar icons for add, delete, copy, print, capture image, activate, deactivate, and muster report.
    - b. Point and click feature to facilitate data manipulation.
    - c. Next and previous command buttons visible when editing database fields to facilitate navigation from one record to the next.
    - d. Copy command and copy tool in the toolbar to copy data from one record to create a new similar record.
  - 3. Data entry shall be automatically checked for duplicate and illegal data and shall be verified for valid format.
  - 4. System shall generate a memo or note field for each item that is stored in database, allowing the storing of information about any defining characteristics of the item. Memo field is used for noting the purpose for which the item was entered, reasons for changes that were made, and the like.
- C. File Management:

- 1. File management shall include database backup and restoration system, allowing selection of storage media, including 3.5-inch floppy disk, Zip and Jaz drives, and designated network resources.
- 2. Operations shall be both manual and automatic modes. The number of automatic sequential backups before the oldest backup will be overwritten; FIFO mode shall be operator selectable.
- 3. Backup program shall provide manual operation from any PC on the LAN and shall operate while system remains operational.

## D. Operator Passwords:

- 1. Support up to 32,000 individual system operators, each with a unique password.
- 2. One to eight alphanumeric characters.
- 3. Allow passwords to be case sensitive.
- 4. Passwords shall not be displayed when entered.
- 5. Passwords shall have unique and customizable password profile, and allow several operators to share a password profile. Include the following features in the password profile:
  - a. Predetermine the highest-level password profile for access to all functions and areas of program.
  - b. Allow or disallow operator access to any program operation, including the functions of View, Add, Edit, and Delete.
  - c. Restrict doors to which an operator can assign access.
- 6. Operators shall use a user name and password to log on to system. This user name and password shall be used to access database areas and programs as determined by the associated profile.
- 7. Make provision to allow the operator to log off without fully exiting program. User may be logged off but program will remain running while displaying the login window for the next operator.
- E. Access Card/Code Operation and Management: Access authorization shall be by card, by a manually entered code (PIN), or by a combination of both (card plus PIN).
  - Access authorization shall verify the facility code first, the card or card-and-PIN validation second, and the access level (time of day, day of week, date), anti-passback status, and number of uses last.
  - 2. Use data-entry windows to view, edit, and issue access levels. Access-authorization entry-management system shall maintain and coordinate all access levels to prevent duplication or the incorrect creation of levels.
  - 3. Allow assignment of multiple cards/codes to a cardholder.
  - 4. Allow assignment of up to four access levels for each Location to a cardholder. Each access level may contain any combination of doors.
  - 5. Each door may be assigned four time zones.
  - 6. Access codes may be up to 11 digits in length.
  - 7. Software shall allow the grouping of locations so cardholder data can be shared by all locations in the group.
  - 8. Visitor Access: Issue a visitor badge for data tracking or photo ID purposes without assigning that person a card or code.
  - Cardholder Tracing: Allow for selection of cardholder for tracing. Make a special audible
    and visible annunciation at control station when a selected card or code is used at a
    designated code reader. Annunciation shall include an automatic display of the
    cardholder image.
  - 10. Allow each cardholder to be given either an unlimited number of uses or a number from one to 9999 that regulates the number of times the card can be used before it is automatically deactivated.
  - 11. Provide for cards and codes to be activated and deactivated manually or automatically by date. Provide for multiple deactivate dates to be preprogrammed.
- F. Security Access Integration:

- 1. Photo ID badging and photo verification shall use the same database as the security access and may query data from cardholder, group, and other personal information to build a custom ID badge.
- 2. Automatic or manual image recall and manual access based on photo verification shall also be a means of access verification and entry.
- 3. System shall allow sorting of cardholders together by group or other characteristic for a fast and efficient method of reporting on, and enabling or disabling, cards or codes.
- G. Key control and tracking shall be an integrated function of cardholder data.
  - Provide the ability to store information about which conventional metal keys are issued and to whom, along with key construction information.
  - 2. Reports shall be designed to list everyone who possesses a specified key.
- H. Facility Codes: System shall accommodate up to 2048 facility codes per Location, with the option of allowing facility codes to work at all doors or only at particular doors.
- I. Operator Comments:
  - 1. With the press of one appropriate button on the toolbar, the user shall be permitted to enter operator comments into the history at any time.
  - 2. Automatic prompting of operator comment shall occur before the resolution of each alarm.
  - 3. Operator comments shall be recorded by time, date, and operator number.
  - 4. Comments shall be sorted and viewed through reports and history.
  - 5. The operator may enter comments in two ways; either or both may be used:
    - a. Manually entered through keyboard data entry (typed), up to 65,000 characters per each alarm.
    - b. Predefined and stored in database for retrieval on request.
  - 6. System shall have a minimum of 999 predefined operator comments with up to 30 characters per comment.

#### J. Group:

- 1. Group names may be used to sort cardholders into groups that allow the operator to determine the tenant, vendor, contractor, department, division, or any other designation of a group to which the person belongs.
- 2. System software shall have the capacity to assign one of 32,000 group names to an access authorization.
- 3. Make provision in software to deactivate and reactivate all access authorizations assigned to a particular group.
- 4. Allow sorting of history reports and code list printouts by group name.

# K. Time Zones:

- Each zone consists of a start and stop time for seven days of the week and three holiday schedules. A time zone is assigned to inputs, outputs, or access levels to determine when an input shall automatically arm or disarm, when an output automatically opens or secures, or when access authorization assigned to an access level will be denied or granted.
- 2. Up to four time zones may be assigned to inputs and outputs to allow up to four arm or disarm periods per day or four lock or unlock periods per day; up to three holiday override schedules may be assigned to a time zone.
- 3. Data-entry window shall display a dynamically linked bar graph showing active and inactive times for each day and holiday, as start and stop times are entered or edited.
- 4. System shall have the capacity for 2048 time zones for each Location.

# L. Holidays:

- 1. Three different holiday schedules may be assigned to a time zone. Holiday schedule consists of date in format MM/DD/YYYY and a description. When the holiday date matches the current date of the time zone, the holiday schedule replaces the time-zone schedule for that 24-hour period.
- 2. System shall have the capacity for 32,000 holidays.
- 3. Three separate holiday schedules may be applied to a time zone.

- 4. Holidays have an option to be designated as occurring on the designated date each year. These holidays remain in the system and will not be purged.
- 5. Holidays not designated to occur each year shall be automatically purged from the database after the date expires.

## M. Access Levels:

- 1. System shall allow for the creation of up to 32,000 access levels.
- 2. One level shall be predefined as the Master Access Level. The Master Access Level shall work at all doors at all times and override any anti-passback.
- 3. System shall allow for access to be restricted to any area by reader and by time. Access levels shall determine when and where an Identifier is authorized.
- 4. System shall be able to create multiple door and time-zone combinations under the same access level so that an Identifier may be valid during different time periods at different readers even if the readers are on the same controller.

#### N. User-Defined Fields:

- 1. System shall provide a minimum of 99 user-defined fields, each with up to 50 characters, for specific information about each credential holder.
- 2. System shall accommodate a title for each field; field length shall be 20 characters.
- 3. A "Required" option may be applied to each user-defined field that, when selected, forces the operator to enter data in the user-defined field before the credential can be saved.
- 4. A "Unique" option may be applied to each user-defined field that, when selected, will not allow duplicate data from different credential holders to be entered.
- 5. Data format option may be assigned to each user-defined field that will require the data to be entered with certain character types in specific spots in the field entry window.
- 6. A user-defined field, if selected, will define the field as a deactivate date. The selection shall automatically cause the data to be formatted with the windows MM/DD/YYYY date format. The credential of the holder will be deactivated on that date.
- 7. A search function shall allow any one user-defined field or combination of user-defined fields to be searched to find the appropriate cardholder. The search function shall include a search for a character string.
- 8. System shall have the ability to print cardholders based on and organized by the user-defined fields.

## O. Code Tracing:

- 1. System shall perform code tracing selectable by cardholder and by reader.
- 2. Any code may be designated as a "traced code" with no limit to how many codes can be traced.
- 3. Any reader may be designated as a "trace reader" with no limit to which or how many readers can be used for code tracing.
- 4. When a traced code is used at a trace reader, the access-granted message that usually appears on the monitor window of the central station shall be highlighted with a different color than regular messages. A short singular beep shall occur at the same time the highlighted message is displayed on the window.
- 5. The traced cardholder image (if image exists) shall appear on workstations when used at a trace reader.

# 2.6 SURGE AND TAMPER PROTECTION

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor-entry connection to components.
  - 1. Minimum Protection for Power Connections 120 V and More: Auxiliary panel suppressors complying with requirements in Section 264313 "Surge Protection for Low-Voltage Electrical Power Circuits."
  - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Connections: Comply with requirements in Section 264313 "Surge Protection for Low-Voltage Electrical Power Circuits" as recommended by manufacturer for type of line being protected.

B. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station control-unit alarm display shall identify tamper alarms and indicate locations.

## 2.7 FIXED MAP DISPLAY

A. A fixed map display shall show layout of the protected facilities. Zones corresponding to those monitored by the system shall be highlighted on the display. Status of each zone shall be displayed using digital displays as required within each designated zone. A digital display test switch shall be provided on the map display.

## 2.8 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the central station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this article, manufacturers may use multipurpose controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
  - 1. The controller shall automatically restore communication within 10 seconds after an interruption with the field device network.
    - Inputs: Monitor dry contacts for changes of state that reflect alarm conditions.
       Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
    - b. Alarm-Line Supervision:
      - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal, and for conditions as described in UL 1076 for line security equipment using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of 10 percent or more for longer than 500 ms.
      - 2) Transmit alarm-line-supervision alarm to the central station during the next interrogation cycle after the abnormal current condition.
    - c. Outputs: Managed by central-station software.
    - Auxiliary Equipment Power: A GFI service outlet inside the controller enclosure.

## E. Entry-Control Controller:

2.

- 1. Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personnel identity-verification devices, door strikes, magnetic latches, gate and door operators, and exit push buttons.
  - a. Operate as a stand-alone portal controller using the downloaded database during periods of communication loss between the controller and the field-device network.
  - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
    - On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
    - 2) Privileges shall include, but are not limited to, time of day control, day of week control, group control, and visitor escort control.
  - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
- 2. Inputs:

- a. Data from entry-control devices; use this input to change modes between access and secure.
- b. Database downloads and updates from the central station that include enrollment and privilege information.

## Outputs:

- a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
- b. Grant or deny entry by sending control signals to portal-control devices.
- c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the central station.
- Door Prop Alarm: If a portal is held open for longer than 20 seconds, alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communication with the central station, or when data transmission is degraded and generating continuous checksum errors, the controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.
  - a. Store up to 1000 transactions during periods of communication loss between the controller and access-control devices for subsequent upload to the central station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power-supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
  - a. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
  - b. Backup Power-Supply Capacity: 90 minutes of battery supply. Submit battery and charger calculations.
  - c. Power Monitoring: Provide manual, dynamic battery-load test, initiated and monitored at the control center; with automatic disconnection of the controller when battery voltage drops below controller limits. Report by using local controller-mounted digital displays and by communicating status to central station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:
    - 1) Trouble Alarm: Normal power-off load assumed by battery.
    - 2) Trouble Alarm: Low battery.
    - 3) Alarm: Power off.

# 2.9 CARD READERS, CREDENTIAL CARDS, AND KEYPADS

- A. Card-Reader Power: Powered from its associated controller, including its standby power source, and shall not dissipate more than 5 W.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the controller. Response time shall be 800 ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semi-flush, pedestal, or weatherproof mounting. Mounting types shall additionally be suitable for installation in the following locations:
  - 1. Indoors, controlled environment.
  - 2. Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- D. Display: Digital visual indicator shall provide visible and audible status indications and user prompts. Indicate power on or off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Touch-Plate and Proximity Readers:

- 1. Active-detection proximity card readers shall provide power to compatible credential cards through magnetic induction, and shall receive and decode a unique identification code number transmitted from the credential card.
- Passive-detection proximity card readers shall use a swept-frequency, RF field generator to read the resonant frequencies of tuned circuits laminated into compatible credential cards. The resonant frequencies read shall constitute a unique identification code number.
- 3. The card reader shall read proximity cards in a range from direct contact to at least 6 inches (150 mm) from the reader.
- F. Communication Protocol: Compatible with local processor.
- G. Credential Card Modification: Entry-control cards shall be able to be modified by lamination direct print process during the enrollment process without reduction of readability. The design of the credential cards shall allow for the addition of at least one slot or hole to accommodate the attachment of a clip for affixing the credential card to the badge holder used at the site.
- H. Card Size and Dimensional Stability: Credential cards shall be 2-1/8 by 3-3/8 inches (54 by 86 mm). The credential card material shall be dimensionally stable so that an undamaged card with deformations resulting from normal use shall be readable by the card reader.
- I. Card Material: Abrasion resistant, nonflammable, nontoxic, and impervious to solar radiation and effects of ultraviolet light.
- J. Card Construction:
  - 1. Core and laminate or monolithic construction.
  - Lettering, logos, and other markings shall be hot stamped into the credential material or direct printed.
  - 3. Furnish equipment for on-site assembly and lamination of credential cards.

#### 2.10 ENROLLMENT CENTER

- A. Equipment for enrolling personnel into, and removing personnel from, system database, using a dedicated workstation PC.
  - 1. Include equipment to enroll selected biometric credentials.
- B. Enrollment equipment shall support encoding of credential cards including cryptographic and other internal security checks as required for system.
  - 1. Allow only authorized entry-control enrollment personnel to access the enrollment equipment using passwords.
  - 2. Include enrollment-subsystem configuration controls and electronic diagnostic aids for subsystem setup and troubleshooting with the central station.
  - 3. Enrollment-station records printer shall meet requirements of the report printer.
- C. Entry-Control Enrollment Software:
  - 1. Shall include database management functions for the system, and shall allow an operator to change and modify the data entered in the system as needed.
  - 2. Software shall not have alarm response or acknowledgment functions as a programmable function.
  - 3. Multiple, password-protected access levels shall be provided at the enrollment station.
  - 4. Database management and modification functions shall require a higher operator-access level than personnel enrollment functions.
  - 5. Software shall provide a means for disabling the enrollment station when it is unattended, to prevent unauthorized use.
  - 6. Software shall provide a method to enter personnel identifying information into the entrycontrol database files through enrollment stations to include a credential unit in use at the installation.
  - 7. In the case of personnel identity-verification subsystems, this data shall include biometric data.
  - 8. Software shall allow entry of this data into the system database files through the use of simple menu selections and data fields. The data field names shall be customized to suit user and site needs.

9. Personnel identity-verification subsystems selected for use with the system shall fully support the enrollment function and shall be compatible with the entry-control database files.

#### D. Accessories:

- 1. Equipment, with the exception of the printers, shall be rack mounted in the console and equipment racks.
- E. System Capacity: Number of badges shall be limited only by hard disk space. Badge templates and images shall be in color, supporting the maximum color capability of Microsoft Windows.

# F. Badge Configuration:

- Software for badge template creation shall include a template consisting of background and predetermined locations of photographs, text objects and data fields for text, and barcode and biometric information. Include automatic sizing of data fields placed on a badge to compensate for names, which may otherwise be too large to fit in the area designated.
- 2. Allow different badge templates to be used for each department, tenant, or visitor.
- 3. As a setup option, templates shall be automatically selected for the badge, based on the group to which the credential holder is assigned. Allow the operator to override the automatic template selection and use a template chosen by the operator for creating a badge.
- 4. Setup shall determine which graphics and credential-holder information will be displayed and where on the card it will be placed. All data in the security access system, such as name, code, group, access level, and any of the 99 user-defined fields, shall be selectable, with the ability to place them anywhere on the card.
- 5. System shall include an importing, filing, and recall system of stored images and shapes that can be placed on the badge.
- 6. Allow multiple images on the same badge, including, but not limited to, bar codes, digital photos, and signatures.
- 7. Support transparent backgrounds so that image is only surrounded by the intended background and not by its immediate background.
- G. Photo Imaging: Integral to security access.
  - Import images from bitmap file formats, digital cameras, TWAIN cameras, or scanners.
     Allow image cropping and editing, WYSIWYG badge-building application, and badge print-preview and printing capabilities.
  - 2. System shall support multiple images stored for each credential holder, including signatures, portrait views, and profile views.
- H. Text Objects: Badge configuration shall provide for creation of custom text as an object, allowing font selection, typing, scaling, and formatting of the text object. Formatting options shall include changing font, font size, text flow, and text alignment; bending or curving the text object into a circle or semicircle; applying 3-D effects; and applying predefined effects such as tilt, extrusion, or beveling. Text shall be placed and optionally automatically centered within any region of the badge layout.
- I. Badges and Credential Cards:
  - 1. Badges are credential cards that do not contain data to be read by card readers.
  - 2. Credential cards shall store uniquely coded data used by card readers as an Identifier.
    - a. Proximity Cards: Use proximity detection without physical contact with the reader for proper operation.
  - 3. Allow entry-control card to be modified by lamination or direct print process during the enrollment process for use as a picture and identification badge without reduction of readability. The design shall allow for the addition of at least one slot or hole to accommodate the attachment of a clip for affixing the credential card to the type of badge holder used at the site.
    - a. Card Size and Dimensional Stability: Standard size, 2-1/8 by 3-3/8 inches (54 by 86 mm); dimensionally stable so that an undamaged card with deformations resulting from normal use shall be readable by the card reader.

- b. Card Material: Abrasion resistant, nonflammable, and nontoxic; and impervious to solar radiation and effects of ultraviolet light.
- c. Card Construction: Core and laminate or monolithic construction. Lettering, logos, and other markings shall be hot stamped into the credential material or direct printed.
  - 1) Furnish equipment for on-site assembly and lamination of credential cards.
- d. Card Durability and Maintainability: Designed and constructed to yield a useful lifetime of at least five years or 5000 insertions or swipes, whichever results in a longer period of time. Allow credential cards to be cleaned by wiping with a sponge or cloth wetted with soap and water.

## 2.11 DOOR AND GATE HARDWARE INTERFACE

- A. Exit Device with Alarm: Operation of the exit device shall generate an alarm. Exit device and alarm contacts are specified in Section 087100 "Door Hardware."
- B. Exit Alarm: Operation of a monitored door shall generate an alarm. Exit devices and alarm contacts are specified in Section 087100 "Door Hardware."
- C. Electric Door Strikes: Use end-of-line resistors to provide power-line supervision. Signal switches shall transmit data to controller to indicate when the bolt is not engaged and the strike mechanism is unlocked, and they shall report a forced entry. Power and signal shall be from the controller. Electric strikes are specified in Section 087100 "Door Hardware."
- D. Electromagnetic Locks: End-of-line resistors shall provide power-line supervision. Lock status sensing signal shall positively indicate door is secure. Power and signal shall be from the controller. Electromagnetic locks are specified in Section 087100 "Door Hardware."

#### 2.12 FIELD-PROCESSING SOFTWARE

## A. Operating System:

- 1. Local processors shall contain an operating system that controls and schedules that local processor's activities in real time.
- 2. Local processor shall maintain a point database in its memory that includes parameters, constraints, and the latest value or status of all points connected to that local processor.
- 3. Execution of local processor application programs shall utilize the data in memory resident files.
- 4. Operating system shall include a real-time clock function that maintains the seconds, minutes, hours, date, and month, including day of the week.
- 5. Local processor real-time clock shall be automatically synchronized with the central station at least once per day to plus or minus 10 seconds (the time synchronization shall be accomplished automatically, without operator action and without requiring system shutdown).

## B. Startup Software:

- 1. Causes automatic commencement of operation without human intervention, including startup of all connected I/O functions.
- 2. Local processor restart program based on detection of power failure at the local processor shall be included in the local processor software.
- 3. Initiates operation of self-test diagnostic routines.
- 4. Upon failure of the local processor, if the database and application software are no longer resident, the local processor shall not restart and systems shall remain in the failure mode indicated until the necessary repairs are made.
- 5. If the database and application programs are resident, the local processor shall immediately resume operation.

## C. Operating Mode:

- 1. Local processors shall control and monitor inputs and outputs as specified, independent of communications with the central station or designated workstations.
- 2. Alarms, status changes, and other data shall be transmitted to the central station or designated workstations when communications circuits are operable.

- 3. If communications are not available, each local processor shall function in a stand-alone mode and operational data, including the status and alarm data normally transmitted to the central station or designated workstations, shall be stored for later transmission to the central station or designated workstations.
- 4. Storage for the latest 4000 events shall be provided at local processors, as a minimum.
- 5. Local processors shall accept software downloaded from the central station.
- 6. Panel shall support flash ROM technology to accomplish firmware downloads from a central location.
- D. Failure Mode: Upon failure for any reason, each local processor shall perform an orderly shutdown and force all local processor outputs to a predetermined (failure-mode) state, consistent with the failure modes shown and the associated control device.

#### E. Functions:

- 1. Monitoring of inputs.
- 2. Control of outputs.
- 3. Reporting of alarms automatically to the central station.
- 4. Reporting of sensor and output status to central station upon request.
- 5. Maintenance of real time, automatically updated by the central station at least once a day.
- 6. Communication with the central station.
- 7. Execution of local processor resident programs.
- 8. Diagnostics.
- 9. Download and upload data to and from the central station.

## 2.13 FIELD-PROCESSING HARDWARE

- A. Alarm Annunciation Local Processor:
  - 1. Respond to interrogations from the field device network, recognize and store alarm status inputs until they are transmitted to the central station, and change outputs based on commands received from the central station.
  - 2. Local processor shall also automatically restore communication within 10 seconds after an interruption with the field device network and provide dc line supervision on each of its alarm inputs.
  - 3. Local processor inputs shall monitor dry contacts for changes of state that reflect alarm conditions.
  - 4. Local processor shall have at least eight alarm inputs which allow wiring contacts as normally open or normally closed for alarm conditions; and shall provide line supervision for each input by monitoring each input for abnormal open, grounded, or shorted conditions using dc current change measurements.
  - 5. Local processor shall report line supervision alarms to the central station.
  - 6. Alarms shall be reported for any condition that remains abnormal at an input for longer than 500 milliseconds.
  - 7. Alarm condition shall be transmitted to the central computer during the next interrogation cycle.
  - 8. Local processor outputs shall reflect the state of commands issued by the central station.
  - 9. Outputs shall be a form C contact and shall include normally open and normally closed contacts.
  - 10. Local processor shall have at least four command outputs.
  - 11. Local processor shall be able to communicate with the central station via RS-485 or TCP/IP as a minimum.
- B. Processor Power Supply:
  - 1. Local processor and sensors shall be powered from an uninterruptible power source.
  - 2. Uninterruptible power source shall provide eight hours of battery back-up power in the event of primary power failure and shall automatically fully recharge the batteries within 12 hours after primary power is restored.
  - 3. If the facility is without an emergency generator, the uninterruptible power source shall provide 24 hours of battery backup power.

- 4. There shall be no equipment malfunctions or perturbations or loss of data during the switch from primary to battery power and vice versa.
- 5. Batteries shall be sealed, non-outgassing type.
- 6. Power supply shall be equipped with an indicator for ac input power and an indicator for dc output power.
- 7. Loss of primary power shall be reported to the central station as an alarm.
- C. Auxiliary Equipment Power: A GFI service outlet shall be furnished inside the local processor's enclosure.
- D. Entry-Control Local Processor:
  - 1. Entry-control local processor shall respond to interrogations from the field device network, recognize and store alarm status inputs until they are transmitted to the central station, and change outputs based on commands received from the central station.
  - 2. Local processor shall also automatically restore communication within 10 seconds after an interruption with the field device network and provide dc line supervision on each of its alarm inputs.
  - 3. Entry-control local processor shall provide local entry-control functions including communicating with field devices such as card readers, keypads, biometric personnel identity-verification devices, door strikes, magnetic latches, gate and door operators, and exit push buttons.
  - 4. Processor shall also accept data from entry-control field devices as well as database downloads and updates from the central station that include enrollment and privilege information.
  - 5. Processor shall send indications of successful or failed attempts to use entry-control field devices and shall make comparisons of presented information with stored identification information.
  - 6. Processor shall grant or deny entry by sending control signals to portal-control devices and mask intrusion-alarm annunciation from sensors stimulated by authorized entries.
  - 7. Entry-control local processor shall use inputs from entry-control devices to change modes between access and secure.
  - 8. Local processor shall maintain a date-time- and location-stamped record of each transaction and transmit transaction records to the central station.
  - 9. Processor shall operate as a stand-alone portal controller using the downloaded database during periods of communication loss between the local processor and the central station.
  - 10. Processor shall store a minimum of 4000 transactions during periods of communication loss between the local processor and the central station for subsequent upload to the central station upon restoration of communication.
  - 11. Local processor inputs shall monitor dry contacts for changes of state that reflect alarm conditions.
  - 12. Local processor shall have at least eight alarm inputs which allow wiring contacts as normally open or normally closed for alarm conditions; and shall also provide line supervision for each input by monitoring each input for abnormal open, grounded, or shorted conditions using dc current change measurements.
  - 13. Local processor shall report line supervision alarms to the central station.
  - Alarms shall be reported for any condition that remains abnormal at an input for longer than 500 ms.
  - 15. Alarm condition shall be transmitted to the central station during the next interrogation cycle.
  - 16. Entry-control local processor shall include the necessary software drivers to communicate with entry-control field devices. Information generated by the entry-control field devices shall be accepted by the local processor and automatically processed to determine valid identification of the individual present at the portal.
  - 17. Upon authentication of the credentials or information presented, the local processor shall automatically check privileges of the identified individual, allowing only those actions granted as privileges.

- 18. Privileges shall include, but are not limited to, time of day control, day of week control, group control, and visitor escort control. The local processor shall maintain a date-time-and location-stamped record of each transaction.
- 19. Transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
- 20. Local processor outputs shall reflect the state of commands issued by the central station.
- 21. Outputs shall be a form C contact and shall include normally open and normally closed contacts.
- 22. Local processor shall have at least four addressable outputs.
- 23. The entry-control local processor shall also provide control outputs to portal-control devices.
- 24. Local processor shall be able to communicate with the central station via RS-485 or TCP/IP as a minimum.
- 25. The system manufacturer shall provide strategies for downloading database information for panel configurations and cardholder data to minimize the required download time when using IP connectivity.

# 2.14 CABLES

- A. General Cable Requirements: Comply with requirements in Section 280513 "Conductors and Cables for Electronic Safety and Security" and as recommended by system manufacturer for integration requirement.
- B. Plenum-Type, TIA 232-F Cables:
  - Two pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum-foil/polyester-tape shielded pairs with 100 percent shield coverage; plastic jacket.
  - 2. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
  - 3. NFPA 70, Type CMP.
  - 4. Flame Resistance: NFPA 262 flame test.
- C. Plenum-Type, TIA 485-A Cables:
  - 1. Two pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket.
  - 2. NFPA 70, Type CMP.
  - 3. Flame Resistance: NFPA 262 flame test.
- D. Multiconductor, Plenum-Type, Reader and Wiegand Keypad Cables:
  - Six conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinatedethylene-propylene insulation, overall aluminum-foil/polyester-tape shield with 100 percent shield coverage plus tinned copper braid shield with 85 percent shield coverage, and fluorinated-ethylene-propylene jacket.
  - 2. NFPA 70, Type CMP.
  - 3. Flame Resistance: NFPA 262 flame test.
- E. Paired, Plenum-Type, Lock Cables:
  - 1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
  - 2. NFPA 70, Type CMP.
  - 3. Flame Resistance: NFPA 262 flame test.
- F. Paired, Plenum-Type, Input Cables:
  - 1. One pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinatedethylene-propylene insulation, aluminum-foil/polyester-tape shield (foil side out), with No. 22 AWG drain wire, 100 percent shield coverage, and plastic jacket.
  - 2. NFPA 70, Type CMP.
  - Flame Resistance: NFPA 262 flame test.
- G. Paired, Plenum-Type, AC Transformer Cables:

- 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinatedethylene-propylene insulation, unshielded, and plastic jacket.
- 2. NFPA 70, Type CMP.
- 3. Flame Resistance: NFPA 262 flame test.

# H. LAN Cabling:

- 1. Comply with requirements in Section 280513 "Conductors and Cables for Electronic Safety and Security."
- 2. NFPA 262.

### 2.15 TRANSFORMERS

A. NFPA 70, Class II control transformers, NRTL listed. Transformers for security access-control system shall not be shared with any other system.

# 2.16 CABLE AND ASSET MANAGEMENT SOFTWARE

- A. Computer-based cable and asset management system, with fully integrated database and graphic capabilities, complying with requirements in TIA/EIA 606-A.
  - 1. Document physical characteristics by recording the network, asset, user, TIA/EIA details, device configurations, and exact connections between equipment and cabling.
    - a. Manage the physical layer of security system.
    - b. List device configurations.
    - c. List and display circuit connections.
    - d. Record firestopping data.
    - e. Record grounding and bonding connections and test data.
  - 2. Information shall be presented in database view, schematic plans, or technical drawings.
    - a. Microsoft Visio Technical Drawing shall be used as drawing and schematic plans software. Drawing symbols, system layout, and design shall comply with SIA/IAPSC AG-01.
  - 3. System shall interface with the following testing and recording devices:
    - a. Direct-upload tests from circuit testing instrument into the PC.
    - b. Direct-download circuit labeling into labeling printer.

# **PART 3 - EXECUTION**

### 3.1 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

# 3.2 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with TIA/EIA 606-A, "Administration Standard for Commercial Telecommunications Infrastructure."
- C. Product Schedules: Obtain detailed product schedules from manufacturer of access-control system or develop product schedules to suit Project. Fill in all data available from Project plans and specifications and publish as Product Schedules for review and approval.
  - 1. Record setup data for control station and workstations.
  - 2. For each Location, record setup of controller features and access requirements.
  - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
  - 4. Set up groups, facility codes, linking, and list inputs and outputs for each controller.
  - 5. Assign action message names and compose messages.

- 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
- 7. Prepare and install alarm graphic maps.
- 8. Develop user-defined fields.
- 9. Develop screen layout formats.
- 10. Propose setups for guard tours and key control.
- 11. Discuss badge layout options; design badges.
- 12. Complete system diagnostics and operation verification.
- 13. Prepare a specific plan for system testing, startup, and demonstration.
- 14. Develop acceptance test concept and, on approval, develop specifics of the test.
- 15. Develop cable and asset-management system details; input data from construction documents. Include system schematics and Visio Technical Drawings in electronic format.
- D. In meetings with Architect and Owner, present Product Schedules and review, adjust, and prepare final setup documents. Use approved, final Product Schedules to set up system software.

### 3.3 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Construction."
- B. Install cables and wiring according to requirements in Section 280513 "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- D. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and fiber-optic rating of components, and that ensure Category 6 and fiber-optic performance of completed and linked signal paths, end to end.
- E. Boxes and enclosures containing security-system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- F. Install end-of-line resistors at the field device location and not at the controller or panel location.

### 3.4 CABLE APPLICATION

- A. Comply with TIA 569-B, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. TIA 232-F Cabling: Install at a maximum distance of 50 ft. (15 m).
- D. TIA 485-A Cabling: Install at a maximum distance of 4000 ft. (1220 m).
- E. Card Readers and Keypads:
  - 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
  - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from controller to the reader is 250 ft. (75 m), and install No. 20 AWG wire if maximum distance is 500 ft. (150 m).
  - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the controller.
  - Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from controller to electrically powered locks. Do not exceed 500 ft. (150 m).

G. Install minimum No. 18 AWG ac power wire from transformer to controller, with a maximum distance of 25 ft. (8 m).

# 3.5 GROUNDING

- A. Comply with Section 280526 "Grounding and Bonding for Electronic Safety and Security."
- B. Comply with IEEE 1100, "Recommended Practice for Power and Grounding Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Bond shields and drain conductors to ground at only one point in each circuit.
- E. Signal Ground:
  - 1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
  - 2. Bus: Mount on wall of main equipment room with standoff insulators.
  - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

### 3.6 INSTALLATION

- A. Push Buttons: Where multiple push buttons are housed within a single switch enclosure, they shall be stacked vertically with each push-button switch labeled with 1/4-inch- (6.4-mm-) high text and symbols as required. Push-button switches shall be connected to the controller associated with the portal to which they are applied, and shall operate the appropriate electric strike, electric bolt, or other facility release device.
- B. Install card readers, keypads, push buttons, and biometric readers.

#### 3.7 IDENTIFICATION

- A. In addition to requirements in this article, comply with applicable requirements in Section 260553 "Identification for Electrical Systems" and with TIA/EIA 606-A.
- B. Using software specified in "Cable and Asset Management Software" Article, develop cable administration drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable, and label cable and jacks, connectors, and terminals to which it connects with the same designation. Use logical and systematic designations for facility's architectural arrangement.
- C. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
  - 1. All wiring conductors connected to terminal strips shall be individually numbered, and each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with the name and number of the particular device as shown.
  - 2. Each wire connected to building-mounted devices is not required to be numbered at the device if the color of the wire is consistent with the associated wire connected and numbered within the panel or cabinet.
- D. At completion, cable and asset management software shall reflect as-built conditions.

# 3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
  - Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
  - 1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA 568-B.1, "Commercial Building Telecommunications Cabling Standards Part 1: General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA 568-B.1.

- 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power-supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
- 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.
- C. Devices and circuits will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

# 3.9 STARTUP SERVICE

- A. Engage a factory-authorized service representative to supervise and assist with startup service.
  - 1. Complete installation and startup checks according to approved procedures that were developed in "Preparation" Article and with manufacturer's written instructions.
  - 2. Enroll and prepare badges and access cards for Owner's operators, management, and security personnel.

### 3.10 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured with an activated burglar alarm and access-control system reporting to a central station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

### 3.11 DEMONSTRATION

- A. Train Owner's maintenance personnel to adjust, operate, and maintain security access system. See Section 017900 "Demonstration and Training."
- B. Develop separate training modules for the following:
  - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
  - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
  - 3. Security personnel.
  - 4. Hardware maintenance personnel.
  - 5. Corporate management.

### **END OF SECTION 281300**

Logan City School District

# SECTION 283111 DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

#### **PART 1 - GENERAL**

# 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

# 1.2 SUMMARY

- A. Section Includes:
  - Fire-alarm control unit.
  - 2. Manual fire-alarm boxes.
  - System smoke detectors.
  - 4. Heat detectors.
  - 5. Notification appliances.
  - 6. Magnetic door holders.
  - 7. Remote annunciator.
  - 8. Addressable interface device.
  - 9. Digital alarm communicator transmitter.

### 1.3 DEFINITIONS

- A. LED: Light-emitting diode.
- B. NICET: National Institute for Certification in Engineering Technologies.

# 1.4 SYSTEM DESCRIPTION

- A. Noncoded, FMG-placarded addressable system, with multiplexed signal transmission, dedicated to fire-alarm service only.
  - 1. New system for Dialysis building
  - 2. Integrate to and upgrade existing Hospital system for Cath Lab and Admin areas
  - 3. Integrate to and upgrade existing Women's Center system for and Hyperbaric

# 1.5 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
  - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

# 1.6 SUBMITTALS

- A. General Submittal Requirements:
  - 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
  - 2. Shop Drawings shall be prepared by persons with the following qualifications:
    - a. Trained and certified by manufacturer in fire-alarm system design.
    - b. NICET-certified fire-alarm technician, Level III minimum.
    - c. Licensed or certified by authorities having jurisdiction.
- B. Product Data: For each type of product indicated.
- C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
  - 1. Comply with recommendations in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter in NFPA 72.
  - 2. Include voltage drop calculations for notification appliance circuits.
  - 3. Include battery-size calculations.

- 4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
- 5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.
- 6. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
- 7. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.
- D. Delegated-Design Submittal: For smoke and heat detectors indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
  - 1. Drawings showing the location of each smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the detector.
  - 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72.
- E. Qualification Data: For qualified Installer.
- F. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.
  - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
  - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
  - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- G. Field quality-control reports.
- H. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
  - Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
  - 2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
  - 3. Record copy of site-specific software.
  - 4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
    - Frequency of testing of installed components.
    - b. Frequency of inspection of installed components.
    - c. Requirements and recommendations related to results of maintenance.
    - d. Manufacturer's user training manuals.
  - 5. Manufacturer's required maintenance related to system warranty requirements.
  - 6. Abbreviated operating instructions for mounting at fire-alarm control unit.
  - 7. Copy of NFPA 25.
- I. Software and Firmware Operational Documentation:
  - 1. Software operating and upgrade manuals.
  - 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
  - 3. Device address list.
  - 4. Printout of software application and graphic screens.

# 1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FMG-approved alarm company.

### 1.8 PROJECT CONDITIONS

- A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
  - Notify Owner no fewer than two days in advance of proposed interruption of fire-alarm service.
  - 2. Do not proceed with interruption of fire-alarm service without Owner's written permission.

### 1.9 SEQUENCING AND SCHEDULING

- A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.
- B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

### 1.10 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
  - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

### 1.11 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
  - 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
  - 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
  - 3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
  - 4. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but no fewer than 1 unit of each type.
  - 5. Keys and Tools: One extra set for access to locked and tamperproofed components.
  - 6. Audible and Visual Notification Appliances: One of each type installed.

# **PART 2 - PRODUCTS**

### 2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - 1. Simplex

# 2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices:
  - Manual stations.
  - 2. Heat detectors.
  - 3. Smoke detectors.
  - 4. Duct smoke detectors.
  - 5. Automatic sprinkler system water flow.
- B. Fire-alarm signal shall initiate the following actions:
  - 1. Continuously operate alarm notification appliances.
  - 2. Identify alarm at fire-alarm control unit and remote annunciators.
  - 3. Transmit an alarm signal to the remote alarm receiving station.
  - 4. Unlock electric door locks in designated egress paths.
  - 5. Release fire and smoke doors held open by magnetic door holders.
  - 6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
  - 7. Recall elevators to primary or alternate recall floors.
  - 8. Record events in the system memory.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
  - 1. Valve supervisory switch.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
  - 1. Open circuits, shorts, and grounds in designated circuits.
  - 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
  - 3. Loss of primary power at fire-alarm control unit.
  - 4. Ground or a single break in fire-alarm control unit internal circuits.
  - 5. Abnormal ac voltage at fire-alarm control unit.
  - 6. Break in standby battery circuitry.
  - 7. Failure of battery charging.
  - 8. Abnormal position of any switch at fire-alarm control unit or annunciator.
- E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit and remote annunciators. Record the event on system printer.

# 2.3 FIRE-ALARM CONTROL UNIT

- A. General Requirements for Fire-Alarm Control Unit:
  - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
    - a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
    - b. Include a real-time clock for time annotation of events on the event recorder and printer.
    - c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
    - d. The FACP shall be listed for connection to a central-station signaling system service.
    - e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.

- 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
- 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
- B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
  - 1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
  - Keypad: Arranged to permit entry and execution of programming, display, and control commands.
- C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
  - 1. Annunciator and Display: Liquid-crystal type, two line(s) of 40 characters, minimum.
  - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

# D. Circuits:

- 1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class A.
  - a. Initiating Device Circuits: Style E.
  - b. Notification Appliance Circuits: Style Z.
  - c. Signaling Line Circuits: Style 7.
  - d. Install no more than 50 addressable devices on each signaling line circuit.
- E. Notification Appliance Circuit: Operation shall sound in a repeating pattern.
- F. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke barrier walls shall be connected to fire-alarm system.
- G. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
  - 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.
- H. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.
  - 1. Batteries: Sealed lead calcium.

# 2.4 MANUAL FIRE-ALARM BOXES

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
  - 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
  - 2. Station Reset: Key- or wrench-operated switch.
  - 3. Indoor Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.

### 2.5 SYSTEM SMOKE DETECTORS

- A. General Requirements for System Smoke Detectors:
  - 1. Comply with UL 268; operating at 24-V dc, nominal.

- 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- 3. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
- 4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
- Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.

### B. Photoelectric Smoke Detectors:

- 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
- 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
  - a. Primary status.
  - b. Device type.
  - c. Present average value.
  - d. Present sensitivity selected.
  - e. Sensor range (normal, dirty, etc.).

### C. Ionization Smoke Detector:

- 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
- 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
  - a. Primary status.
  - b. Device type.
  - c. Present average value.
  - d. Present sensitivity selected.
  - e. Sensor range (normal, dirty, etc.).
- D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
  - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
  - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
    - a. Primary status.
    - b. Device type.
    - c. Present average value.
    - d. Present sensitivity selected.
    - e. Sensor range (normal, dirty, etc.).
  - 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
  - 4. Each sensor shall have multiple levels of detection sensitivity.
  - 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
  - 6. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit.

# 2.6 HEAT DETECTORS

- A. General Requirements for Heat Detectors: Comply with UL 521.
- B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C) or a rate of rise that exceeds 15 deg F (8 deg C) per minute unless otherwise indicated.
  - 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
  - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

# 2.7 NOTIFICATION APPLIANCES

- A. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
  - Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
- B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet (3 m) from the horn, using the coded signal prescribed in UL 464 test protocol.
- C. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- (25-mm-) high letters on the lens.
  - 1. Rated Light Output:
    - a. 15/30/75/110 cd, selectable in the field.
  - 2. Mounting: Wall mounted unless otherwise indicated.
  - 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
  - 4. Flashing shall be in a temporal pattern, synchronized with other units.
  - 5. Strobe Leads: Factory connected to screw terminals.
  - 6. Mounting Faceplate: Factory finished white.

# 2.8 MAGNETIC DOOR HOLDERS

- A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
  - 1. Electromagnet: Requires no more than 3 W to develop 25-lbf (111-N) holding force.
  - 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
  - 3. Rating: 24-V ac or dc.
- B. Material and Finish: Match door hardware.

# 2.9 ADDRESSABLE INTERFACE DEVICE

- A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- B. Integral Relay: Capable of providing a direct signal to elevator controller to control equipment as required.

# 2.10 FIRE ALARM WIRE AND CABLE

- General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer, but not less than No. 18 AWG.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
  - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
  - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
  - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

# **PART 3 - EXECUTION**

# 3.1 EQUIPMENT INSTALLATION

A. Comply with NFPA 72 for installation of fire-alarm equipment.

- B. Equipment Mounting: Install fire-alarm control unit on finished floor with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.
  - Comply with requirements for seismic-restraint devices specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
  - 2. Comply with requirements for seismic-restraint devices specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- C. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
  - 1. Connect new equipment to existing control panel in existing part of the building.
  - 2. Connect new equipment to existing monitoring equipment at the supervising station.
  - 3. Expand, modify, and supplement existing control equipment as necessary to extend existing control functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.
- D. Smoke- or Heat-Detector Spacing:
  - 1. Comply with NFPA 72, "Smoke-Sensing Fire Detectors" Section in the "Initiating Devices" Chapter, for smoke-detector spacing.
  - 2. Comply with NFPA 72, "Heat-Sensing Fire Detectors" Section in the "Initiating Devices" Chapter, for heat-detector spacing.
  - 3. Smooth ceiling spacing shall not exceed 30 feet (9 m).
  - 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Appendix Ain NFPA 72.
  - 5. HVAC: Locate detectors not closer than 3 feet (1 m) from air-supply diffuser or return-air opening.
  - 6. Lighting Fixtures: Locate detectors not closer than 12 inches (300 mm) from any part of a lighting fixture.
- E. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.
- F. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.
- G. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
- H. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches (150 mm) below the ceiling.
- I. Device Location-Indicating Lights: Locate in public space near the device they monitor.

### 3.2 CONNECTIONS

- A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Division 08 Section "Door Hardware." Connect hardware and devices to fire-alarm system.
  - 1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.
- B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet (1 m) from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
  - 1. Smoke dampers in air ducts of designated air-conditioning duct systems.
  - 2. Alarm-initiating connection to activate emergency lighting control.
  - 3. Supervisory connections at valve supervisory switches.

# 3.3 FIRE ALARM WIRING INSTALLATION

A. Comply with NECA 1 and NFPA 72.

- B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway and Boxes for Electrical Systems."
  - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
  - 2. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
  - 3. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is not permitted.
  - 4. Signaling Line Circuits: Power-limited fire alarm cables shall not be installed in the same cable or raceway as signaling line circuits.
- C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- D. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- E. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

# 3.4 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."
- B. Install framed instructions in a location visible from fire-alarm control unit.

# 3.5 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

# 3.6 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by owner and authorities having jurisdiction.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
  - Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- D. Tests and Inspections:
  - 1. Visual Inspection: Conduct visual inspection prior to testing.
    - a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
    - b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
  - 2. System Testing: Comply with "Test Methods" Table in the "Testing" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.

- 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
- 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
- 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
- 6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
- E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- F. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.
- H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.
- I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

# 3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

**END OF SECTION 283111** 

# SECTION 311000 SITE CLEARING

### **PART 1 GENERAL**

#### 1.01 SECTION INCLUDES

- A. Clearing and protection of vegetation.
- B. Clearing and grubbing.
- C. Stripping and stockpiling topsoil.
- D. Removing above- and below- grade site improvements.
- E. Temporary erosion and sedimentation control measures.
- F. Removal of existing debris.

### 1.02 RELATED REQUIREMENTS

- A. Section 011000 Summary: Limitations on Contractor's use of site and premises.
- B. Section 011000 Summary: Sequencing and staging requirements.
- C. Section 015000 Temporary Facilities and Controls: Site fences, security, protective barriers, and waste removal.
- D. Section 015713 Temporary Erosion and Sediment Control.
- E. Section 017000 Execution and Closeout Requirements: Project conditions; protection of bench marks, survey control points, and existing construction to remain; reinstallation of removed products.
- F. Section 312200 Grading: Topsoil removal.
- G. Section 312200 Grading: Fill material for filling holes, pits, and excavations generated as a result of removal operations.
- H. Section 329300 Plants: Relocation of existing trees, shrubs, and other plants.
- I. Section 329300 Plants: Pruning of existing trees to remain.

# 1.03 DEFINITIONS

A. Topsoil: Natural or cultivated surface-soil layer containing organic matter and sand, silt, and clay particles; friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other non-soil materials.

# 1.04 MATERIAL OWNERSHIP

A. Except for stripped topsoil or other materials indicated to remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

# 1.05 SUBMITTALS

- A. Photographs or videotape, sufficiently detailed, of existing conditions of trees and plantings, adjoining construction, and site improvements that might be misconstrued as damage caused by site clearing.
- B. Site Plan: Showing:
  - 1. Areas for temporary construction and field offices.
- C. Record drawings, Project Record Documents, identifying and accurately locating capped utilities and other subsurface structural, electrical, and mechanical conditions.

### 1.06 QUALITY ASSURANCE

A. Pre-installation Conference: Conduct conference at Project site to comply with requirements in Project Management and Coordination.

### 1.07 PROJECT CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
  - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
  - 2. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.
- B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
  - 1. Do not proceed with work on adjoining property until directed by Architect.
- C. Salvable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.
- D. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.
- E. Do not commence site clearing operations until temporary erosion and sedimentation control measures are in place.

#### PART 2 PRODUCTS

#### 2.01 SOIL MATERIALS

- A. Satisfactory Soil Material: As specified in Section 31 2000 Earth Moving
  - 1. Obtain approved borrow soil materials off-site when satisfactory soil materials are not available on-site.

# **PART 3 EXECUTION**

# 3.01 PREPARATION

- Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Protect existing site improvements to remain from damage during construction.
  - Restore damaged improvements to their original condition, as acceptable to Owner.

### 3.02 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion and sedimentation control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to requirements of authorities having jurisdiction, sediment and erosion control Drawings, a sediment and erosion control plan, specific to the site, that complies with EPA 832/R-92-005 or requirements of authorities having jurisdiction, whichever is more stringent.
- B. Inspect, repair, and maintain erosion and sedimentation control measures during construction until permanent vegetation has been established.
- Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

# 3.03 SITE CLEARING AND GRUBBING

- A. Comply with other requirements specified in Section 017000.
- B. Remove obstructions, grass, and other vegetation to permit installation of new construction.
- C. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
  - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches and compact each layer to a density equal to adjacent original ground.
- D. Minimize production of dust due to clearing operations; do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.

### 3.04 EXISTING UTILITIES AND BUILT ELEMENTS

- A. Coordinate work with utility companies; notify before starting work and comply with their requirements; obtain required permits.
  - 1. Owner will arrange to shut off indicated utilities when requested by Contractor.
- B. Protect existing utilities to remain from damage.
- C. Do not disrupt public utilities without permit from authority having jurisdiction.
  - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
  - 2. Do not proceed with utility interruptions without Architect's written permission.
- D. Protect existing structures and other elements that are not to be removed.

### 3.05 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil to whatever depths are encountered in a manner to prevent intermingling with underlying subsoil or other waste materials.
  - 1. Remove subsoil and non-soil materials from topsoil, including trash, debris, weeds, roots, and other waste materials.
- C. Stockpile topsoil materials away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust.
  - 1. Limit height of topsoil stockpiles to 120 inches.
  - 2. Dispose of excess topsoil as specified for waste material disposal.
  - 3. Stockpile surplus topsoil to allow for re-spreading deeper topsoil.

#### 3.06 VEGETATION

- A. Scope: Remove trees, shrubs, brush, and stumps in areas to be covered by building structure, paving, playing fields, lawns, and planting beds.
- B. Do not remove or damage vegetation beyond the limits indicated on drawings.
- C. Install substantial, highly visible fences at least 3 feet high to prevent inadvertent damage to vegetation to remain:
  - At vegetation removal limits.
  - 2. Around trees to remain within vegetation removal limits; locate no closer to tree than at the drip line.
- D. In areas where vegetation must be removed but no construction will occur other than pervious paving, remove vegetation with minimum disturbance of the subsoil.
- E. Vegetation Removed: Do not burn, bury, landfill, or leave on site, except as indicated.
  - 1. Chip, grind, crush, or shred vegetation for mulching, composting, or other purposes; preference should be given to on-site uses.
  - 2. Trees: Treat as specified for other vegetation removed; remove stumps and roots to depth of 18 inches.
  - 3. Fill holes left by removal of stumps and roots, using suitable fill material, with top surface neat in appearance and smooth enough not to constitute a hazard to pedestrians.
- F. Restoration: If vegetation outside removal limits or within specified protective fences is damaged or destroyed due to subsequent construction operations, replace at no cost to Owner.

# 3.07 SITE IMPROVEMENTS

- A. Remove existing above-grade and below-grade improvements as indicated and as necessary to facilitate new construction. Refer to project plans for improvements to be abandoned in place.
- B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
  - 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut length of existing pavement to remain before removing existing pavement. Saw-cut faces vertically.
  - 2. Paint cut ends of steel reinforcement in concrete to remain to prevent corrosion.

# **3.08 DEBRIS**

- A. Remove debris, junk, and trash from site.
- B. Leave site in clean condition, ready for subsequent work.
- C. Clean up spillage and wind-blown debris from public and private lands.

# 3.09 DISPOSAL

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
  - 1. Separate recyclable materials produced during site clearing from other non-recyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities.

# **END OF SECTION**

# SECTION 312000 EARTH MOVING

### **PART 1 GENERAL**

### 1.01 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Refer to the Geotechnical Report titled "Report Geotechnical Engineering Investigation"

# 1.02 SUMMARY

- A. This Section includes the following:
  - 1. Preparing sub-grades for, pavements, and drains.
  - 2. Subbase course for artificial turf and pavements.
  - 3. Base course for asphalt paving
  - 4. Subsurface drainage backfill for trenches and flat panel drains.
  - 5. Excavating and backfilling for utility trenches.
  - Excavating and backfilling trenches for buried electrical utilities and pits for buried utility structures.
- B. Related Sections include the following:
  - 1. Division 01 Section Construction Progress Documentation and Photographic Documentation for recording pre-excavation and earthwork progress.
  - 2. Division 01 Section "Temporary Facilities and Controls" for temporary controls, utilities, and support facilities.
  - 3. Divisions 26 and 27 Sections for installing underground electrical utilities and buried electrical structures.
  - 4. Division 31 Section "Site Clearing" for temporary erosion and sedimentation control measures, site stripping, grubbing, stripping and stockpiling topsoil, and removal of abovegrade and below-grade improvements and utilities.

# 1.03 UNIT PRICES

- A. Unit prices for earthwork are included in Division 01 Section "Unit Prices."
- B. Quantity allowances for earthwork are included in Division 01 Section "Allowances."

# 1.04 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
  - Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
  - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Course placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Course placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: 1-1/2-inch minus washed gravel or crushed stone course around perforated collector pipe.
- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
  - Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices and changes in the work.
  - 2. Bulk Excavation: Excavation more than 10-feet in width and more than 30-feet in length.
  - 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.

- G. Fill: Soil materials used to raise existing grades.
- H. Structures: Slabs, curbs, and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- I. Subbase Course: Course placed between the subgrade and base course for hot-mix asphalt pavement, or course placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- J. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
- K. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

# 1.05 SUBMITTALS

- A. Product Data: For the following:
  - Each type of plastic warning tape.
  - 2. Controlled low-strength material, including design mixture.
- B. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated:
  - Classification according to ASTM D 2487 of each on-site and borrow soil material proposed for fill and backfill.
  - Laboratory compaction curve according to ASTM D698 or ASTM D1557 for each on-site and borrow soil material proposed for fill and backfill.
- C. Blasting Plan: Not Allowed
- D. Pre-excavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earthwork operations. Submit before earthwork begins.

### 1.06 QUALITY ASSURANCE

- A. Geotechnical Testing Agency Qualifications: An independent testing agency qualified according to ASTM E 329 to conduct soil materials and rock-definition testing, as documented according to ASTM D 3740 and ASTM E 548.
- B. Pre-excavation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination."

# 1.07 PROJECT CONDITIONS

- A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted in writing by Architect and then only after arranging to provide temporary utility services according to requirements indicated.
  - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
  - 2. Do not proceed with utility interruptions without Architect's written permission.
  - 3. Contact utility-locator service for area where Project is located before excavating.
- B. Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies to shut off services if lines are active.

### **PART 2 PRODUCTS**

#### 2.01 SOIL MATERIALS

- General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: ASTM D 2487 Soil Classification Groups GW, GP, GM, SW, SP, and SM or AASHTO M 145 Soil Classification Groups A-1, A-2-4, A-2-5, and A-3, or a combination of these groups; free of rock or gravel larger than 3-inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Native rock crushed to meet the above requirements and free from significant porosity may also be used as satisfactory soils.

- C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487 or A-2-6, A-2-7, A-4, A-5, A-6, and A-7 according to AASHTO M 145, or a combination of these groups.
  - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
- D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- E. Aggregate Base Course (under paving): Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-inch sieve and not more than 15 percent passing a No. 200 sieve. Sand Equivalent of no less than 35.
- F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve. (Cannot be straight sand).
- G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 3/4-inch sieve and not more than 8 percent passing a No. 200 sieve.
- H. Drainage Course (around perforated pipe): Narrowly graded mixture of washed or crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.

# 2.02 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:
- B. Detectable Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows when required by utility purveyor:
  - Red: Electric.
  - 2. Yellow: Gas, oil, steam, and dangerous materials.
  - 3. Orange: Telephone and other communications.
  - 4. Blue: Water systems.
  - 5. Green: Sewer systems.

# PART 3 EXECUTION

# 3.01 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earthwork operations.
- B. Preparation of subgrade for earthwork operations including removal of vegetation, topsoil, debris, obstructions, and deleterious materials from ground surface is specified in Division 31 Section "Site Clearing."
- C. Protect and maintain erosion and sedimentation controls, which are specified in Division 31 Section "Site Clearing," during earthwork operations.
- D. Provide protective insulating materials to protect subgrades and foundation soils against freezing temperatures or frost.
- E. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- F. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

- Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.
- 2. Install a dewatering system to keep subgrades dry and convey ground water away from excavations. Maintain until dewatering is no longer required.

# 3.02 EXPLOSIVES - NOT ALLOWED

# 3.03 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
  - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
  - 2. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:
    - a. 24 inches outside of concrete forms other than at footings.
    - b. 12 inches outside of concrete forms at footings.
    - c. 6 inches outside of minimum required dimensions of concrete cast against grade.
    - d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
    - e. 6 inches beneath bottom of concrete slabs on grade.
    - f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

# 3.04 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

# 3.05 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
  - 1. Excavate trenches to allow installation of top of pipe below frost line.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit, unless otherwise indicated.
  - 1. Clearance: 12 inches each side of pipe or conduit.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
  - For pipes and conduit less than 6 inches in nominal diameter and flat-bottomed, multipleduct conduit units, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
  - 2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe circumference. Fill depressions with tamped sand backfill.
  - 3. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

# 3.06 SUBGRADE INSPECTION

- A. Notify Architect when excavations have reached required subgrade.
- B. If Architect determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
- C. Proof-roll subgrade below the building slabs and pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

- 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
- 2. Proof-roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons or vehicle with similar unit axel weight.
- Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.
- D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices and changes in the Work.
- E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

# 3.07 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Architect.
  - Fill unauthorized excavations under other construction or utility pipe as directed by Architect.

# 3.08 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
  - 1. Stockpile soil materials away from edge of excavations.

### 3.09 BACKFILL

- Place and compact backfill in excavations promptly, but not before completing the following:
  - 1. Construction below finish grade including, where applicable subdrainage.
  - 2. Surveying locations of underground utilities for Record Documents.
  - 3. Testing and inspecting underground utilities.
  - 4. Removing concrete formwork.
  - 5. Removing trash and debris.
  - 6. Removing temporary shoring and bracing, and sheeting.
  - 7. Installing permanent or temporary horizontal bracing on horizontally supported walls.
- B. Place backfill on subgrades free of mud, frost, snow, or ice.

# 3.10 UTILITY TRENCH BACKFILL

- A. Place backfill on subgrades free of mud, frost, snow, or ice.
- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Division 03 Section "Cast-in-Place Concrete."
- D. Provide 4-inch- thick, concrete-base slab support for piping or conduit less than 12 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase.
- E. Place and compact initial backfill of subbase material or satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the utility pipe or conduit.
  - 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of utility piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- F. Controlled Low-Strength Material: Place initial backfill of controlled low-strength material to a height of 12 inches over the utility pipe or conduit.
- G. Backfill voids with satisfactory soil while installing and removing shoring and bracing.

- H. Place and compact final backfill of satisfactory soil to final subgrade elevation.
- Controlled Low-Strength Material: Place final backfill of controlled low-strength material to final subgrade elevation.
- J. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

#### 3.11 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
  - 1. Under grass and planted areas, use satisfactory soil material.
  - 2. Under walks and pavements, use satisfactory soil material.
  - 3. Under steps and ramps, use engineered fill.
  - 4. Under footings and foundations, use engineered fill.
- C. Place soil fill on subgrades free of mud, frost, snow, or ice.

### 3.12 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
  - Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
  - 2. Remove and replace, or scarify and air dry otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

# 3.13 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 12-inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers. Reduce loose depths as needed to achieve required compactions.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698 or ASTM D 1557:
  - 1. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 95 percent.
  - 2. Under lawn or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
  - 3. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent if in landscaping areas or 95 percent if under artificial turf, structures, pavements, or walks.

# 3.14 GRADING

- A. General: Uniformly grade areas within contract limits under this section, including adjacent transition areas, free of irregular surface changes. Smooth finished surface within specified tolerances, compact with uniform levels or slopes between points where elevations are indicated, or between such points and existing grades.
  - 1. Provide a smooth transition between adjacent existing grades and new grades.
  - Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
  - 1. Lawn or Unpaved Areas: Plus or minus 1 inch.
  - 2. Walks: Plus or minus 1 inch

- 3. Pavements: Plus or minus 1/2 inch
- C. Finish surfaces free from irregular surface changes, and as follows:
  - 1. Unpaved Areas: Finish areas to receive topsoil to within not more than 1/4" above or below required subgrade elevations.
  - 2. Walks: Shape surface of areas under walks to line, grade and cross-section, with finish surface not more than 1/4" above or below required subgrade elevation.
  - 3. Pavements: Shape surface of areas under pavement to line, grade and cross-section, with finish surface not more than 1/4" above or below required subgrade elevation. Provide final grades within a tolerance of 1/4" when tested with a 10' straightedge.
  - 4. Compaction: After grading, compact subgrade surfaces to the depth and indicated percentage of maximum or relative density for each area classification.

### 3.15 SUBBASE AND BASE COURSES

- A. Place subbase and base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place subbase and base course under pavements and walks as follows:
  - 1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends where called for on details and on plans.
  - 2. Place base course material over subbase course under hot-mix asphalt pavement.
  - 3. Shape subbase and base course to required crown elevations and cross-slope grades.
  - 4. Place subbase and base course 6 inches or less in compacted thickness in a single layer.
  - 5. Place subbase and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
  - 6. Compact subbase and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698 or ASTM D 1557.

# 3.16 DRAINAGE COURSE

- A. Place drainage course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
  - 1. Place drainage course 6 inches or less in compacted thickness in a single layer.
  - 2. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
  - 3. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

# 3.17 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified independent geotechnical engineering testing agency to perform field quality-control testing.
- B. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earthwork only after test results for previously completed work comply with requirements.
- C. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.
- D. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
  - Paved and Field Areas: At subgrade and at each compacted fill and backfill layer, at least 1 test for every 2000 sq. ft. or less of paved area or building slab, but in no case fewer than 3 tests.

- 2. Foundation Wall Backfill: At each compacted backfill layer, at least 1 test for each 100 feet or less of wall length, but no fewer than 2 tests.
- 3. Trench Backfill: At each compacted initial and final backfill layer, at least 1 test for each 150 feet or less of trench length, but no fewer than 2 tests.
- E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil to depth required; recompact and retest until specified compaction is obtained.

# 3.18 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
  - 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
  - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

# 3.19 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.
- B. Disposal: Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Architect.
  - Remove waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

### **END OF SECTION**

# SECTION 31 2500 EROSION CONTROL

# **PART 1 - GENERAL**

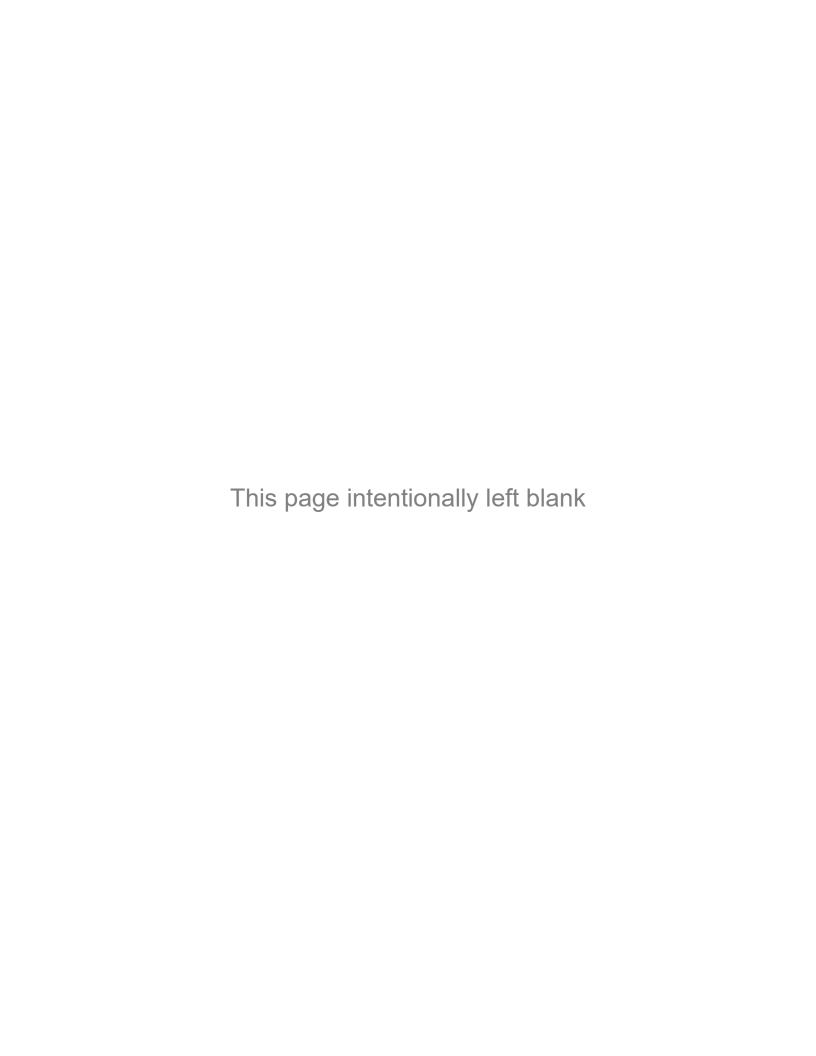
# 1.01 SUMMARY

- A. This Section covers the work required for erosion control during construction. Any local or State Agency requirements will be considered part of these specifications.
- B. Obtain the National Pollution Discharge Elimination System (NPDES) Permit for storm water discharge associated with construction activity.
- C. Obtain a UPDES Storm Water General Permit for Construction Activities (Permit #UTR100000) or an alternate individual permit. Applications are available online at www.waterquality.utah.gov/UPDES/stormwater.

# **PART 2 - PRODUCTS**

### 2.01 SILT FENCE

A. Silt fence shall be a woven fabric that meets the following criteria:


| <u>Property</u>        | <u>Unit</u> | Test Method | <u>Values</u> |
|------------------------|-------------|-------------|---------------|
| Grab Strength          | lbs         | ASTMD-4632  | 90 min        |
| <b>Grab Elongation</b> | %           | ASTMD-4632  | 40 max        |
| Water Flow Rate        | gal/min/ft2 | ASTMD-4491  | 15 min        |
| Ultraviolet Stability  | %           | ASTMD-4355  | 70% mir       |

# **PART 3 - EXECUTION**

# 3.01 EXECUTION

- A. Silt fence shall be placed in accordance with plans and details. The placement of silt fence and/or bales shall consider drainage paths and intercept drainage prior to leaving the site or entering a storm sewer system. Removal of silt and replacement of silt fence and/or bales shall be on going through the duration of the project to maintain an effective silt removing barrier.
- B. Sediment Basin and/or sinks shall be constructed to dimensions shown on the plans. The basins and/or sinks shall be cleaned as required to maintain specified size and depth.
- C. All temporary grading of drainage channels, slopes or fills shall be in accordance with Division 31 Section "Earthwork".

### **END OF SECTION**



# SECTION 321216 ASPHALT PAVING

# **PART 1 GENERAL**

#### 1.01 SECTION INCLUDES

- A. Cold milling of existing hot-mix asphalt pavement.
- B. Hot-mix asphalt paving.
- C. Asphalt surface treatments.
- D. Pavement-marking paint.
- E. Single course bituminous concrete paving.
- F. Surface sealer.

# 1.02 RELATED REQUIREMENTS

- A. Section 024119 Selective Site Demolition: for demolition, removal, and recycling of existing asphalt pavements, and for geotextiles that are not embedded within courses of asphalt paving.
- B. Section 099113 Exterior Painting: Pavement markings.
- C. Section 312000 Earth Moving: for aggregate subbase and base courses and for aggregate pavement shoulders.

### 1.03 PRICE AND PAYMENT PROCEDURES

- A. See Section 012200 Unit Prices for requirements applicable to this section.
- B. Seal Coat: By the square yard. Includes preparing surfaces and applying.

# 1.04 DEFINITIONS

A. Hot-Mix Asphalt Paving Terminology: Refer to ASTM D8 for definitions of terms.

### 1.05 REFERENCE STANDARDS

- A. AASHTO M 140 Standard Specification for Emulsified Asphalt Current Edition.
- B. AASHTO M 17 Specification for Mineral Filler for Bituminous Paving Mixtures Current Edition.
- C. AASHTO M 208 Standard Specification for Cationic Emulsified Asphalt Current Edition.
- D. AASHTO M 247 Standard Specification for Glass Beads Used in Traffic Paints Current Edition.
- E. AASHTO M 248 Standard Specification for Ready-Mixed White and Yellow Traffic Paints Current Edition.
- F. AASHTO M 288 Standard Specification for Geosynthetic Specification for Highway Applications 2021.
- G. AASHTO M 29 Standard Specification for Fine Aggregate for Bituminous Paving Mixtures Current Edition.
- H. AASHTO M 324 Standard Specification for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements 2012 Edition.
- AASHTO T 168 Standard Method of Test for Sampling Bituminous Paving Mixtures Current Edition.
- J. AASHTO T 245 Standard Method of Test for Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus Current Edition.
- K. Al MS-2 Asphalt Mix Design Methods 2015.
- L. ASTM D1073 Standard Specification for Fine Aggregate for Asphalt Paving Mixtures 2016.
- M. ASTM D1188 Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples Current Edition.
- N. ASTM D2041/D2041M Standard Test Method for Theoretical Maximum Specific Gravity and Density of Asphalt Mixtures 2019.

- O. ASTM D2397/D2397M Standard Specification for Cationic Emulsified Asphalt Current Edition.
- P. ASTM D242/D242M Standard Specification for Mineral Filler for Bituminous Paving Mixtures Current Edition.
- Q. ASTM D2726/2726M Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Asphalt Mixtures Current Edition.
- R. ASTM D2950/D2950M Standard Test Method for Density of Bituminous Concrete in Place by Nuclear Methods Current Edition.
- S. ASTM D3141/D3141M Standard Specification for Asphalt for Undersealing Portland-Cement Concrete Pavements Current Edition.
- T. ASTM D3381/D3381M Standard Specification for Viscosity-Graded Asphalt Binder for Use in Pavement Construction 2018.
- U. ASTM D3549/D3549M Standard Test Method for Thickness or Height of Compacted Asphalt Mixture Specimens Current Edition.
- V. ASTM D3910 Standard Practices for Design, Testing, and Construction of Slurry Seal Current Edition.
- W. ASTM D5581 Standard Test Method for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus Current Edition.
- X. ASTM D6690 Standard Specification for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements Current Edition.
- Y. ASTM D692/D692M Standard Specification for Coarse Aggregate for Asphalt Paving Mixtures 2020.
- ASTM D6927 Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures Current Edition.
- AA. ASTM D8 Standard Terminology Relating to Materials for Roads and Pavements Current Edition.
- BB. ASTM D977 Standard Specification for Emulsified Asphalt Current Edition.
- CC. ASTM D979 Standard Practice for Sampling Bituminous Paving Mixtures Current Edition.
- DD. FS TT-P-1952 Paint, Traffic and Airfield Marking, Waterborne 2015f (Validated 2020).

# 1.06 SUBMITTALS

- A. Product Data: For each type of product indicated. Include technical data and tested physical and performance properties.
  - 1. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.
  - 2. Job-Mix Designs: For each job mix proposed for the Work.
- B. Shop Drawings: Indicate pavement markings, lane separations, and defined parking spaces. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.
- C. Samples: For each paving fabric, 12 by 12 inches minimum if used.
- D. Samples for Verification: For the following products, in manufacturer's standard sizes unless otherwise indicated:
  - 1. Each paving fabric, 12 by 12 inches minimum.
  - 2. Each type and color of preformed traffic-calming device.
  - 3. Each pattern and color of imprinted asphalt and precut marking material.
- E. Qualification Data: For qualified manufacturer and Installer.
- F. Material Certificates: For each paving material, from manufacturer.
- G. Material Test Reports: For each paving material.
- H. Fire Marshal Approval: For the striping plan as it relates to fire lanes and the marking thereof.

### 1.07 QUALITY ASSURANCE

- Manufacturer Qualifications: Provide copy of manufactures experience for verification of qualifications.
- B. Installer Qualifications: Imprinted-asphalt manufacturer's authorized installer who is trained and approved for installation of imprinted asphalt required for this Project.
- C. Testing Agency Qualifications: Qualified according to ASTM D 3666 for testing indicated.
- D. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of city and DOT for asphalt paving work.
  - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.
- E. Pre-installation Conference: Conduct conference at Project site.
  - 1. Review methods and procedures related to hot-mix asphalt paving including, but not limited to, the following:
    - a. Review proposed sources of paving materials, including capabilities and location of plant that will manufacture hot-mix asphalt.
    - b. Review condition of subgrade and preparatory work.
    - c. Review requirements for protecting paving work, including restriction of traffic during installation period and for remainder of construction period.
    - Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
- F. Obtain materials from same source throughout.

# 1.08 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pavement-marking materials to Project site in original packages with seals unbroken and bearing manufacturer's labels containing brand name and type of material, date of manufacture, and directions for storage.
- B. Store pavement-marking materials in a clean, dry, protected location within temperature range required by manufacturer. Protect stored materials from direct sunlight.

# 1.09 PROJECT CONDITIONS

- A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
  - 1. Prime Coat: Minimum surface temperature of 60 deg F. Not used if paving takes place within 48 hours of final grading and final compaction of road base.
  - 2. Tack Coat: Minimum surface temperature of 60 deg F.
  - 3. Slurry Coat: Comply with weather limitations in ASTM D 3910.
  - 4. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
  - 5. Asphalt Surface Course: Minimum surface temperature of 60 deg F at time of placement.
- B. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for oil-based materials 55 deg F for water-based materials, and not exceeding 95 deg F.
- C. Do not place asphalt when ambient air or base surface temperature is less than 40 degrees F, or surface is wet or frozen.

### **PART 2 PRODUCTS**

### 2.01 MATERIALS

- General: Use materials and gradations that have performed satisfactorily in previous installations.
- B. Aggregate for Base Course- Gravel: ASTM D692/D692M, sound, angular crushed \_\_\_\_\_\_\_ stone, crushed gravel, or cured, crushed blast-furnace slag, free of shale, clay, friable material

and debris.

- C. Fine Aggregate: ASTM D1073 or AASHTO M 29, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof. [CHOICE TEXT]
  - 1. For hot-mix asphalt, limit natural sand to a maximum of 20 percent by weight of the total aggregate mass.
- Mineral Filler: ASTM D242/D242M or AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material.
- E. Asphalt Cement: AC 20 per ASTM D3381/D3381M for viscosity-graded material except use ductility at 39.2 deg. F., >5 for AC 20 and delete the loss on heating requirement on residue from "Thin-Film Oven Test".
- F. Primer Coat: Not required if paving is done within 48 hours of final compaction.
- G. Tack Coat: ASTM D977 or AASHTO M 140 emulsified asphalt, or ASTM D2397/D2397M or AASHTO M 208 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.
- H. Fog Seal: ASTM D977 or AASHTO M 140 emulsified asphalt, or ASTM D2397/D2397M or AASHTO M 208 cationic emulsified asphalt, slow setting, factory diluted in water, of suitable grade and consistency for application.
- I. Water: Potable
- J. Undersealing Asphalt: ASTM D3141/D3141M, pumping consistency.
- K. Herbicide: Commercial chemical for weed control, registered by the EPA. Provide in granular, liquid, or wettable powder form.
- L. Sand: ASTM D1073 or AASHTO M 29, Grade Nos. 2 or 3.
- M. Paving Geotextile: AASHTO M 288, nonwoven polypropylene; resistant to chemical attack, rot, and mildew; and specifically designed for paving applications.
- N. Joint Sealant: ASTM D6690 or AASHTO M 324, Type I Type II or III Type IV, hot-applied, single-component, polymer-modified bituminous sealant.
- O. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248, Type N, Type F, and Type S; colors complying with FS TT-P-1952.
  - Color: White as indicated.
- P. Glass Beads: AASHTO M 247, Type 1.

# 2.02 ASPHALT PAVING MIXES AND MIX DESIGN

- A. Hot-Mix Asphalt: Dense, hot-laid, hot-mix asphalt plant mixes approved by authorities having jurisdiction; designed according to procedures in Al MS-2, "Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types"; and complying with the following requirements:
  - 1. Provide mixes with a history of satisfactory performance in geographical area where Project is located. Provide mix with the following characteristics:
    - a. Number of compaction blows each end of specimen: 50.
    - b. Satiability based on ASTM D5581: 1200 minimum.
    - c. Flow in 0.01-inch units per ASTM D5581: 10-18.
    - d. Voids in mineral aggregate VMA: 14.
    - e. The percentage of bituminous material by weight added to aggregate will be between 4% and 7% of the weight of the bituminous mixture.
  - 2. Surface Course: 3-inch minimum compacted thickness and as indicated on the drawings with aggregate meeting a ½" gradation APWA 2012 Utah Chapter Specification.
- B. Emulsified-Asphalt Slurry: ASTM D3910, Type 1.

# **PART 3 EXECUTION**

# 3.01 EXAMINATION

Verify that compacted subgrade is dry and ready to support paving and imposed loads.

- B. Verify that the road base has been properly compacted and is at the correct line, grade, and slope.
- C. Verify that the road base thickness is as indicated on the project plans.
- D. Verify gradients and elevations of base are correct.
- E. Proceed with paving only after unsatisfactory conditions have been corrected.
- F. Verify that utilities, traffic loop detectors, and other items requiring a cut and installation beneath the asphalt surface have been completed and that asphalt surface has been repaired flush with adjacent asphalt prior to beginning installation of imprinted asphalt.
- G. Verify that sufficient depth at curbs, walks, lips and other vertical edges is available to place the required thickness of compacted asphalt.

# 3.02 PATCHING

- A. Hot-Mix Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches into adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.
- B. Portland Cement Concrete Pavement: Break cracked slabs and roll as required to reseat concrete pieces firmly.
  - 1. Pump hot undersealing asphalt under rocking slab until slab is stabilized or, if necessary, crack slab into pieces and roll to reseat pieces firmly.
  - 2. Remove disintegrated or badly cracked pavement. Excavate rectangular or trapezoidal patches, extending into adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Recompact existing unbound-aggregate base course to form new subgrade.
- C. Tack Coat: Apply uniformly to vertical surfaces abutting or projecting into new, hot-mix asphalt paving at a rate of 0.05 to 0.15 gal./sq. yd.
  - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
  - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.
- D. Patching: Fill excavated pavements with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.

# 3.03 REPAIRS

- A. Leveling Course: Install and compact leveling course consisting of hot-mix asphalt surface course to level sags and fill depressions deeper than 1 inch in existing pavements.
  - 1. Install leveling wedges in compacted lifts not exceeding 3 inches thick.
- B. Crack and Joint Filling: Remove existing joint filler material from cracks or joints to a depth of 1/4 inch.
  - 1. Clean cracks and joints in existing hot-mix asphalt pavement.
  - 2. Use emulsified-asphalt slurry to seal cracks and joints less than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.
  - 3. Use hot-applied joint sealant to seal cracks and joints more than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.

# 3.04 BASE COURSE

- A. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
  - 1. Completely proof-roll subgrade in one direction. Limit vehicle speed to 3 mph.
  - 2. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons or other vehicle with similar axel weight.
  - Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

- B. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.
- C. Herbicide Treatment: Not used.

### 3.05 PREPARATION - PRIMER

- A. Do not use if paving takes place not more than 48 hours after final compaction and grading of road bases. If paving must be delayed significantly, re-grade and re-compact road base or apply Prime Coat. Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.15 to 0.50 gal./sq. yd. Apply enough material to penetrate and seal but not flood surface. Allow prime coat to cure.
  - 1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
  - 2. Protect primed substrate from damage until ready to receive paving.
- B. Use clean sand to blot excess primer.

# 3.06 PREPARATION - TACK COAT

- A. Apply tack coat on asphalt or concrete surfaces over subgrade surface at uniform rate of 0.05 to 0.15 gal/sq yd.
- B. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
- C. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings.
- D. Remove and replace items damaged by overspray or clean affected surfaces as directed by architect at no additional cost to owner.

### 3.07 PLACING ASPHALT PAVEMENT

- A. Compact pavement by rolling to specified density. Do not displace or extrude pavement from position. Hand compact in areas inaccessible to rolling equipment.
- B. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand to areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
  - 1. Place hot-mix asphalt surface course in single lift if design thickness is less than 3-inches. If design thickness is more than 3-inches, place in multiple lifts with a minimum thickness of 1.5-inches and a maximum thickness of 3-inches.
  - 2. Spread mix at minimum temperature of 250 deg F.
  - 3. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
  - 4. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.
- C. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.
  - After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Complete a section of asphalt base course before placing asphalt surface course.
- D. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.
- E. Perform rolling with consecutive passes to achieve even and smooth finish without roller marks.

### **3.08 JOINTS**

- A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
  - 1. Clean contact surfaces and apply tack coat to joints.
  - 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.

- 3. Offset transverse joints, in successive courses, a minimum of 24 inches.
- 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to Al MS-22, for both "Ending a Lane" and "Resumption of Paving Operations.".
- Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
- 6. Compact asphalt at joints to a density within 2 percent of specified course density.

### 3.09 COMPACTION

- A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
  - 1. Complete compaction before mix temperature cools to 185 deg F.
- B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.
- C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hotmix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:
  - 1. Average Density: 96 percent of reference laboratory density according to ASTM D6927 or AASHTO T 245, but not less than 94 percent nor greater than 100 percent.
- D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm
- E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
- F. Place asphalt so that final compacted asphalt is even with lip of gutter on curbs that drain away from the curb and gutter (open face or depressed curb and gutter). Place asphalt so that final compacted asphalt is 1/4-inch above lip of gutter on curbs that carry water (slope of parking lot is towards the curb). In transition areas, use extra care to make sure that no ponds, bird baths, or depressions are left after paving.
- G. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.
- H. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.
- I. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

# 3.10 SURFACE TREATMENTS

- A. Fog Seals: Apply fog seal at a rate of 0.10 to 0.15 gal./sq. yd. to existing asphalt pavement and allow to cure. With fine sand, lightly dust areas receiving excess fog seal.
- B. Slurry Seals: Apply slurry coat in a uniform thickness according to ASTM D3910 and allow curing.
  - 1. Roll slurry seal to remove ridges and provide a uniform, smooth surface.

# 3.11 INSTALLATION TOLERANCES

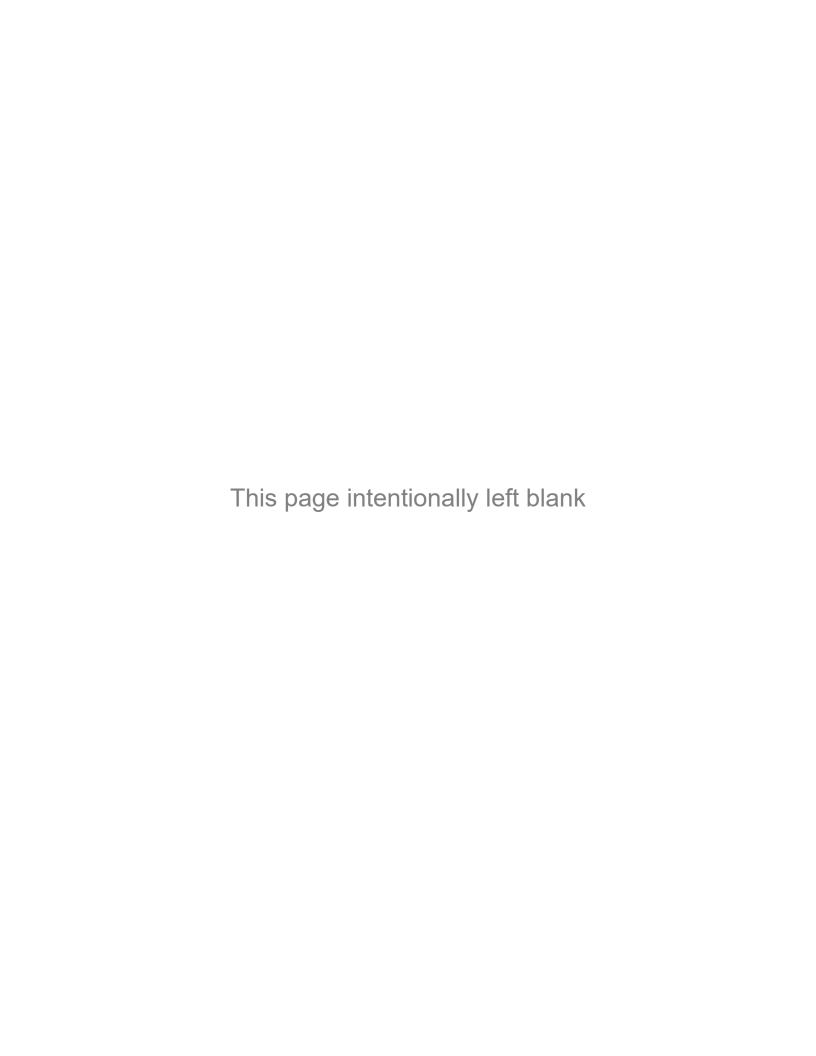
- A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:
  - 1. Surface Course: Plus 1/4 inch, no minus.
- B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:
  - 1. Surface Course: 1/8 inch.

- 2. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch.
- C. After paving is complete, pour water on paved areas and identify ponds, bird baths, and depressions. Identify the same at open face and transition sections of curb and gutter. Remove and replace asphalt, curb and gutter, road base, and or sub-base as necessary to fix ponds, bird baths, or depressions at no additional cost to owner.

# 3.12 PAVEMENT MARKING

- A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect and approved by the local jurisdictional fire marshal.
- B. Allow paving to age for 7 days minimum days before starting pavement marking.
- C. Sweep and clean surface to eliminate loose material and dust.
- D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.
  - Broadcast glass beads uniformly into wet pavement markings at a rate of 6 lb/gal.
- E. Color
  - 1. Blue: Handicap insignia at appropriate stalls.
  - 2. White: Directional arrows.

### 3.13 FIELD QUALITY CONTROL


- A. See Section 014000 Quality Requirements, for general requirements for quality control.
- B. A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
  - Provide field inspection and testing. Take samples and perform tests in accordance with AI MS-2.
- C. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D3549/D3549M.
- D. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.
- E. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D979 or AASHTO T 168.
  - Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D2041/D2041M, and compacted according to job-mix specifications.
  - 2. In-place density of compacted pavement will be determined by testing core samples according to ASTM D1188 or ASTM D2726/2726M. Cores will also be measured for compacted thickness. The owner and architect may also direct additional cores to be taken at locations of their choosing to verify final pavement thickness.
    - a. One core sample will be taken for every 1000 sq. yd. or less of installed pavement, with no fewer than 3 cores taken.
    - Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D2950/D2950M and correlated with ASTM D1188 or ASTM D2726/2726M.
    - c. Coordinate the time and locations of all holes so that cores may be filled.
- F. The contractor will replace and compact hot-mix asphalt where core tests were taken.
- G. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

# 3.14 DISPOSAL

A. Except for material indicated to be recycled, remove excavated materials from Project site and legally dispose of them in an EPA-approved landfill.

1. Do not allow milled materials to accumulate on-site.

**END OF SECTION** 



# SECTION 321313 CONCRETE PAVING

#### **PART 1 - GENERAL**

#### 1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.02 SUMMARY

- A. Section Includes:
  - 1. Driveways.
  - 2. Roadways.
  - 3. Parking lots.
  - 4. Curbs and gutters.
  - Walks.
- B. Related Sections:
  - Section 321373 "Concrete Paving Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.

### 1.03 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

### 1.04 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Indicate pavement markings, lane separations, and defined parking spaces. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.
- Samples for Initial Selection: For each type of product, ingredient, or admixture requiring color selection.
- D. Other Action Submittals:
  - 1. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

# 1.05 INFORMATIONAL SUBMITTALS

- A. For qualified [Installer of detectable warnings] [ready-mix concrete manufacturer] [and] [testing agency].
- B. Material Certificates: For the following, from manufacturer:
  - Cementitious materials.
  - 2. Steel reinforcement and reinforcement accessories.
  - 3. Fiber reinforcement.
  - 4. Admixtures.
  - 5. Curing compounds.
  - 6. Applied finish materials.
  - 7. Bonding agent or epoxy adhesive.
  - 8. Joint fillers.
- C. Material Test Reports: For each of the following:
  - Aggregates. [Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.]
- D. Field quality-control reports.

### 1.06 QUALITY ASSURANCE

- A. Detectable Warning Installer Qualifications: An employer of workers trained and approved by manufacturer of stamped concrete paving systems.
- B. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing readymixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
  - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual Section 3, "Plant Certification Checklist").
- C. Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
  - Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
- D. Concrete Testing Service: Engage a qualified testing agency to perform material evaluation tests and to design concrete mixtures.
- E. ACI Publications: Comply with ACI 301 unless otherwise indicated.
- F. Preinstallation Conference: Conduct conference at site.
  - Review methods and procedures related to concrete paving, including but not limited to, the following:
    - a. Concrete mixture design.
    - b. Quality control of concrete materials and concrete paving construction practices.
  - 2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
    - a. Contractor's superintendent.
    - b. Independent testing agency responsible for concrete design mixtures.
    - c. Ready-mix concrete manufacturer.
    - d. Concrete paving subcontractor.
    - e. Manufacturer's representative of stamped concrete paving system used for detectable warnings.

### 1.07 PROJECT CONDITIONS

- A. Maintain access for vehicular and pedestrian traffic as required for other construction activities.
- B. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of [40 deg F for oil-based materials] [55 deg F for water-based materials], and not exceeding 95 deg F.

# **PART 2 - PRODUCTS**

# **2.01 FORMS**

- A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
  - 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less.[ Do not use notched and bent forms.]
- B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

# 2.02 STEEL REINFORCEMENT

- A. Postconsumer recycled content plus one-half of preconsumer recycled content not less than [25] percent.
- B. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from galvanized-steel wire into flat sheets
- C. Deformed-Steel Welded Wire Reinforcement: ASTM A 497/A 497M, flat sheet.
- D. Epoxy-Coated Welded Wire Reinforcement: ASTM A 884/A 884M, Class A, plain steel.
- E. Reinforcing Bars: ASTM A 615/A 615M, Grade 60; deformed.

- F. Galvanized Reinforcing Bars: ASTM A 767/A 767M, Class II zinc coated, hot-dip galvanized after fabrication and bending; with ASTM A 615/A 615M, Grade 60 deformed bars.
- G. Reinforcing Bars: ASTM A 775/A 775M or ASTM A 934/A 934M; with ASTM A 615/A 615M, Grade 60 deformed bars.
- H. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60 deformed bars; assembled with clips.
- I. Plain-Steel Wire: ASTM A 82/A 82M, [galvanized].
- J. Deformed-Steel Wire: ASTM A 496/A 496M.
- K. Epoxy-Coated-Steel Wire: ASTM A 884/A 884M, Class A coated, [plain].
- L. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 plain-steel bars[; zinc coated (galvanized) after fabrication according to ASTM A 767/A 767M, Class I coating]. Cut bars true to length with ends square and free of burrs.
- M. Epoxy-Coated, Joint Dowel Bars: ASTM A 775/A 775M; with ASTM A 615/A 615M, Grade 60, plain-steel bars.
- N. Tie Bars: ASTM A 615/A 615M, Grade 60, deformed.
- O. Hook Bolts: ASTM A 307, Grade A, internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.
- P. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
  - Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
  - 2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.
- Q. Epoxy Repair Coating: Liquid, two-part, epoxy repair coating, compatible with epoxy coating on reinforcement.
- R. Zinc Repair Material: ASTM A 780.

# 2.03 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:
  - 1. ASTM C 150, [gray] [white] portland cement [Type I] [Type II] [Type I/II] [Type III] [Type V].[ Supplement with the following:]
    - a. Fly Ash: ASTM C 618, [Class C] [or] [Class F].
    - b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
  - ASTM C 595, [Type IS, portland blast-furnace slag] [Type IP, portland-pozzolan] cement.
- B. Normal-Weight Aggregates: ASTM C 33, [Class 4S] [Class 4M] [Class 1N], uniformly graded. Provide aggregates from a single source [ with documented service-record data of at least 10 years' satisfactory service in similar paving applications and service conditions using similar aggregates and cementitious materials].
  - 1. Maximum Coarse-Aggregate Size: [3/4 inch] nominal.
  - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Exposed Aggregate: Selected, hard, and durable; washed; free of materials with deleterious reactivity to cement or that cause staining; from a single source, with gap-graded coarse aggregate as follows:
  - 1. Aggregate Sizes: [1/2 to 3/4 inch] nominal.
  - 2. Aggregate Source, Shape, and Color:
- D. Water: Potable and complying with ASTM C 94/C 94M.
- E. Air-Entraining Admixture: ASTM C 260.

- F. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
  - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
  - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
  - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
  - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
  - High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
  - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
- G. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable,[ free of carbon black,] nonfading, and resistant to lime and other alkalis.
  - 1. Color: [As selected by Architect from manufacturer's full range] .

#### 2.04 CURING MATERIALS

- A. AASHTO M 182, [Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry] [or] [cotton mats].
- B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- C. Water: Potable.
- D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.
  - 1. Products: Subject to compliance with requirements,[provide one of the following]:
    - a. Axim Italcementi Group, Inc.; Caltexol CIMFILM.
    - b. BASF Construction Chemicals, LLC; Confilm.
    - c. ChemMasters; Spray-Film.
    - d. Conspec by Dayton Superior; Aquafilm.
    - e. Dayton Superior Corporation; Sure Film (J-74).
    - f. Edoco by Dayton Superior; BurkeFilm.
    - g. Euclid Chemical Company (The), an RPM company; Eucobar.
    - h. Kaufman Products, Inc.; VaporAid.
    - i. Lambert Corporation; LAMBCO Skin.
    - j. L&M Construction Chemicals, Inc.; E-CON.
    - k. Meadows, W. R., Inc.; EVAPRE.
    - I. Metalcrete Industries; Waterhold.
    - m. Nox-Crete Products Group; MONOFILM.
    - n. Sika Corporation, Inc.; SikaFilm.
    - o. SpecChem, LLC; Spec Film.
    - p. Symons by Dayton Superior; Finishing Aid.
    - q. TK Products, Division of Sierra Corporation; TK-2120 TRI-FILM.
    - r. Unitex; PRO-FILM.
    - s. Vexcon Chemicals Inc.; Certi-Vex EnvioAssist.
- E. ASTM C 309, Type 1, Class B, dissipating.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Anti-Hydro International, Inc.; A-H Curing Compound #2 DR WB.
    - b. ChemMasters; Safe-Cure Clear.
    - c. Conspec by Dayton Superior; [D.O.T. Resin Cure] [DSSCC Clear Resin Cure].
    - d. Dayton Superior Corporation; Day-Chem Rez Cure (J-11-W).
    - e. Edoco by Dayton Superior; [DSSCC Clear Resin Cure] [Resin Emulsion Cure1) V.O.C. (Type I)].
    - f. Euclid Chemical Company (The), an RPM company; Kurez W VOX.
    - g. Kaufman Products, Inc.; Thinfilm 420.
    - h. Lambert Corporation; AQUA KURE CLEAR.
    - i. L&M Construction Chemicals, Inc.; L&M CURE R.

- j. Meadows, W. R., Inc.; 1100-CLEAR SERIES.
- k. Nox-Crete Products Group: Resin Cure E.
- I. SpecChem, LLC; PaveCure Rez.
- m. Symons by Dayton Superior; Resi-Chem Clear.
- n. Tamms Industries, Inc., Euclid Chemical Company (The); TAMMSCURE WB 30C.
- o. TK Products, Division of Sierra Corporation; [TK-2519 WB] [TK-2519 DC WB].
- p. Vexcon Chemicals Inc.; Certi-Vex Enviocure 100.
- F. ASTM C 309, Type 2, Class B, dissipating.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Anti-Hydro International, Inc.; A-H Curing Compound #2 WP WB.
    - b. ChemMasters: Safe-Cure 2000.
    - c. Conspec by Dayton Superior; [D.O.T. Resin Cure White] [DSSCC White Resin Cure].
    - d. Dayton Superior Corporation; Day-Chem White Pigmented Cure (J-10-W).
    - e. Edoco by Dayton Superior; Resin Emulsion Cure V.O.C. (Type II).
    - f. Euclid Chemical Company (The), an RPM company; Kurez VOX White Pigmented.
    - g. Kaufman Products, Inc.; Thinfilm 450.
    - h. Lambert Corporation; AQUA KURE WHITE.
    - i. L&M Construction Chemicals, Inc.; L&M CURE R-2.
    - j. Meadows, W. R., Inc.; 1100-WHITE SERIES.
    - k. SpecChem, LLC; PaveCure Rez White.
    - I. Symons by Dayton Superior; Resi-Chem White.
    - m. Vexcon Chemicals Inc.; Certi-Vex Enviocure White 100.

# 2.05 RELATED MATERIALS

- A. Joint Fillers: [ASTM D 1751, asphalt-saturated cellulosic fiber] [or] [ASTM D 1752, cork or self-expanding cork] in preformed strips.
- B. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.
- C. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:
  - 1. [Types I and II, non-load bearing] [Types IV and V, load bearing], for bonding hardened or freshly mixed concrete to hardened concrete.
- E. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. ChemMasters; Exposee.
    - b. Conspec by Dayton Superior; Delay S.
    - c. Dayton Superior Corporation; Sure Etch (J-73).
    - d. Edoco by Dayton Superior; True Etch Surface Retarder.
    - e. Euclid Chemical Company (The), an RPM company; Surface Retarder Formula S.
    - f. Kaufman Products, Inc.; Expose.
    - g. Meadows, W. R., Inc.; TOP-STOP.
    - h. Metalcrete Industries; Surftard.
    - i. Nox-Crete Products Group; CRETE-NOX TA.
    - j. Scofield, L. M. Company; LITHOTEX Top Surface Retarder.
    - k. Sika Corporation, Inc.; Rugasol-S.
    - I. SpecChem, LLC; Spec Etch.

- m. TK Products, Division of Sierra Corporation; TK-6000 Concrete Surface Retarder.
- n. Unitex: TOP-ETCH Surface Retarder.
- o. Vexcon Chemicals Inc.; Certi-Vex Envioset.
- F. Pigmented Mineral Dry-Shake Hardener: Factory-packaged, dry combination of portland cement, graded quartz aggregate, color pigments, and plasticizing admixture. Use color pigments that are finely ground, nonfading mineral oxides interground with cement.
  - 1. Products: Subject to compliance with requirements,[provide one of the following]:
    - a. Anti-Hydro International, Inc.; A-H S-Q Hardener.
    - b. BASF Construction Chemicals, LLC; Mastercron.
    - c. ChemMasters; ConColor.
    - d. Conspec by Dayton Superior; Conshake 600 Colortone.
    - e. Dayton Superior Corporation; Quartz Tuff.
    - f. Euclid Chemical Company (The), an RPM company; Surflex.
    - g. Lambert Corporation; COLORHARD.
    - h. L&M Construction Chemicals, Inc.; QUARTZPLATE FF.
    - i. Metalcrete Industries; Floor Quartz.
    - j. Scofield, L. M. Company; LITHOCHROME Color Hardener.
    - k. Southern Color N.A., Inc.; Mosaics Color Hardener.
    - I. Stampcrete International, Ltd.; Color Hardener.
    - m. Symons by Dayton Superior; Hard Top.
  - 2. Color [As selected by Architect from manufacturer's full range]
- G. Rock Salt: Sodium chloride crystals, kiln dried, coarse gradation with 100 percent passing 3/8-inch sieve and 85 percent retained on a No. 8 sieve.

#### 2.06 PAVEMENT MARKINGS

- A. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248, [Type N] [Type F] [Type S]; colors complying with FS TT-P-1952.
  - 1. Color: [As indicated]
- B. Pavement-Marking Paint: MPI #32 Alkyd Traffic Marking Paint.
  - 1. Color: [As indicated]
- C. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than [45] minutes.
  - 1. Color: [As indicated]
- D. Pavement-Marking Paint: MPI #97 Latex Traffic Marking Paint.
  - 1. Color: [As indicated]
- E. Glass Beads: [AASHTO M 247, Type 1].

# 2.07 CONCRETE MIXTURES

- A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
  - 1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
  - 2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that meet or exceed requirements.
- B. Proportion mixtures to provide normal-weight concrete with the following properties:
  - 1. Compressive Strength (28 Days): [4000 psi]
  - 2. Maximum Water-Cementitious Materials Ratio at Point of Placement: [0.44].
  - 3. Slump Limit: [5 inches], plus or minus 1 inch.
- C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
  - 1. Air Content: [5-1/2] percent plus or minus 1.5 percent for 1-1/2-inch nominal maximum aggregate size.

- 2. Air Content: [6]] percent plus or minus 1.5 percent for 1-inch nominal maximum aggregate size.
- 3. Air Content: [6] percent plus or minus 1.5 percent for 3/4-inch nominal maximum aggregate size.
- D. Limit water-soluble, chloride-ion content in hardened concrete to [0.15] percent by weight of cement.
- E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
  - 1. Use [plasticizing and retarding admixture] in concrete as required for placement and workability.
  - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
- F. Cementitious Materials: [Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:]
  - 1. Fly Ash or Pozzolan: 25 percent.
  - 2. Ground Granulated Blast-Furnace Slag: 50 percent.
  - 3. Combined Fly Ash or Pozzolan, and Ground Granulated Blast-Furnace Slag: 50 percent, with fly ash or pozzolan not exceeding 25 percent.
- G. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than [2.0 lb/cu. yd.].
- H. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

### 2.08 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M[ and ASTM C 1116/C 1116M]. Furnish batch certificates for each batch discharged and used in the Work.
  - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.
- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
  - For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
  - 2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd..
  - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

# **PART 3 - EXECUTION**

### 3.01 EXAMINATION

- A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
- B. Proof-roll prepared subbase surface below [concrete paving] to identify soft pockets and areas of excess yielding.
  - 1. Completely proof-roll subbase in one direction[ and repeat in perpendicular direction]. Limit vehicle speed to 3 mph.
  - 2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
  - 3. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of [1/2 inch] according to requirements in Section 312000 "Earth Moving."
- Proceed with installation only after unsatisfactory conditions have been corrected.

### 3.02 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

### 3.03 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

### 3.04 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.
- C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.
- D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.
- E. Zinc-Coated Reinforcement: Use galvanized-steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material.
- F. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M.
- G. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch overlap of adjacent mats.

# 3.05 JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
  - 1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.
- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
  - 1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
  - 2. Provide tie bars at sides of paving strips where indicated.
  - 3. Butt Joints: Use [bonding agent] [epoxy bonding adhesive] at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
  - 4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
  - 5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
- C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
  - 1. Locate expansion joints at intervals of [50 feet ] unless otherwise indicated.
  - 2. Extend joint fillers full width and depth of joint.
  - 3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.

- 4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
- 5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
- 6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows[, to match jointing of existing adjacent concrete paving]:
  - Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a [1/4-inch] [3/8-inch] radius. Repeat grooving of contraction joints after applying surface finishes. [Eliminate grooving-tool marks on concrete surfaces.]
    - a. Ensure that grooved joints are within [3 inches] either way from centers of dowels.
  - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
    - Tolerance: Ensure that sawed joints are within [3 inches] either way from centers of dowels.
  - 3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
- E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a [1/4-inch] radius. Repeat tooling of edges after applying surface finishes.[Eliminate edging-tool marks on concrete surfaces.]

### 3.06 CONCRETE PLACEMENT

- A. Before placing concrete, inspect and complete formwork installation[, steel reinforcement,] and items to be embedded or cast-in.
- B. Remove snow, ice, or frost from subbase surface[ and steel reinforcement] before placing concrete. Do not place concrete on frozen surfaces.
- C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.
- E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
- F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
- G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.
  - Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies[, reinforcement,] or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating [reinforcement] [dowels] [and] joint devices.
- H. Screed paving surface with a straightedge and strike off.
- Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
- J. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.

- K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.
  - 1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.
- L. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
  - 1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
  - 2. Do not use frozen materials or materials containing ice or snow.
  - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
- M. Hot-Weather Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:
  - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
  - 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
  - 3. Fog-spray forms[, steel reinforcement,] and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

### 3.07 FLOAT FINISHING

- A. General: Do not add water to concrete surfaces during finishing operations.
- B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.
  - 1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.
  - 2. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.
  - 3. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch deep with a stiff-bristled broom, perpendicular to line of traffic.

# 3.08 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
- B. Comply with ACI 306.1 for cold-weather protection.
- C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
- E. Curing Methods: Cure concrete by [curing compound] [or] [a combination of these] as follows:
  - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
    - a. Water.
    - b. Continuous water-fog spray.

- c. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
- 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.
- 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

# 3.09 PAVING TOLERANCES

- A. Comply with tolerances in ACI 117 and as follows:
  - 1. Elevation: 3/4 inch.
  - 2. Thickness: Plus 3/8 inch, minus 1/4 inch.
  - 3. Surface: Gap below 10-foot- long, unleveled straightedge not to exceed 1/2 inch.
  - 4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
  - 5. Lateral Alignment and Spacing of Dowels: 1 inch.
  - 6. Vertical Alignment of Dowels: 1/4 inch
  - 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
  - 8. Joint Spacing: 3 inches.
  - 9. Contraction Joint Depth: Plus 1/4 inch, no minus.
  - 10. Joint Width: Plus 1/8 inch. no minus.

### 3.10 PAVEMENT MARKING

- Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect
- B. Allow concrete paving to cure for a minimum of [28] days and be dry before starting pavement marking.
- C. Sweep and clean surface to eliminate loose material and dust.
- D. Apply paint with mechanical equipment to produce markings of dimensions indicated with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.
  - 1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to concrete surface. Mask an extended area beyond edges of each stencil to prevent paint application beyond stencil. Apply paint so that it cannot run beneath stencil.
  - 2. Broadcast glass beads uniformly into wet markings at a rate of 6 lb/gal.

# 3.11 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
  - 1. Testing Frequency: Obtain at least one composite sample for each [100 cu. yd.] or [5000 sq. ft.] or fraction thereof of each concrete mixture placed each day.
    - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
  - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
  - 3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
  - 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite

- sample.
- 5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
- 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
  - a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.
- C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
- D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.
- G. Concrete paving will be considered defective if it does not pass tests and inspections.
- H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- I. Prepare test and inspection reports.

# 3.12 REPAIRS AND PROTECTION

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
- B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.
- C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
- D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

# **END OF SECTION**

# SECTION 321373 CONCRETE PAVING JOINT SEALANTS

#### **PART 1 - GENERAL**

### 1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.02 SUMMARY

- A. Section Includes:
  - 1. Cold-applied joint sealants.
  - 2. Hot-applied joint sealants.
  - 3. Cold-applied, fuel-resistant joint sealants.
  - 4. Hot-applied, fuel-resistant joint sealants.
  - 5. Joint-sealant backer materials.
  - 6. Primers.

# 1.03 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at the site.

#### 1.04 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Paving-Joint-Sealant Schedule: Include the following information:
  - 1. Joint-sealant application, joint location, and designation.
  - 2. Joint-sealant manufacturer and product name.
  - 3. Joint-sealant formulation.
  - Joint-sealant color.

### 1.05 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For [Installer] [testing agency].
- B. Product Certificates: For each type of joint sealant and accessory.

# 1.06 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
- B. Product Testing: Test joint sealants using a qualified testing agency.

# 1.07 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
  - When ambient and substrate temperature conditions are outside limits permitted by jointsealant manufacturer[ or are below 40 deg F ].
  - 2. When joint substrates are wet.
  - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
  - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

# **PART 2 - PRODUCTS**

### 2.01 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

# 2.02 COLD-APPLIED JOINT SEALANTS

A. Single-Component, Nonsag, Silicone Joint Sealant: ASTM D 5893/D 5893M, Type NS.

- 1. Products: Subject to compliance with requirements, [provide one of the following]:
  - a. Crafco Inc; RoadSaver Silicone.
  - b. Dow Corning Corporation; 888.
  - c. Pecora Corporation; 301 NS.
- B. Single-Component, Self-Leveling, Silicone Joint Sealant: ASTM D 5893/D 5893M, Type SL.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Crafco Inc; RoadSaver Silicone SL.
    - b. Dow Corning Corporation; 890-SL.
    - c. Pecora Corporation; 300 SL.
- C. ASTM C 920, Type M, Grade NS, Class 25, for Use T.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Meadows, W.R., Inc. Pourthane NS.
- D. ASTM C 920, Type S, Grade P, Class 25, for Use T.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Meadows, W.R., Inc; Pourthane SL.
- E. ASTM C 920, Type M, Grade P, Class 25, for Use T.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - Pecora Corporation; [Dynatred] [Dynatrol II-SG] [Urexpan NR-200].

# 2.03 HOT-APPLIED JOINT SEALANTS

- A. Hot-Applied, Single-Component Joint Sealant: ASTM D 6690, Type I.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Crafco Inc; [Asphalt Rubber Plus] [Asphalt Rubber Plus Type 2] [RoadSaver 203] [RoadSaver 211] [RoadSaver 515].
    - b. Meadows, W.R., Inc; [Sealtight 1190] [Sealtight 164].
    - c. Right Pointe.
- B. Hot-Applied, Single-Component Joint Sealant: ASTM D 6690, Type I or Type II.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Crafco Inc; [RoadSaver 201] [RoadSaver 220] [RoadSaver 221] [RoadSaver 534].
    - b. Right Pointe; [JTS 3405 Parking Lot Sealant 007] [JTS 3405 Rubber 009].
- C. Hot-Applied, Single-Component Joint Sealant: ASTM D 6690, Type I, II, or III.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Crafco Inc: RoadSaver 222.
    - b. Meadows, W.R., Inc; Sealtight 3405.
    - c. Right Pointe; [JTS 3405 Regular 003] [JTS 3405 Rubber 009].
- D. Hot-Applied, Single-Component Joint Sealant: ASTM D 6690, Type IV.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Crafco Inc; RoadSaver 231.
    - b. Meadows, W.R., Inc; Sealtight 3405M.

# 2.04 COLD-APPLIED, FUEL-RESISTANT JOINT SEALANTS

- A. Fuel-Resistant, Single-Component, Pourable, Modified-Urethane, Elastomeric Joint Sealant: ASTM C 920, Type S, Grade P, Class 25, for Use T.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. BASF Building Systems; Sonomeric 1.
- B. Fuel-Resistant, Multicomponent, Pourable, Modified-Urethane, Elastomeric Joint Sealant: ASTM C 920, Type M, Grade P, Class 12-1/2 or 25, for Use T.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Meadows, W.R.,Inc; Sealtight Gardox.
    - b. Pecora Corporation: Urexpan NR-300.

# 2.05 HOT-APPLIED, FUEL-RESISTANT JOINT SEALANTS

- A. Hot-Applied, Fuel-Resistant, Single-Component Joint Sealants: ASTM D 7116, Type I or Type II.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Crafco Inc; [Superseal 1614A] [Superseal 444/777].
- B. Hot-Applied, Fuel-Resistant, Single-Component Joint Sealants: ASTM D 7116, Type III.
  - 1. Products: Subject to compliance with requirements, [provide one of the following]:
    - a. Crafco Inc; Superseal Low-Mod.

# 2.06 JOINT-SEALANT BACKER MATERIALS

- A. Joint-Sealant Backer Materials: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by joint-sealant manufacturer, based on field experience and laboratory testing.
- B. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.
- C. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D 5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.
- D. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D 5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

# 2.07 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.

# **PART 3 - EXECUTION**

# 3.01 EXAMINATION

- A. Examine joints to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

# 3.02 PREPARATION

- A. Surface Cleaning of Joints: Before installing joint sealants, clean out joints immediately to comply with joint-sealant manufacturer's written instructions.
  - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
- B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

# 3.03 INSTALLATION OF JOINT SEALANTS

- A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.
- B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions.
- C. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
  - 1. Do not leave gaps between ends of joint-sealant backings.

- 2. Do not stretch, twist, puncture, or tear joint-sealant backings.
- 3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.
- D. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:
  - 1. Place joint sealants so they fully contact joint substrates.
  - 2. Completely fill recesses in each joint configuration.
  - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:
  - 1. Remove excess joint sealant from surfaces adjacent to joints.
  - 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.
- F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

### 3.04 CLEANING AND PROTECTION

- A. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.
- B. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

# 3.05 PAVING-JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Joints within concrete paving.
  - Joint Location:
    - a. Expansion and isolation joints in concrete paving.
    - b. Contraction joints in concrete paving.
    - c. Other joints as indicated.
  - 2. Joint Sealant: Single-component, self-leveling, silicone joint sealant
  - 3. Joint-Sealant Color: [Manufacturer's standard]
- B. Joint-Sealant Application: Joints within concrete paving and between concrete and asphalt paving.
  - 1. Joint Location:
    - a. Joints between concrete and asphalt paving.
    - b. Joints between concrete curbs and asphalt paving.
    - Other joints as indicated.
  - 2. Joint Sealant: [Hot-applied, single-component joint sealant] .
  - 3. Joint-Sealant Color: [Manufacturer's standard]
- C. Joint-Sealant Application: Fuel-resistant joints within concrete paving.
  - 1. Joint Location:
    - a. Expansion and isolation joints in concrete paving.
    - b. Contraction joints in concrete paving.
    - c. Other joints as indicated.
  - 2. Fuel-resistant, multicomponent, pourable, modified-urethane, elastomeric joint sealant
  - 3. Joint-Sealant Color: [Manufacturer's standard]

# **END OF SECTION**

# SECTION 323113 CHAIN LINK FENCES AND GATES

#### **PART 1 GENERAL**

#### 1.01 SECTION INCLUDES

- A. Posts, rails, and frames.
- B. Wire fabric.
- C. Concrete.
- D. Manual gates with related hardware.
- E. Accessories.

### 1.02 REFERENCE STANDARDS

- A. ACI 301 Specifications for Concrete Construction 2020.
- B. ASTM A123/A123M Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products 2017.
- C. ASTM A392 Standard Specification for Zinc-Coated Steel Chain-Link Fence Fabric 2011a (Reapproved 2017).
- D. ASTM C33/C33M Standard Specification for Concrete Aggregates 2018.
- E. ASTM C150/C150M Standard Specification for Portland Cement 2021.
- F. ASTM F567 Standard Practice for Installation of Chain-Link Fence 2014a (Reapproved 2019).
- G. ASTM F1043 Standard Specification for Strength and Protective Coatings on Steel Industrial Fence Framework 2018.
- H. ASTM F1083 Standard Specification for Pipe, Steel, Hot-Dipped Zinc-Coated (Galvanized) Welded, for Fence Structures 2018.
- I. CLFMI CLF-PM0610 Product Manual 2017.
- J. CLFMI CLF-SFR0111 Security Fencing Recommendations 2014.

# 1.03 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide data on fabric, posts, accessories, fittings and hardware.
- C. Shop Drawings: Show locations, details, materials, dimensions, sizes, weights, finishes, operational clearances, and installation of components. See CLFMI CLF-SFR0111 for planning and design recommendations.

# **PART 2 PRODUCTS**

# 2.01 MATERIALS

- A. Posts, Rails, and Frames: Comply with the following:
  - 1. Line, Terminal, Corner, Rail, Brace, and Gate Posts: Type I round.
    - a. Type I Round: LG 40 or Schedule 40 galvanized steel pipe complying with ASTM F1083. Comply with ASTM F1043, Material Design Group IA, external and internal coating Type A, consisting of not less than 1.8-oz./sq. ft. zinc; and line, end, corner, and pull posts and top rail per requirements.
    - b. Post Brace Rails: Match top rail for coating and strength and stiffness requirements. Provide brace rail with truss rod assembly for each gate, end, and pull post. Provide two brace rails extending in opposing directions, each with truss rod assembly for each corner post and for pull posts. Provide rail ends and clamps for attaching rails to posts.
  - 2. Comply with CLFMI CLF-PM0610.
- B. Wire Fabric: Comply with CLFMI's "Product Manual":
  - ASTM A392 zinc coated applied to steel wire mesh fabric after weaving with Class 1. 1.2oz./sq. ft. minimum coating weight.

- 2. Comply with CLFMI CLF-PM0610.
- C. Cast-in-Place Concrete: Normal-weight concrete air entrained with not less than 3,000-psi compressive strength (28 days), 3-inch slump, and 1-inch maximum size aggregate:
  - Cast-in-Place concrete complying with ACI 301.
  - 2. Materials consisting of Portland Cement complying with ASTM C150/C150M.
  - 3. Aggregates complying with ASTM C33/C33M.
  - 4. Potable water.

# 2.02 COMPONENTS

- A. Line Posts: 1.9 inch diameter spaced at 8 feet.
- B. Corner and Terminal Posts: 2.38 inch diameter.
- C. Gate Posts: 3-1/2 inch diameter.
- D. Top and Brace Rail: 1.66 inch diameter, plain end, sleeve coupled. Swedged-end or fabricated for expansion-type coupling.
- E. Gate Frame: 1.66 inch diameter for welded fabrication.
- F. Fabric: 2 inch diamond mesh interwoven wire, 7 guage thick, top selvage knuckle end closed, bottom selvage knuckle end closed.
- G. Tension Wire: 7 guage thick steel, single strand, metallic-coated. Match coating and color on chain link fence fabric.
- H. Tie Wire: Aluminum alloy steel wire.

# 2.03 MANUAL GATES AND RELATED HARDWARE

- A. Comply with ASTM F900 for single gates, made from galvanized steel pipe and tubing complying with ASTM F1043, complete with hardware.
  - 1. Hardware for Single Swinging Gates: 180 degree hinges, 2 for gates up to 60 inches high, 3 for taller gates; fork latch with gravity drop and padlock hasp; keeper to hold gate in fully open position.
  - 2. Frames and Bracing: For gate fabric height 6 feet or less with welded corners.
  - 3. Gate Posts: Fabricate members from round galvanized steel pipe for the following gate fabric heights by leaf widths: 6 feet or less by 4 feet or less.

# 2.04 ACCESSORIES

A. Caps: Cast steel galvanized; sized to post diameter, set screw retainer.

### 2.05 FINISHES

- A. Components (Other than Fabric): Galvanized in accordance with ASTM A123/A123M, at 1.7 ounces per square foot and painted black
- B. Components and Fabric: Black vinyl coated over coating of 1.8 ounces per square foot galvanizing.

#### **PART 3 EXECUTION**

# 3.01 INSTALLATION

- A. General Installation: Install framework, fabric, accessories and gates in accordance with ASTM F567. Do not begin installation before final grading is completed, unless otherwise permitted by Architect.
- B. Corner, Gate and Terminal Post Footing Depth Below Finish Grade: ASTM F567.
- C. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed or compacted soil.
- D. Post Setting: Hand-excavate holes for post foundations in firm, undisturbed or compacted soil. Set terminal and gate posts plumb, in concrete footings with top of footing 2 inches above finish grade. Slope top of concrete for water runoff. Protect portion of posts aboveground from concrete splatter. Place concrete around posts and vibrate or tamp for consolidation. Using mechanical devices to set posts per ASTM F567 is not premitted. Verify that posts are set

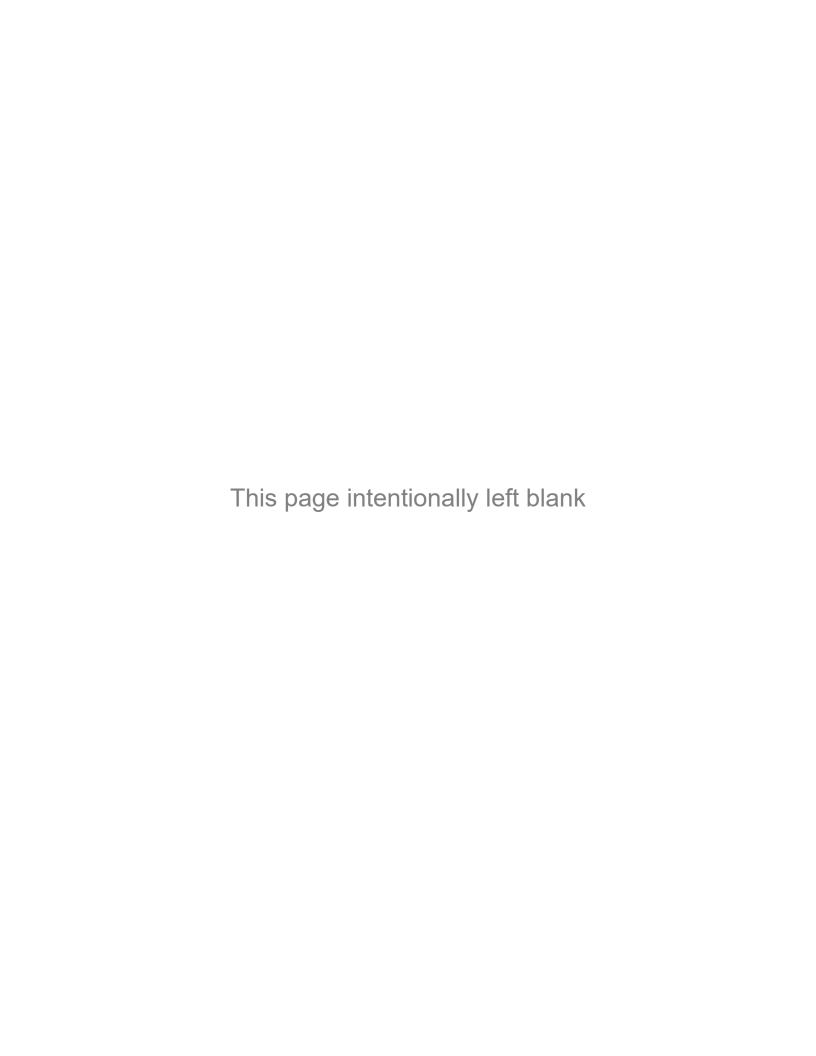
- plumb, aligned, and at correct height and spacing, and hold in position during placement and finishing operations until concrete is sufficiently cured.
- E. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F567 and terminal pull posts at changes in horizontal or vertical alignment.
- F. Line Posts: Space line posts uniformly at 8 feet O.C.
- G. Intermediate Rails: Install in one piece at post-height center span, spanning between posts, using fittings, special offset fittings, and accessories.
- H. Chain-Link Fabric: Place fabric on outside of posts and rails.
  - 1. Position bottom of fabric 2 inches above concrete mowstrip.
  - 2. Fasten fabric to top rail, line posts, braces, and bottom tension wire with tie wire at maximum 15 inches on centers.
  - 3. Do not stretch fabric until concrete foundation has cured 28 days.
  - 4. Install bottom tension wire stretched taut between terminal posts.
- I. Tie Wires: Attach wire to chain-link fabric per ASTM F626. Tie fabric to line posts at maximum interval of 12 inches o.c. and to braces at maximum interval of 24 inches o.c.
- J. Set terminal and gate posts plumb, in concrete footings with top of footing 2 inches above finish grade. Slope top of concrete for water runoff.
- K. Line Post Footing Depth Below Finish Grade: ASTM F567.
- L. Corner, Gate and Terminal Post Footing Depth Below Finish Grade: ASTM F567.
- M. Brace each gate and corner post to adjacent line post with horizontal center brace rail. Install brace rail one bay from end and gate posts.
- N. Do not stretch fabric until concrete foundation has cured 28 days.
- O. Position bottom of fabric 2 inches above concrete mowstrip.
- P. Attach fabric to end, corner, and gate posts with tension bars and tension bar clips.

# 3.02 TOLERANCES

- A. Maximum Variation From Plumb: 1/4 inch.
- B. Maximum Offset From True Position: 1 inch.
- C. Do not infringe on adjacent property lines.

# 3.03 FIELD QUALITY CONTROL

- A. See Section 014000 Quality Requirements, for additional requirements.
- B. Layout: Verify that fence installation markings are accurate to design, paying attention to gate locations, underground utilities, and property lines.
- C. Gates: Inspect for level, plumb, and alignment.


# 3.04 CLEANING

- A. Leave immediate work area neat at end of each work day.
- B. Clean jobsite of excess materials; scatter excess material from post hole excavations uniformly away from posts. Remove excess material if required.
- C. Clean fence with mild household detergent and clean water rinse well.
- D. Remove mortar from exposed posts and other fencing material using a 10 percent solution of muriatic acid followed immediately by several rinses with clean water.
- E. Touch up scratched surfaces using materials recommended by manufacturer. Match touchedup paint color to factory-applied finish.

# 3.05 CLOSEOUT ACTIVITIES

- A. See Section 017800 Closeout Submittals, for closeout submittals.
- B. Demonstrate proper operation of equipment to Owner's designated representative.

### **END OF SECTION**



# SECTION 328423 UNDERGROUND SPRINKLERS

### **PART 1 GENERAL**

### 1.01 SUMMARY

- A. The work covered by these specifications consists of design furnishing all labor, material, equipment and supplies in performing all operations in connection with providing an irrigation system and all site work in strict accordance with provided specifications, details, and drawings.
- B. Contractor shall **provide automatic irrigation system design and installation** for all landscaped areas within the project limit lines. System shall provide adequate watering to all trees, shrubs, perennials, and turf. Design system to achieve full, even coverage without spraying onto buildings, fences, etc.
- C. Any minor items of labor and/or materials not specifically noted on the drawings or specifications; but obviously necessary for the proper completion of the work, are to be considered as incidental to and are to be included in the contract. Contractor shall note such items and present them to owner before bid opening.
- D. Contractor should submit construction schedule of anticipated work time to facilitate timely visits for review of work. Such proposal shall include a projected time frame for installing the system. It should reflect, in calendar days, the anticipated time required from the day of the award to completion of the system in a fully operational mode. This schedule should reflect anticipated time for ordering and receiving all components, starting and ending times for installation, system start-up, etc.

# 1.02 SECTION INCLUDES

- A. Pipe and fittings, valves, sprinkler heads, and accessories.
- B. Provide automatic irrigation system design and installation for all landscaped area providing adequate watering to all trees, shrubs, perennials, groundcovers, and turf.

# 1.03 DEFINITION

- A. Circuit Piping: Downstream from control valves to sprinklers, specialties, and drain valves. Piping is under pressure during flow.
- B. Drain Piping: Downstream from circuit-piping drain valves. Piping is not under pressure.
- C. Mainline Piping: Downstream from point of connection to water distribution piping to and including control valves. Piping is under water distribution system pressure.

# 1.04 PROJECT CONDITIONS

- A. Irrigation water shall be provided by the following:
  - 1. Water system to be connected to existing mainline.

# 1.05 SYSTEM PERFORMANCE REQUIREMENTS

- A. Minimum water coverage:
  - 1. Irrigation heads in lawn areas shall be spaced 85% of the radius for rotors and 90% of the radius for spray heads.
  - 2. Shrubs, perennials, and groundcovers shall have adequate water applied to the root zones to ensure plant health and development.
- B. The irrigation system shall provide the manufacturer's recommended minimum operation pressure to every irrigation head.
- C. Group irrigation heads into circuits having similar hydrozone requirements.
- D. Minimum Working Pressures: The following are minimum pressure requirements for piping, valves, and specialties, unless otherwise indicated:
  - 1. Pressure Piping: 200 psig.
  - 2. Circuit Piping: 150 psig.
  - 3. Drain Piping: 100 psig.

# 1.06 REFERENCE STANDARDS

 A. ASTM D2241 - Standard Specification for Poly(Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series) 2020.

### 1.07 SUBMITTALS

- A. See Section 013000 Administrative Requirements, for submittal procedures.
- Product Data: Submit technical product data and installation instructions for irrigation system materials and products.
- C. Shop Drawings: Submit shop drawings or "as built" drawings for irrigation systems showing piping materials, sizes, locations, and elevations. Include details of underground structures, connections, thrust blocks, and anchoring. Show interface and spatial relationship between piping and proximate structures.
- D. Operation and Maintenance Data: include in maintanence manuals specified in Division 1. Include data for the following:
  - 1. Provide typewritten instructions for operation and maintenance of system and controls, seasonal activation and shutdown, and manufacturer's parts catalog.
  - 2. Provide schedule indicating length of time each valve is required to be open to provide a determined amount of water.
  - 3. Submit manuals with record drawings. The manual shall also contain:
    - Identification readable from the outside of the cover stating by whom the information was compiled.
    - b. Neatly type-written index near the front of the manual, furnishing immediate information as to the location in the manual of all emergency data regarding the installation.
    - c. Complete nomenclature of all replaceable parts, their part numbers, current cost, and name and address of the nearest vendor of replacement parts.
    - d. Complete outline of future watering schedules and when they should be changed from the initial installation schedule. The initial schedule is calculated for a watering rate to establish lawn.
    - e. Copy of all guarantees and warranties issued on the installation showing all dates of expiration.
- E. Record Drawings: As installation occurs, prepare accurate record drawings of piping system to be submitted prior to final inspection that also includes:
  - 1. Detail and dimension changes made during construction
  - 2. Significant details and dimensions not shown in the approved contract documents.
  - 3. Field dimensioned locations of valve boxes, manual drains, control wire runs not in mainline ditch, and both ends of sleeves.
  - 4. Take dimensions from permanent constructed surfaces or edges located at or above finish grade.
  - 5. Take and record dimensions at time of installation.
- F. Provide reduced copy of record drawings at half-size with color key circuits and laminate both sides with 5 mil thick or heavier plastic. Mount on 1/4 inch plywood board. Drill two 1/2 inch holes at top of board and hang on hooks in custodial room or as directed by project representative.
- G. Maintenance Materials: Provide the following for Owner's use in maintenance of project.
  - 1. Extra Sprinkler Heads: One of each type and size.
  - 2. Extra Valve Box Keys: One.
  - 3. Wrenches: One for each type head core and for removing and installing each type head.
- H. Warranty Documents: Warranty documents shall be submitted to owner at the time of final inspection.

### 1.08 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Licensed firms regularly engaged in manufacture of irrigation system products of types, materials and sizes specified, whose products have been in use in similar service.
- B. System shall be designed by a certified irrigation designer, a registered landscape architect, or a registered engineer with a minimum of two years experience in designing irrigation systems similar in scope and size.
- C. Work and materials shall be in accordance with latest rules and regulations, and other applicable state or local laws. Nothing in approved Contract Documents is to be construed to permit work not conforming to these codes.
- D. Pre-Installation Meeting: Schedule meeting after excavation of trenches and installation of sleeves, but prior to installation of pipe.
- E. Installer Qualifications: Licensed contracting firm regularly engaged in successful installation of irrigation systems similar in size and scope of this contract. Owner reserves the right to ask for and verify references from contractors past portfolio of work before award of contract.

# 1.09 CODES AND STANDARDS

- A. Plumbing code compliance: Comply with any applicable portions of the Utah state plumbing code pertaining to the selection of materials and the installation of irrigation systems.
- B. Water purveyor compliance: Comply with requirements of purveyor supplying water to the project.
- C. Any permits that are needed for the installation of construction of any work included under this contract, which are required by the authorities of jurisdiction, shall be obtained and paid for by the contractor following whatever ordinances, regulations and codes requiring the permits. If the authorities of the jurisdiction require inspection at said points of the installation, the contractor shall arrange for, and be present at, any such inspections.
- D. Additional work or furnishing of materials required due to inspection by the authorities of jurisdiction shall be furnished at no cost to the owner. In the event that the specifications for this project and existing ordinances, regulations or codes are in conflict, the conflict shall be noted in writing by the contractor to the owner's authorized representative, and any necessary changes in work shall follow an established procedure for claims for extra compensation.

# 1.10 CONTRACTORS USE OF PREMISES

- A. Contractor is responsible for damages and interruption of all existing utilities.
- B. Contractor shall not unreasonably encumber site with materials and equipment.
- C. Contractor shall assume full responsibility for protection and security of materials and equipment stored on job site.
- D. Contractor shall confine operations to areas within his contract limits.
- E. Any damages to existing structures, surfaces, or utilities caused by contractor or contractor's employees shall be considered contractor's responsibility and will be part of this contract to be corrected to satisfaction of owner.
- F. Contractor is responsible for contacting utility locating services and keeping utilities clearly marked on the job site. School-owned utilities and piping will be marked by school district personnel; however, contractor is responsible to contact the district maintenance department to schedule locating and must give adequate time for locating to be done. Any utilities, wiring, or piping damaged by contractor without following these guidelines will be the sole responsibility of the contractor to repair.
- G. Contractor is responsible for safety on job site. Barricading or covering open trenches, eliminating trip hazards, and other safety issues are a priority. Rental or supplying of barricades is contractor's responsibility.

# 1.11 PERFORMANCE BOND/BID BOND/INSURANCE

- A. The owner shall have the right to require the contractor to furnish bonds covering faithful performance of the Contract and payment of obligations arising thereunder as stipulated in bidding requirements. A bid bond, certified check, or cashiers check executed in favor of Logan School District in the amount of five percent (5%) of the total bid price must be submitted with the proposal as guarantee that bidder is willing to enter into a contract. Bidder must also be able to provide a one hundred percent (100%) Performance and Payment Bond at time of award of contract.
- B. Successful contractor must meet Federal, State, County and City codes and regulations. Proof of Liability Insurance and Workmen's Compensation must be submitted with bid.

#### 1.12 SUPERVISION

- A. The contractor shall provide a competent superintendent and any necessary assistants on the project when work is in progress. The superintendent shall not be changed during the project without the consent of the owner's representative unless the superintendent ceases his status as an employee of the contractor. The superintendent shall represent the contractor in the contractor's absence, and all directions given to him by the owner's representative shall be binding as if they were given to the contractor.
- B. The contractor's superintendent shall supervise the contractor's employees on the job site and be responsible for their actions and conduct on the job site.

# 1.13 GUARANTEE

- A. Submit one-year written guarantee signed by underground sprinkler contractor, agreeing to repair or replace all defects in material, equipment, and workmanship.
- B. Guarantee shall also cover repair of damage to any part of the premises resulting from leaks or other defects in material, equipment, and workmanship to the satisfaction of the Owner. Repairs if required, shall be done promptly at no cost to the Owner.

### 1.14 SEQUENCING AND SCHEDULING

- A. Maintain uninterrupted water service to building during normal working hours. Arrange for temporary water shutoff with owner.
- B. Coordinate lawn irrigation piping with work specified in Division 32 9223 "Sodding" and 32 9300 "Plants".
- C. Coordinate lawn irrigation piping with utility work.

# **PART 2 PRODUCTS**

# 2.01 IRRIGATION SYSTEM

- A. Manufacturers:
  - 1. Rain Bird Sales, Inc; N/A: www.rainbird.com/#sle.

# 2.02 FILL MATERIAL

- A. Backfill Material
  - 1. Backfill material for irrigation pipe shall consist of sand, native material or topsoil with no rocks larger than 1/4 inch in any dimension for pipe bedding haunches and initial backfill above the pipe. Above the initial backfill, the trench shall be filled with soil with no debris or rocks greater than 1-1/2 inch in any direction. Landscape architect shall approve on-stie material for backfill operation.
  - 2. Backfill for irrigation sleeves under pavement shall consist of granular material with no rock size larger than 1/4 inch in any dimension up to the base for the paving above the pipe.
  - 3. Imported backfill material shall be clean soil, free from organic material, trash, debris, rubbish, broken cement, asphalt material, or other objectionable substances and approved by the Landscape Architect.
- B. Drainage Fill Material

1. Washed, evenly graded mixture of crushed stone, or crushed or uncrushed gravel, with 100% passing a 1-1/2 inch sieve and not more than 5% passing a No. 4 sieve.

# 2.03 PIPE MATERIALS

- A. PVC Pipe: ASTM D2241; 200 psi pressure rated upstream from controls, 160 psi downstream; solvent welded sockets.
  - 1. All lateral piping smaller than 3", shall be schedule 40 pressure rated PVC glue joint pipe with ratings printed on outside of pipe.
  - 2. All main line pipe 3" and larger shall be class 200 pressure rated PVC gasket joint pipe with ratings printed on outside of pipe, unless otherwise noted on drawings or details.
  - 3. All lateral pipe and fittings shall be schedule 40 pressure rated PVC.
  - 4. All main pressure side valve manifold piping shall be domestic galvanized iron pipe and fittings. All galvanized iron pipe and fitting configurations shall match detail drawings exactly.

# B. Fittings:

- Mainlines shall have PVC sch. 40 fittings for pipe sizes 3/4 inch through 1-1/2 inch, PVC sch. 80 for pipe sizes 2 inch through 3 inch and push on ductile or mechanical cast iron fittings on PVC mainline 4 inch and larger.
- 2. Main line pressure fittings shall be cast iron manufactured by Harco or approved equal.
- 3. Remote control valve connection to mainline shall be PVC SST tee, epoxy coated double strap saddle, M.J. tee, or Harco Ductile Irons Service tees.
- 4. Joint restraint shall be Leemco or approved equal.

#### C. Sleeve Material:

- 1. Sleeve diameter shall be two times larger than pipe that is to be installed in sleeve. Sleeves 4" and smaller diameter shall be PVC schedule 40. Sleeves 4 inch and larger shall be Class 200 PVC or PVC sewer pipe.
- 2. Piping and control wires under walks, roads, or other hard surfaces shall be installed in class 200 PVC sleeves of adequate size or as noted on drawings.
- 3. Sleeves for electrical conduit shall be adequate to accommodate minimum conduit sizes as required by uniform electrical code.
- 4. Wire sleeves shall be PVC pipe or electrical tubing. Mazimum number of 14-gauge wire in sleeve shall be as follows:
  - a. 1-10 wires in a 1 inch sleeve
  - b. 11-18 wires in a 1-1/4 inch sleeve
  - c. 19-25 wires in a 1-1/2" sleeve
  - d. 26-40 wires in a 2" sleeve
  - e. 41-56 wires in a 2-1/2" sleeve
  - f. 57-88 wires in a 3" sleeve

# D. Pipe Connection Material

- 1. P-70 primer
- 2. 711 solvent/glue
- 3. Teflon tape

# 2.04 OUTLETS

- A. Manufacturers:
  - Rain Bird.
- B. All sprinkler heads shall be installed on a "swing joint" assembly. Lawn spray heads and small rotors with an inlet size 3/4" and smaller shall be installed as per manufacturer's recommendations with "funny pipe" and "swing ells" as manufactured by Rain Bird or approved equal. All large stream rotor and impact heads shall be installed with three 1" schedule 40 marlex street ells and one schedule 80 1"X12" nipple. Prefabricated swing joint assemblies by Spears Manufacturing or other approved equal can be substituted if desired. All "swing joint" configurations shall match detail drawings exactly.
- C. Rotary Type Sprinkler Head: Pop-up type with screens; fully adjustable for flow and pressure;.

- 1. Rain Bird Rotary Heads: RVAN 1724, rotary nozzles, and 5000 MPR.
- 2. Rain Bird Rotors: 3500, 5000, 6504, and 8005.
- D. Spray Type Sprinkler Head: Pop-Up head with full circle pattern or head per plan.
  - 1. Rain Bird Spray Heads: 1800 SAM PRS, RD1800 SAM PRS, HE VAN Series SAM PRS, and U-Series SAM PRS for all spray sprinkler heads.
- E. Quick Coupler & Hose Bibs:
  - Rainbird 44LRC on culinary water systems or approved equal with corresponding 2049 unlock key and 44K valve key.
- F. Risers: Stationary spray pop-up sprinkler heads, shrub spray heads, stationary spray sprinkler heads and rotor heads shall have risers made up of one of the following ways:
  - 1. Risers for irrigation heads with inlet size of 1/2 inch shall be swing pipe 14 inches long minimum and 24 inches maximum. Swing pipe with spiral barb fittings and street "L" shall be assembled according to plan details. Equal as approved by landscape architect before bidding.
  - 2. Riser for irrigation heads with 3/4 inch to 1 inch inlets shall have a swing joint assembly according to details on drawing.

#### 2.05 VALVES

- A. Manufacturers:
  - Rain Bird.
  - 2. Carson
  - 3. Substitutions: See Section 016000 Product Requirements.
- B. All control/master valve/quick coupler valves
- C. Gate Valves: Bronze construction non-rising stem.
  - NIBCO or CLOW or Matco-Norca non-rising stem, resilient wedge, gate valve, or approved equal. Bronze construction, designed for working pressure of 150 PSI minimum.
  - Valves sized two and a half (2-1/2) inches and larger shall have flanged connections.
     Valves two inches and smaller shall have threaded connections with unions on each side of the valve.
  - 3. Buried valves shall have cross handles or 2" square nut designed to receive operating key. Valves inside structures or vaults shall have wheel handles.
- D. Remote Control Valves:
  - 1. Rain Bird PESB-R PRS-D with pressure regulation.
- E. Valve Box and Cover: all boxes to have locking lids.
  - 1. Manual drain ball valve: 12 inch diameter valve box with appropriate lid. Larger size or square if required for access to valve handles.
  - 2. Control valve boxes shall be appropriate size, made of HDPE plastic, green in color, with bolt down lid. Valve boxes shall be made by Carson Industries or approved equal. No more than one valve shall be located in each plastic box.
  - 3. Valves located in hard surface areas shall be housed in a cast iron 3-piece adjustable extension box
  - 4. Circuit or Isolation valve: Carson 1220 jumbo box or approved equal.
  - 5. Valve box supports: standard size fired clay paving bricks without holes.
- F. Isolation Valves:
  - 1. Valve bank isolation valve shall be a domestic brass ball valve with at least a 200-psi rating. Valve shall be same size as the line it is installed. Valve shall be an Apollo model 70 series ball valve or an approved equal.
  - 2. All mainline isolation or zone valves shall be domestic resilient wedge square nut operated gate valves. Valves shall be same size as line they are installed on. Valve shall be a Mueller Co. 2500 series or an approved equal.
  - 3. All isolation valves will be installed in an appropriate valve box as specified in section
  - 4. Apollo International, Full port brass ball valve or approved equal as shown on drawings.
  - 5. 2" or less with cross handles Matco-Norca 513T bronze gate valve.

- 6. 2.5" and larger with operational nut Natco-Norca 200WDN Resilient Wedge, non-rising stem, full port flow gate valve or approved equal.
- G. Drain Valves:
  - Nibco Brass Ball Gas Cock with Teflon seat or approved equal. Brass ball valve shall have "T" handle on main lines and shall be in valve boxes on lateral lines.
  - Ford B11-444 NLFemale pipe thread with and no lead alloys. Ball valve shall have "T" handle on main lines and shall be in valve boxes on lateral lines.

# 2.06 CONTROLS

- A. Manufacturers:
  - 1. Rain Bird.
  - 2. Substitutions: See Section 016000 Product Requirements.
- B. Controller: Use existing located in mechanical room.
- C. Wire Conductors:
  - 1. Electrical Wire:
    - a. All wiring shall conform to the National Electrical Code.
  - 2. Traditional Wiring:
    - a. Control wire shall be UL listed direct burial cable not smaller than 14 gauge. In some cases 18-gauge multi-strand wire is used in special situations as shown on drawings and approved by owner.
    - b. Maxicom communication and flow sensor wire to shall be a three pair shielded cable specified by Rain Bird. Wire must be PE-39 cable as supplied by a Rain Bird Distributor.
    - Add extra wires as shown on drawings for future use. Wire shall be of a different color or marked as an extra wire.
    - d. Colors of wire shall be as follows:

Control wire for turf areas: Red 2) Control wire for shrub areas: Yellow 3) Control wire to master valve: Blue 4) Control wire to filter blowout valve: Brown Common wire: White 6) Extra wires Orange

3. Expansion Curls: shall be provided within three (3) feet of each wire connection to solenoid and at least every three hundred (300) feet in length. (Expansion curls are formed by wrapping 36" of wire around a rod or pipe 1" or more in diameter, then withdrawing the rod for single strand wire and loosely coiled for two wire cable).

# 2.07 OTHER COMPONENTS

- A. Mixes: Concrete for thrust blocks on irrigation pipe 3" or larger.
  - 1. One cu. ft. cement, 2 cu. ft. sand, 4 cu. ft. gravel, and 5 gallons minimum to 6 gallons maximum water.
  - 2. Mix thoroughly before placing.
- B. Submit other components recommended by Manufacturer for Architect's review and acceptance prior to installation.
- C. Provide components necessary to complete and make system operational.
- D. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. Deliver extra materials to Owner.
  - 1. Two valve box cover keys.
  - 2. Two quick coupler keys with brass hose swivel.
  - 3. Two manual drain valve keys.
  - 4. Two sets of sprinkler wrenches for adjusting, cleaning or disassembly of each type of sprinkler.
  - 5. Two each of any other tools required for any other equipment.

# **PART 3 EXECUTION**

### 3.01 OWNERS SALVAGE RIGHTS

A. Any items removed and not reused in contract will remain owner's property and will be returned to owner at his discretion.

### 3.02 EXAMINATION

- A. Verify location of existing utilities.
- B. Verify that required utilities are available, in proper location, and ready for use.
- C. Prior to installation of irrigation system, the contractor must verify the supply pressure at the work site. If there is a failure to obtain the needed pressure or if an excess pressure situation exists for normal operation, the contractor must contact the owner for any adjustments to the supply or irrigation system design. Failure to report any discrepancies in pressure due to any reason, and any installation done prior to notification of owner shall be done at the expense of the contractor.

### 3.03 PREPARATION

- During construction and storage, protect materials from damage and prolonged exposure to sunlight.
- B. Work damaged during course of work in this section shall be replaced or repaired at no additional cost to Owner. If damaged work is new, repair or replacement shall be performed by installer of original work.
- C. Layout and stake locations of system components.
- D. Review layout requirements with other affected work. Coordinate locations of sleeves under paving to accommodate system.
- E. All lateral lines shall run parallel with planting areas and avoid conflict with the location of plant materials. Where trenching is required in proximity to plant materials care shall be taken to avoid damage to roots. Do not cut existing tree roots measuring over 2 inches in diameter.

# 3.04 TRENCHING

- A. Trench Size:
  - 1. Minimum Cover Over Installed Supply Piping: 18 inches.
  - 2. Minimum Cover Over Installed Branch Piping: 12 inches.
- B. Trench to accommodate grade changes and slope to drains.
- Maintain trenches free of debris, material, or obstructions that may damage pipe.
- D. Pulling of pipe is not permitted.
- E. When digging on project site, the area shall be "blue staked" to identify the approximate location of all known underground utilities and structures.
- F. Excavation work shall be as deep and as wide as required to safely perform the work, such as making mainline connections or forming vaults. Where trenching is done in established lawn, care must be taken to keep the trenches only as wide as is necessary to accomplish the work.
- G. If more than one line is required in a single trench, that trench shall be deep and wide enough to allow for at least 3 inches of seperation between pipes. Install the piping in a manner for easy repair in the future.
- H. Over-excavate trenches 2 inches and bring back to indicated depth by filling with backfill material as specified under Part 2 Products. Separate out rocks larger than 1-1/2 inch in any direction uncovered in trenching operation from excavated material and remove from areas to receive landscaping.
- I. Where is becomes necessary to excavate beyond the limits of normal excavation lines to remove rock or other interfering objects, the void remaining after the removal of the object shall be backfilled with suitable material and compacted as per the "Earth Moving" section. The removal of all rock or other interfering objects and the backfilling of voids left by such removals

- shall be at the expense of the contractor.
- J. Any existing utility lines damaged during excavating or trenching shall be repaired immediately after notification of the utility owner and to his/her satisfaction. Should utility lines be encountered, which are not indicated on plans, the project representative shall be notified. The repair of any damage shall be done as soon as possible by the contractor or the utility owner and proper compensation will be negotiated by the owner. Such utility locations shall be noted on the "as-built" drawings.

# 3.05 INSTALLATION

#### A. General:

- 1. Install pipe, valves, controls, and outlets in accordance with manufacturer's instructions.
- 2. Connect to utilities.
- 3. Set outlets and box covers at finish grade elevations.
- 4. Provide for thermal movement of components in system.

# B. Pipes:

- Install pipe in manner to provide for expansion and contractions as recommended by manufacturer.
- 2. Unless otherwise indicated on approved drawings, install main lines and lateral lines connecting rotor pop-up sprinklers with minimum cover of 18 inches based on finished grade. Install remaining lateral lines with minimum of 12 inches of cover based on finish grade.
- 3. Install pipe and wires under driveways or parking areas in specified sleeves 18 inches minimum below finish grade or as shown on approved drawings.
- 4. Slope pipes under parking areas or driveways to drain outside these areas.
- 5. Locate sprinkler heads no closer than 12 inches from building foundation. Heads immediately adjacent to mow strips, walks, or curbs shall be one inch below top of mow strip, walk, or curb and have 1 to 3 inches clearance between head and mow strip, walk, or curb.
- 6. Slope piping for self drainage to control box where possible.
- 7. Where this is not possible, slope pipe to a minimum number of low points. Install at these low points:
  - a. 3/4 inch manual drain
  - b. Install 2 inch class 200 PVC pipe over top of manual drain and cut at finish grade,
  - c. Install rubber valve cap marker flush with finished grade.
  - d. Do not use automatic drain valves.
- 8. Cut plastic pipe square. Remove burrs at cut ends prior to installation so unobstructed flow will result.
- 9. Make solvent weld joints as follows:
  - a. Do not make solvent weld joints if ambient temperature is below 40 degrees F.
  - b. Clean mating pipe and fitting with clean, dry cloth and apply one coat of P-70 primer to each.
  - c. Apply uniform coat of 711 solvent to outside of pipe.
  - d. Apply solvent to fitting in a similar manner.
  - e. Re-apply light coat of solvent to pipe and quickly insert into fitting.
  - f. Give pipe or fitting a quarter turn to ensure even distribution of solvent and make sure pipe is insterted to full depth of fitting socket.
  - g. Hold in position for 15 seconds minimum or long enough to secure joint.
  - h. Wipe off solvent appearning at outer shoulder of fitting.
  - Do not use excessive amount of solvent thereby causing obstruction to form on inside of pipe.
  - j. Allow joints to set at least 24 hours before applying pressure to PVC pipe.
- 10. Threaded connections shall be made with teflon tape.

#### C. Sleeving:

1. Contractor is reponsible to coordinate the installation of sleeving with the work of other trades (i.e. concrete, asphalt paving, etc.)

- Sleeve irrigation water lines and control wires under walks and paving. Extend sleeves 6
  inches minimum beyond walk or pavement edge. Cap sleeves until pipes and wires are
  installed to keep sleeve clean and free of dirt and debris.
- 3. Use one water pipe maximum per sleeve. Sleeve control wiring in seperate sleeve.
- Position sleeves with respect to buildings and other obstructions so pipe can be easily removed.

#### D. Outlets:

- 1. Use threaded nipples for risers to each outlet.
- 2. Sprinkler Heads:
  - a. Prior to installation of sprinkler heads, open control valves and use full head of water to flush out system.
  - b. Set sprinkler heads and quick-coupling valves perpendicular to finish grade.
  - c. Do not install sprinklers using side inlets. Install using base inlets only.
  - d. Set sprinklers at a consistent distance from existing walks, curbs, and other paved areas and to grade.
  - e. Shrub spray heads shall be installed on risers a minimum of 12 inches above finish grade of planting area where not adjacent to pedestrian areas. At shrub areas adjacent to pedestrian access use 12" pop-up spray heads.

#### E. Valves & Valve Boxes:

- 1. Install control wires, and valves in accordance with Manufacturer's recommendations and per electrical code.
- 2. Install valves, in plastic boxes with locking reinforced heavy-duty plastic covers. Locate valve box tops at finish grade. Do not install more than two valves in a single box.
- 3. Place pea gravel a minimum of 6 inches deep below valve for drainage. Extend washed gravel 3 inch minimum beyond limits of valve box. Maintain 4 inch minimum between bottom of valve and top of gravel and 3 inches minimum clearance between the top of the valve to the bottom of valve cover. Set valve boxes over valve so all parts of valve can be reached for service. Set cover of valve box even with finish grade. Valve box shall be reasonably free from dirt and debris.
- 4. Install 3/4 inch brass ball valve in valve box on downstream side of automatic valves if lateral line slopes toward valve box.
- 5. Install quick coupling valves in appropriate locations in valve boxes.
- 6. Isolation valves, and any other equipment required by local authorities shall be installed according to local codes and requirements in order to make this system complete.
- 7. Install isolation valves, Air Release Valve, Master control Valves and Flow Sensors according to details plans and manufactures recommendations.
- 8. Install any other equipment required by local authorities according to local codes and requirements in order to make this system complete.

# F. Wiring:

- 1. Standard Wire:
  - a. Tape control wire to side of main line every 10 feet. Where control wire leaves main or lateral line, enclose it in Class 200 PVC conduit.
  - b. Place all waterproof wire splice connectors inside valve boxes.
  - c. Use white or gray color for common wire and other colors for all other wire. Each common wire may serve only one controller. Provide 12 inches of expansion loop slack wire at all connections inside valve box.
  - d. Run one extra control wire from panel continuously from valve to valve throughout system like the common wire for use if the common wire fails. Wire shall be a different color than all other wires and shall be marked in control box as an extra wire. Extend extra control wires 24 inches and leave coiled in each valve box.

# G. Earth Grounding:

1. Earth Grounding rod(s) or plate(s) shall provide a minimum resistance of 10 omhs or less. A minimum of one rod is required but second rod a plate or multiple rods and plates may be required if the rods or plates resistance are over 10 omhs.

- 2. Ground rods and plats shall be attached to ground wire by Cadweld Connection.
- 3. Electrical discharge areas for rods and plates are to be kept moist. Install in lawn area or provide irrigation for to maintain soil moisture as needed.
- 4. Install Ground Enhancement Materials if necessary, to improve soil conductivity.
- 5. Provide inground surge protection for irrigation controller as per details and environmental conditions.
- 6. Grounding test shall be done. Tester must be approved by Weber School District. Weber School District can provide tester to be paid by the contractor.
- H. After piping is installed, but before outlets are installed and backfilling commences, open valves and flush system with full head of water.

### 3.06 FIELD QUALITY CONTROL

- A. Notify landscape architect two working days minimum prior to testing.
- B. Field inspection and testing will be performed under provisions of Section 014000 Quality Requirements.
- C. Prior to backfilling, test system for leakage at main piping to maintain 100 psi pressure for six hours minimum.
- D. System is acceptable if no leakage or loss of pressure occurs and system self drains during test period.

# 3.07 BACKFILLING

- Cover both top and sides of pipe with 3 inch of backfill material as speficied under Part 2 -Products.
- B. Backfill trench and compact to within 5 inches (127 mm) of finish grade as specified in related sections. Protect piping from displacement. Top 5 inches (127 mm) of backfill shall be topsoil as specified in related section.
- C. Do not cover pressure main, sprinkler pipe, or fittings until pressure test has been completed and architect has inspected and approved the system
- D. After backfilling, perform an operating test of the entire system. Operate the entire system through one cycle of the controller for the purpose of checking coverage and assuring the absence of leaks. Repair water lines, valves, or connections which show evidence of leakage.
- E. All trenches shall be backfilled and then saturated with water sufficiently to ensure no settling of the surface after lawn in planted.
- F. Any portion of the system which shows defects or leakage shall be repaired to the satisfaction of the landscape architect and Owner or be replaced. After all repairs or replacements have been made and approved by the landscape architect, the above required test shall be made again.

### 3.08 SYSTEM STARTUP

- A. Prepare and start system in accordance with manufacturer's instructions.
- B. Adjust control system to achieve time cycles required to provide proper amounts of water to all plants.
- C. Adjust heads to proper grade when turf is sufficiently established to allow walking on it without appreciable harm. Such lowering or raising of heads shall be part of original contract with no additional cost to Owner.
- D. Adjust sprinkler heads for proper distribution and so spray does not fall on building.

# 3.09 CLOSEOUT ACTIVITIES

A. At the point of substantial completion of work outlined in these plans, the landscape contractor shall contact the owner's representative and arrange for a walk through to verify the installation of the system. A coverage test will be completed and the system installation inspected and a punch list of final items needing completion made.

- B. At the time of final inspection, the entire system must be tested in the presence of owner's representative. It must be fully operational in a satisfactory condition, with full uniform coverage of the areas indicated to be irrigated. All heads shall be adjusted to pattern, radius, and grade level.
- C. Before the inspection is complete, the contractor must furnish the "as built" drawings. These drawings should be updated on a daily basis to ensure accuracy. These drawings must show the location of all piping, valves, heads, wire splices and other pertinent information. These drawings and all maintenance manuals must be submitted at the time of final inspection in accordance with these specifications.
- D. If at the time of the final inspection there is any additional work to satisfy contract requirements, it will be noted on a "punch list". Contractor will have 10 days in order to satisfy, or make suitable arrangements with owner to satisfy items on the "punch list". At owner's discretion final payment or a portion thereof, could be held pending completion of "punch list" items.
- E. Instruct Owner's personnel in operation and maintenance of the system, including adjusting of sprinkler heads. Use operation and maintenance data as basis for demonstration.

#### 3.10 CLEAN-UP AND MAINTENANCE

- A. Remove from site all debris resulting from work of this section.
- B. See Section 017000 Execution and Closeout Requirements, for additional requirements relating to maintenance service.
- C. Provide one complete spring start-up and a fall shutdown by installer, at no extra cost to Owner.

## 3.11 WARRANTY

- A. All work shall be warranted for compliance with the contract requirements, including replacement, for a period of one year from date of substantial completion. If an unsatisfactory condition develops during the warranty period and is due to negligence, faulty materials, or workmanship, contractor shall immediately replace such items in a satisfactory condition. All warrantees shall be in writing, signed by contractor or legal representative, and worded as approved by owner. Warranty documents shall be presented to owner at the time of final inspection.
- B. During one-year warranty period, contractor will comply with the following:
  - 1. Fill and repair low areas and replace plantings due to settlement of excavated areas.
  - 2. At the end of the first watering season, contractor shall shut off and winterize the system.
  - 3. At the beginning of the next season, contractor shall restart system and make any repairs or adjustments needed to make system fully operational.

## SECTION 329113 SOIL PREPARATION

#### **PART 1 GENERAL**

#### 1.01 SECTION INCLUDES

- Perform soil preparation work.
- B. Furnish and apply soil amendments.
- C. Perform fine grading work required to prepare site for paving finish grading and for landscape finish grading.

## 1.02 REFERENCES

 A. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort.

#### 1.03 SUBMITTALS

- A. Product Data: Product literature and chemical /nutrient analysis of soil amendments and fertilizers.
- B. Informational Submittals:
  - 1. Field Quality Control Submittals:
    - a. Submit tests on imported and site topsoil by licensed laboratory before use.
      - 1) Before use, topsoil shall meet minimum specified requirements and be approved by Architect.
      - 2) If necessary, submit proposed amendments and application rates necessary to bring topsoil up to minimum specified requirements.
    - b. Submit report stating location of source of imported topsoil and account of recent use.

## **PART 2 PRODUCTS**

## 2.01 MATERIALS

- A. Topsoil:
  - Topsoil used in landscaped areas, whether imported, stockpiled, or in place, shall be fertile, loose, friable soil meeting the following criteria:
    - a. Chemical Characteristics:
      - 1) Acidity / alkalinity range: pH 5.5 to 8.0.
      - 2) Soluble Salts: less than 3.0 mmhos/cm.
      - 3) Sodium Absorption Ratio (SAR): less than 6.0.
      - 4) Organic Matter: greater than one percent.
    - b. Physical Characteristics:
      - Gradation as defined by USDA triangle of physical characteristics as measured by hydrometer.
        - (a) Sand: 15 to 60 percent
        - (b) Silt: 10 to 60 percent
        - (c) Clay: 5 to 30 percent
      - 2) Clean and free from toxic minerals and chemicals, noxious weeds, rocks larger than 1-1/2 inch in any dimension, and other objectionable materials.
      - Soil shall not contain more than 2 percent by volume of rocks measuring over 3/32 inch in largest size.
    - c. Fertility Requirements:
      - 1) Nitrate-nitrogen ppm > 20
      - 2) Phosphorous ppm > 15
      - 3) Potassium ppm > 150
      - 4) Iron ppm > 10
  - 2. Topsoil depths for the planting areas are as follows:
    - a. Sod/Seed Areas: 4 inches
    - b. Planter Beds: 12 inches

#### B. Soil Amendments:

- 1. Amend topsoil, either imported or stockpiled, to bring it in compliance with soils test.
  - a. Acceptable Fertilizers And Application Rates:
    - 1) Lawns: Phosphorus 1-2 lbs per 1000 sq. ft., Potassium 2 lbs. per 1000 sq.ft., and Nitrogen 2-4 lbs. per 1000 sq. ft.
    - 2) Shrubs: Phosphorus 1-2 lbs per 1000 sq. ft., Potassium 2 lbs. per 1000 sq.ft., and Nitrogen 1-2 lbs. per 1000 sq. ft.
    - 3) Equal as approved by Architect before installation.
  - b. Acceptable Soil Conditioners And Application Rates:
    - 1) Type One Acceptable Products.
      - (a) Soil conditioner that meets the required fertilizer and soil amendments stated above can be used at the discretion of the contractor.

## PART 3 EXECUTION

#### 3.01 PERFORMANCE

- A. Protection of In-Place Conditions: Protect utilities and site elements from damage.
- B. Soil Amendments:
  - 1. Add specified soil amendments at specified rates to lawn areas.
  - 2. Roto-till or otherwise mix amendments evenly into top 4 inches of topsoil.
  - 3. Incorporate and leach soil amendments which require leaching, such as gypsum, within such time limits that soil is sufficiently dry to allow proper application of fertilizer and soil conditioners.

#### C. Surface Preparation:

- 1. Landscaping and Planting Areas:
  - a. Before grading, dig out weeds from planting areas by their roots and remove from site. Remove rocks larger than 1-1/2 inches in size and foreign matter such as building rubble, wire, cans, sticks, concrete, etc.
  - b. Before beginning maintenance period, plants shall be in at least as sound, healthy, vigorous, and in approved condition as when delivered to site, unless accepted by Architect in writing at final landscape inspection.
  - c. Remove imported paving base material present in planting areas down to natural subgrade or other material acceptable to Architect.

#### D. Performance:

- 1. Do not expose or damage existing shrub or tree roots.
- 2. Tolerances:
  - a. Landscaping and Planting Tolerances:
    - 1) Maximum variation from required grades shall be 1/10 of one foot.
    - 2) To allow for final finish grades of planting areas, fine grade elevations before placing topsoil and mulch are:
      - (a) Sod Areas: 5.5 inches below top of walk or curb.
      - (b) Planter Bed Areas: 16 inches below top of walk or curb.
- 3. Do not expose or damage existing shrub or tree roots. Redistribute approved existing topsoil stored on site. Remove organic material, rocks and clods greater than 1-1/2 inch in any dimension, and other objectionable materials.
- 4. Slope grade away from building as specified. Direct surface drainage in manner indicated on Drawings by molding surface to facilitate natural run-off. Fill low spots and pockets with specified fill material and grade to drain properly.

## SECTION 329223 SODDING

### **PART 1 GENERAL**

#### 1.01 SECTION INCLUDES

- A. Placing topsoil.
- B. Fertilizing.
- C. Sod installation.
- D. Maintenance.

## 1.02 RELATED REQUIREMENTS

A. Section 312200 - Grading: Preparation of subsoil and placement of topsoil in preparation for the work of this section.

#### 1.03 DEFINITIONS

A. Weeds: Includes Dandelion, Jimsonweed, Quackgrass, Horsetail, Morning Glory, Rush Grass, Mustard, Lambsquarter, Chickweed, Cress, Crabgrass, Canadian Thistle, Nutgrass, Poison Oak, Blackberry, Tansy Ragwort, Bermuda Grass, Johnson Grass, Poison Ivy, Nut Sedge, Nimble Will, Bindweed, Bent Grass, Wild Garlic, Perennial Sorrel, and Brome Grass.

## 1.04 REFERENCE STANDARDS

- A. 21 CFR 11 Part 11, Electronic Records; Electronic Signatures Scope and Application Current Edition.
- B. TPI (SPEC) Guideline Specifications to Turfgrass Sodding 2006.

#### 1.05 QUALITY ASSURANCE

- A. Sod Producer: Company specializing in sod production and harvesting with minimum five years experience, and certified by the State of Utah.
- B. Installer Qualifications: Engage an experienced installer who has completed landscaping work similar in material, design, and extent to that indicated for this project and with a record of successful landscape establishment.

## 1.06 DELIVERY, STORAGE, AND HANDLING

- A. Deliver sod in rolls. Protect exposed roots from dehydration.
- B. Do not deliver more sod than can be laid within 24 hours.
- C. Harvest, deliver, store, and handle sod according to the requirements of the American Sod Producer's Association (ASPA) "Specifications for Turfgrass Sod Materials and Transplanting/Installing".

#### 1.07 PROJECT CONDITIONS

- A. Utilities: Determine location of above grade and underground utilities and perform work in a manners which will avoild damage. Hand excavate as required. Maintain grade stakes until removal is mutually agreed upon by parties concerned.
- B. Excavation: When conditions detrimental to plant growth are encountered such as rubble fill, adverse drainage conditions, or obstructions, notify landscape architect before planting.

#### 1.08 COORDINATION AND SCHEDULING

A. Coodinate installation of planting materials during normal planting seasons for each type of plant material required.

## 1.09 WARRANTY

A. General Warranty: the special warranty specified in this article shall not deprive the owner of other rights the owner may have under other provisions of the Contract Documents and shall be in addition to and run concurrent with other warranties made by the contractor udner requirements of the Contract Documents.

- B. Special Warranty: warrant all lawn areas for a period of one year after date of substantial completion against defects including death and unsatisfactory growth, except for defects resulting from lack of adequate maintenance, neglect, or abuse by owner, abnormal weather conditions unusual for warranty period, or incidents that are beyond contractor's control.
- C. Remove and replace dead materials immediately unless required to plant in the succeeding planting season.
- D. A limit of one replacement of each plant material will be required, except for losses or replacements due to failure to comply with requirements.

#### PART 2 PRODUCTS

## 2.01 MATERIALS

- A. Sod: TPI (SPEC), Certified Turfgrass Sod quality; cultivated grass sod; type indicated in plant schedule on Drawings; with strong fibrous root system, free of stones, burned or bare spots; containing no more than 5 weeds per 1000 sq ft. Minimum age of 18 months, with root development that will support its own weight without tearing, when suspended vertically by holding the upper two corners.
  - 1. Kentucky Blue Grass Type: 3 cultivar minimum.
  - 2. Thickness: "Thin" sod, minimum 1/2 inch and maximum 1 inch topsoil base.
  - 3. Thickness: "Thick" sod, minimum 1 inch and maximum 1-3/8 inch topsoil base.
  - 4. Cut sod in area not exceeding 1 sq yd.
  - 5. Machine cut sod and load on pallets in accordance with TPI (SPEC) Guidelines.
- B. Topsoil: Fertile, agricultural soil, typical for locality, capable of sustaining vigorous plant growth, taken from drained site; free of subsoil, clay, or impurities, plants, weeds and roots; pH value of minimum 5.4 and maximum 7.0. Bring surface to specified elevation relative to walk or curb.
- C. Commercial Fertilizer: Complete fertilizer of neutral character; recommended for grass, with fifty percent of the elements derived from organic sources; of proportion necessary to eliminate any deficiencies of topsoil, to the following proportions:
  - 1. Nitrogen: >16% (of which 50% will be organic). Provide nitrogen in a form that will be available to lawn during initial period of growth.
  - 2. Phosphoric Acid: 16%
  - 3. Soluble Potash: 8%

## **PART 3 EXECUTION**

# 3.01 EXAMINATION

A. Verify that prepared soil base is ready to receive the work of this section. Examine areas to receive landscaping for compliance with requirements and for conditions affecting performance of work if this section. Do not proceed with installation until unsatisfactory conditions have been corrected.

## 3.02 PREPARATION

- A. Place topsoil in accordance with Section 312200.
- B. Loosen sub-grade to a minimum depth of 4 inches. Remove stones larger than 1-1/2 inches in any dimension, sticks, roots, rubbish, and other extraneous materials.
- C. Spread planting soil mixture to depth required to meet thickness, grades, and elevations shown, after light rolling and natural settlement. Do not spread if planting soil or sub-grade is frozen.
  - 1. Place approximately 1/2 the thickness of planting soil mixture required. Work into top of loosened sub-grade to create transition layer and then place remainder of planting soil mixture.
  - 2. Allow for sod thickness in areas to be sodded.
- D. Preparation of unchanged grades: where lawns are to be planted in areas unaltered or undisturbed by excavating, grading, or surface soil stripping operations, prepare soil as follows:
  - 1. Till surface soil to a depth of at least 6 inches. Apply required soil amendments and initial fertilizers and mix thoroughly into top 4 inches of soil. Trim high areas and fill in

- depressions. Till soil to a homogenous mixture of fine texture.
- 2. Clean surface soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
- E. Grade lawn and grass areas to a smooth, even surface with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit fine grading to areas that can be planted in the immediate future. Remove trash, debris, stones larger than 1-1/2 inches in any dimension, and other objects that may interfere with planting or maintenance operations.
- F. Moisten prepared lawn areas before planting when soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.
- G. Restore prepared areas if eroded or otherwise disturbed after fine grading and before planting.
- H. Topsoil depth shall be a minimum of 4 inches.

#### 3.03 FERTILIZING

- A. Apply fertilizer in accordance with manufacturer's instructions.
- B. Apply after smooth raking of topsoil and prior to installation of sod.
- C. Apply fertilizer no more than 48 hours before laying sod.
- D. Mix thoroughly into upper 2 inches of topsoil.
- E. Lightly water to aid the dissipation of fertilizer.

# 3.04 LAYING SOD

- A. Moisten prepared surface immediately prior to laying sod.
- B. Lay sod within 24 hours after harvesting to prevent deterioration. Do not lay sod if dormant or if ground is frozen.
- C. Lay sod smooth and tight with no open joints visible, and no overlapping; stagger end joints 12 inches minimum. Do not stretch or overlap sod pieces.
- D. Where new sod adjoins existing grass areas, align top surfaces.
- E. Where sod is placed adjacent to hard surfaces, such as curbs, pavements, etc., place top elevation of sod 1/2 inch below top of hard surface.
- F. Lay sod accross angle of slopes exeeding 1:3.
- G. On slopes 6 inches per foot and steeper, lay sod perpendicular to slope and secure every row with wooden pegs at maximum 2 feet on center. Drive pegs flush with soil portion of sod.
- H. Water sodded areas immediately after installation. Saturate sod to 4 inches of soil. During first week, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below the sod.
- I. After sod and soil have dried, roll sodded areas to ensure good bond between sod and soil and to remove minor depressions and irregularities.

## 3.05 CLEAN-UP AND PROTECTION

- A. During landsdcaping, keep pavement clean and work area in an orderly condition.
- B. Protect landscaping from damage due to landscape operations, operations by other contractors and trades, and trespassers. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged landscape work as directed.

## 3.06 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of it off the owner's property.

# 3.07 MAINTENANCE

- A. Provide maintenance at no extra cost to Owner; Owner will pay for water.
- B. Maintain sodded areas immediately after placement until grass is well established and exhibits a vigorous growing condition, but not less than 30 days after date of substantial completion and

- second full mowing has been performed.
- C. Mow grass at regular intervals to maintain at a maximum height of 2-1/2 inches. Do not cut more than 1/3 of grass blade at any one mowing. Do not delay mowing until grass blades bend over and become matted. Do not mow grass when wet.
- D. Apply fertilizer to lawn after first mowing and when grass is dry. Use fertilizer that will provide actual nitrogen of at least 1 lb. per 1000 sq. ft. of lawn area.
- E. Neatly trim edges and hand clip where necessary.
- F. Immediately remove clippings after mowing and trimming.
- G. Water to prevent grass and soil from drying out to a uniform depth of 4 inches. Water lawn at the minimum rate of 1 inch per week.
- H. Roll surface to remove irregularities.
- I. Control growth of weeds. Apply herbicides in accordance with manufacturer's instructions. Remedy damage resulting from improper use of herbicides.
- J. Immediately replace sod to areas that show deterioration or bare spots.
- K. Protect sodded areas with warning signs during maintenance period.

# SECTION 329300 PLANTS EXTERIOR PLANTS

#### **PART 1 GENERAL**

#### 1.01 SECTION INCLUDES

- A. Preparation of subsoil.
- B. Topsoil bedding.
- C. New trees and plants.
- D. Fertilizer.
- E. Maintenance.
- F. Tree and Shrub Pruning.

## 1.02 DEFINITIONS

- A. Weeds: Any plant life not specified or scheduled.
- B. Plants: Living trees, plants, and ground cover specified in this Section , and described in ANSI Z60.1.

## 1.03 REFERENCE STANDARDS

- A. ANSI A300 Part 1 American National Standard for Tree Care Operations Tree, Shrub, and Other Woody Plant Management Standard Practices (Pruning) 2017.
- B. ANSI/AHIA Z60.1 American National Standard for Nursery Stock 2014.

# 1.04 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced installer who has completed landscaping work similar in material, design, and extent to that indicated for this project with at least 3 years experience and a record of successful landscape establishment.
- B. Provide quality, size, genus, species, and variety of trees, shrubs, and plants indicated complying with the applicable requirements of ANSI/AHIA Z60.1.
- C. Measure trees and shrubs according to ANSI/AHIA Z60.1 with branches and trunks or canes in their nornal position. Do not prune to obtain required sizes. Take caliper measurements 6 inches above ground for trees up to 4 inch caliper size and 12 inches above ground for larger sizes. Measure main body of tree or shrub for height and spread; do not measure branches or roots tip-to-tip.
- D. Tree Pruning: Comply with ANSI A300 Part 1.

# 1.05 DELIVERY, STORAGE, AND HANDLING

- A. Trees and Shrubs: Deliver freshly dug trees and shrubs. Do not prune before delivery, except as approved by landscape architect. Protect bark, branches, and root systems from sun scald, drying, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy natural shape. Provide protective covering during delivery. Do not drop trees and shrubs during delivery.
- B. Handle balled and burlapped stock by the root ball.
- C. Deliver trees, shrubs, ground covers, and plants after preparations for planting have been completed and install immediately. If planting is delayed more than 6 hours after delivery, set planting materials in shade, protect from weather and mechanical damage, and keep roots moist.
  - 1. Set balled stock on ground and cover ball with soil, peat moss, sawdust, or other acceptable material.
  - 2. Do not remove container-grown stock from containers before time of planting.
  - 3. Water root systems of trees and shrubs stored on site with a fine-mist spray. Water as often as necessary to maintain root systems in a moist condition.

- D. Protect and maintain plant life until planted.
- E. Deliver plant life materials immediately prior to placement. Keep plants moist.

#### 1.06 FIELD CONDITIONS

- A. Do not install plant life when ambient temperatures may drop below 35 degrees F or rise above 90 degrees F.
- B. Do not install plant life when wind velocity exceeds 30 mph.
- C. Utilities: Determine location of above grade and underground utilities and perform work in a manner which will avoid damage. Hand excavate as required. Maintain grade stakes until removal is mutually agreed upon by parties concerned.
- D. Excavation: When conditions detrimental to plant growth are encountered, such as rubble fill, adverse drainage conditions, or obstructions, notify landscape architect before planting.

#### 1.07 COORDINATION AND SCHEDULING

A. Coordinate installation of planting materials during normal planting seasons for each type of plant material required.

#### 1.08 WARRANTY

- A. General Warranty: the special warranty specified in this article shall not deprive the owner of other rights the owner may have under other provisions of the contract documents and shall be in addition to and run concurrent with other warranties made by the contractor udner requirements of the contract documents.
- B. Special Warranty: warrant trees, shrubs, and plants for a period of one year after date of substantial completion against defects including death and unsatisfactory growth, except for defects resulting from lack of adequate maintenance, neglect, or abuse by owner, abnormal weather conditions unusual for warranty period, or incidents that are beyond contractor's control.
- C. Replacements: Plants of same size and species as specified, planted in the next growing season, with a new warranty commencing on date of replacement.
  - Remove and replace dead planting materials immediately unless required to plant in the succeeding planting season.
  - 2. Replace planting materials that are more than 25% dead or in an unhealthy condition at end of warranty period.
  - A limit of one replacement of each plant material will be required, except for losses or replacements due to failure to comply with requirements.

# **PART 2 PRODUCTS**

## 2.01 TREE AND SHRUB MATERIAL

- A. Plants: Species and size identified in plant schedule, grown in climatic conditions similar to those in locality of the work.
- B. General: Furnish nursery-grown trees and shrubs conforming to ANSI/AHIA Z60.1, with healthy root systems, developed by transplanting or root pruning. Provide well shaped, fully-branched, healthy, vigorous stock free of disease, insects, eggs, larvae, and defects such as knots, sun scald, injuries, abrasions, and disfigurement.
- C. Grade: Provide trees and shrubs of sizes and grades conforming to ANSI/AHIA Z60.1 for type of trees and shrubs required. Trees and shrubs of a larger size may be used if acceptable to landscape architect with proportionate increase in size of roots and ball.
- D. Label at least 1 tree and 1 shrub of each variety and caliper with a securely attached, waterproof tag bearing legible designation of botannical and common name.

#### 2.02 SHADE AND FLOWERING TREES

A. Shade Trees: Single-stem trees with straight trunk, well-balanced crown, and intact leader, of height and caliper indicated, conforming to ANSI/AHIA Z60.1 for type of trees required.

- B. Small Trees: Small upright or spreading type, branched or pruned naturally according to species and type, and with relationship of caliper, height, and branching recommended by ANSI/AHIA Z60.1.
- C. Provide balled and burlapped trees when specified on approved plans.

#### 2.03 SHRUBS AND PERENNIALS

- A. Form and Size: Shrubs with not less than the minimum number of canes required by and measured according to ANSI/AHIA Z60.1 for type, shape, and height of shrub.
- B. Provide balled and burlapped or container shrubs and perennials.

#### 2.04 SOIL MATERIALS

- Provide approved imported topsoil required to bring surface to specified elevation relative to walk or curb.
- B. Topsoil: Fertile, agricultural soil, typical for locality, capable of sustaining vigorous plant growth, taken from drained site; free of subsoil, clay or impurities, plants, weeds and roots; see Section 32 9113: Soil Preparation for required chemical and physical characteristics.

#### 2.05 SOIL AMENDMENT MATERIALS

- A. Fertilizer for Trees and Shrubs: Containing fifty percent of the elements derived from organic sources; of proportion necessary to eliminate any deficiencies of topsoil, to the following proportions:
  - 1. Nitrogen: >20% (of which 50% will be organic).
  - 2. Phosphoric Acid: 10%.
  - 3. Soluble Potash: 5%.

#### 2.06 ACCESSORIES

A. Stakes: Softwood lumber, pointed end.

### PART 3 EXECUTION

## 3.01 EXAMINATION

- A. Examine areas to receive landscaping for compliance with requirements and for conditions affecting performance of work of this section. Do not proceed with installation until unsatisfactory conditions have been corrected.
- B. Verify that prepared subsoil and planters are ready to receive work.
- C. Saturate soil with water to test drainage.
- D. Verify that required underground utilities are available, in proper location, and ready for use.

#### 3.02 PREPARATION OF SUBSOIL

- A. Prepare subsoil to eliminate uneven areas. Maintain profiles and contours. Make changes in grade gradual. Blend slopes into level areas.
- B. Remove stones larger than 1 inch in any dimension, foreign materials, sticks, rubbish, weeds and undesirable plants and their roots. Remove contaminated subsoil.
- C. Scarify subsoil to a depth of 6 inches where plants are to be placed. Repeat cultivation in areas where equipment, used for hauling and spreading topsoil, has compacted subsoil.

#### 3.03 PLACING TOPSOIL

- A. Topsoil depth shall be a minimum of 12 inches.
- B. Spread topsoil to a minimum depth of 6 inches over area to be planted. Work into top of loosened sub grade to create a transition layer and then place remainder of planting soil mixture.
- C. Till soil in beds to a minimum depth of 8 inches and mix with specified soil amendments and fertilizers.
- D. Place topsoil during dry weather and on dry unfrozen subgrade.

- E. Remove vegetable matter and foreign non-organic material from topsoil while spreading.
- F. Grade topsoil to eliminate rough, low or soft areas, and to ensure positive drainage.

#### 3.04 FERTILIZING

- A. Apply fertilizer in accordance with manufacturer's instructions.
- B. Apply after initial raking of topsoil and till in to beds.
- C. Mix thoroughly into upper 8 inches of topsoil.
- D. Lightly water to aid the dissipation of fertilizer.

#### 3.05 EXCAVATION FOR TREES AND SHRUBS

- A. Pits and Trenches: Excavate with bottom of excavation slightly raised at center to assist drainage. Loosen hard subsoil in bottom of excavation.
  - 1. Balled and Burlapped Trees and Shrubs: Excavate approximately 3 times as wide as ball diameter and equal to ball depth.
  - 2. Container-Grown Trees and Shrubs: Excavate approximately 3 times as wide as container diamter and equal to root mass depth.
- B. Dispose of subsoil removed from landsdcape excavations. Do not mix with planting soil or use as backfill.
- C. Obstructions: Notify landscape architect if unexpected rock or obstructions detrimental to trees or shrubs are encountered in excavations.
- D. Drainage: Notify landscape architect if subsoil conditions evidence unexpected water seepage or retention in tree or shrub pits.
- E. Fill excavation with water and allow to percolate out before placing setting layer and positioning trees and shrubs.

## 3.06 PLANTING

- A. Layout individual tree and shrub locations and areas for multiple plantings. Stake locations, outline areas, and secure landscape architects acceptance before the start of planting work. Make minor adjustments as needed.
- B. Set balled and burlapped stock plumb and in center of pit or trench with top of ball raised above adjacent finish grades as indicated.
  - 1. Place stock on undisturbed or compacted topsoil.
  - 2. Remove burlap and wire baskets from tops and at least upper half of root ball (more if the root ball is stable), but do not remove from under root ball. Remove pallets, if any, before setting. Do not use planting stock if ball is cracked or broken before or during planting operation.
  - Place backfill around ball in layers, tamping to settle backfill and eliminate voids and air pockets.
  - 4. Backfill to consist of one (1) part topsoil and one (1) part native soil clean and free from toxic mineral and chemicals, noxious weeds, rocks larger than 1-1/2 inch in any dimension, and other objectionable materials.
  - 5. When pit is approximately 1/2 backfilled, water thoroughly before placing remainder of backfill. Repeat watering until no more is absorbed. Water again after placing and tamping final layer of backfill.
- C. Set container-grown stock plumb in center of pit or trench with top of ball raised above adjacent finish grades as indicated.
  - 1. Carefully remove containers so as not to damage root balls.
  - 2. Place stock on undisturbed or compacted topsoil.
  - 3. Place backfill around ball in layers, tamping to settle backfill and eliminate voids and air pockets.
  - 4. Backfill to consist of one (1) part topsoil and one (1) part native soil clean and free from toxic mineral and chemicals, noxious weeds, rocks larger than 1-1/2 inch in any dimension, and other objectionable materials.

- When pit is approximately 1/2 backfilled, water thoroughly before placing remainder of backfill. Repeat watering until no more is absorbed. Water again after placing and tamping final layer of backfill.
- D. Dish and tamp top of backfill to form a 3 inch high mound around the rim of the pit. Do not cover top of root ball with backfill.
- E. Place plants as indicated on plans.

#### 3.07 PLANT SUPPORT

- A. Brace plants vertically with plant protector wrapped guy wires and stakes to the following:
  - 1. Tree Caliper: 2 inches; Tree Support Method: 2 stakes with two ties

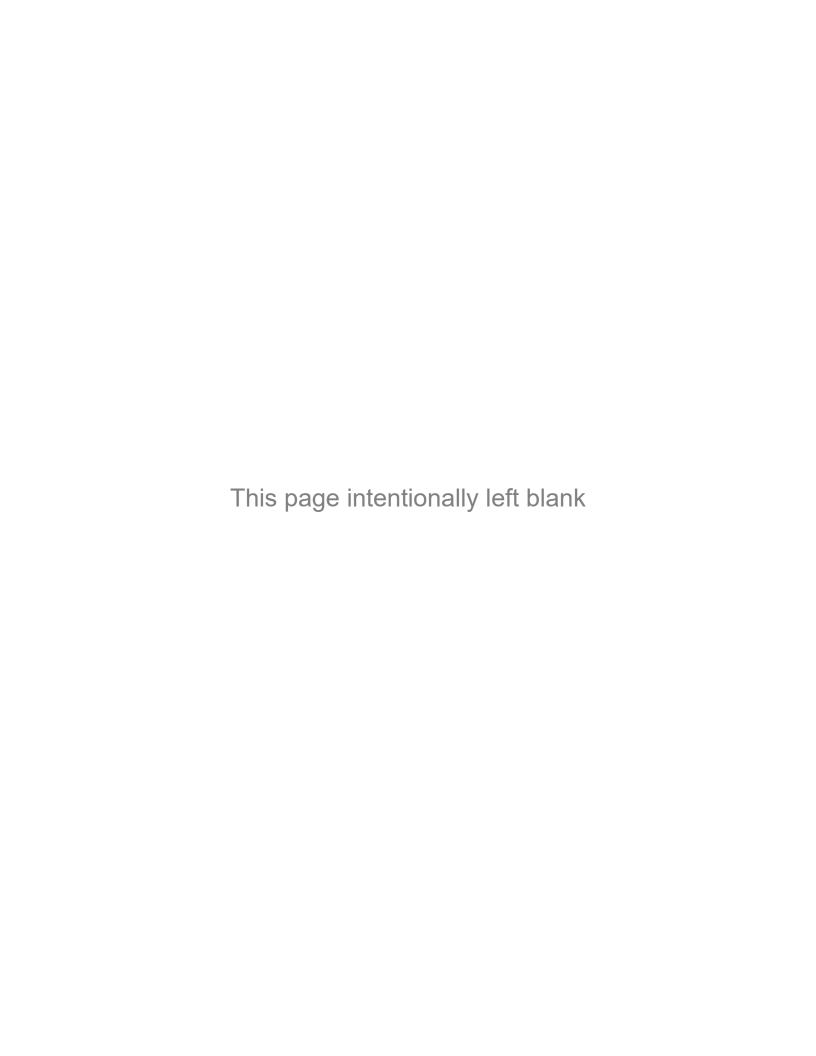
#### 3.08 TREE PRUNING

- A. Prune trees as recommended in ANSI A300 Part 1.
- B. Unless otherwise directed by landscape architect, do not cut tree leaders, remove only dead, broken, and split branches.
- Prune shrubs to retain natural character. Shrub sizes indicated are size after pruning.

## 3.09 FIELD QUALITY CONTROL

A. Plants will be rejected if a ball of earth surrounding roots has been disturbed or damaged prior to or during planting.

# 3.10 CLEAN-UP AND PROTECTION


- A. During landscaping, keep pavement clean and work area in orderly condition.
- B. Protect landscaping from damage due to landscape operations, operations by other contractors and trades, and trespassers. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged landscape work as directed.

## 3.11 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of it off the owner's property.

#### 3.12 MAINTENANCE

- A. Provide maintenance at no extra cost to Owner; Owner will pay for water.
- B. Maintain plant life for 60 days after date of substantial completion.
- C. Irrigate sufficiently to saturate root system and prevent soil from drying out.
- D. Remove dead or broken branches and treat pruned areas or other wounds.
- E. Neatly trim plants where necessary.
- F. Immediately remove clippings after trimming.
- G. Control growth of weeds. Apply herbicides in accordance with manufacturer's instructions.
- Control insect damage and disease. Apply pesticides in accordance with manufacturers instructions.
- I. Remedy damage from use of herbicides and pesticides.
- J. Maintain stakes. Repair or replace accessories when required.



## SECTION 329419 LANDSCAPE SURFACING

#### **PART 1 GENERAL**

#### 1.01 SECTION INCLUDES

- A. Mulch.
- B. Weed barrier
- C. Maintenance.

#### 1.02 SUBMITTALS

A. See Section 013000 - Administrative Requirements, for submittal procedures.

#### 1.03 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced installer who has completed landscaping work similar in material, design, and extent to that indicated for this project with at least 3 years experience and a record of successful landscape establishment.

## 1.04 FIELD CONDITIONS

A. Do not install mulch when wind velocity exceeds 30 mph.

#### 1.05 WARRANTY

A. General Warranty: the special warranty specified in this article shall not deprive the owner of other rights the owner may have under other provisions of the contract documents and shall be in addition to and run concurrent with other warranties made by the contractor udner requirements of the contract documents.

## **PART 2 PRODUCTS**

# 2.01 MULCH MATERIALS

- A. Organic Mulch: free from deleterious materials and suitable as a top dressing of trees and shrubs, consisting of one of the following:
  - 1. Soil Pep: placed in tree rings in turf grass.
- B. Crushed Rock: 3-4 inch minus in size. Color options submitted by contractor and approved by architect.

## 2.02 ACCESSORIES

- A. Weed Control Barrier: 5 oz. woven, needle-punched polypropylene fabric. DeWitt Pro 5 Weed Barrier or landscape architect's approved equivalent.
- B. Antidesiccant: Water-insoluble emulsion, permeable moisture retarder, film forming, for trees and shrubs. Deliver in original, sealed, and fully labeled containers and mix according to manufacturer's instructions.

### PART 3 EXECUTION

#### 3.01 EXAMINATION

- A. Examine areas to receive landscaping for compliance with requirements and for conditions affecting performance of work of this section. Do not proceed with installation until unsatisfactory conditions have been corrected.
- B. Verify that prepared subsoil and planters are ready to receive work.

## 3.02 MULCHING

- A. Mulch backfilled surfaces of pits, trenches, planted areas, and other areas indicated.
- B. Weed control barriers: Install weed control barriers according to manufacturer's recommendations and before mulching. Completely cover area to be mulched, lapping edges a minimum of 6 inches.
  - 1. apply pre-emergent before placing weed control barrier.
  - 2. Cut an "X" shape in weed barrier for plants and staple folder down into soil.

- C. Organic Mulch: Apply the following average thickness of organic mulch and finsih level with adjacent finish grades. Do not place mulch against trunks or stems.
  - 1. Thickness: 3 inches at tree locations in tree rings.
- D. Crushed Rock: Place 3" depth rock in areas as shown on plans with weed control barrier beneath.

#### 3.03 ACCESSORIES

A. Apply antidesiccant using power spray to provide an adequate film or trunks, branches, stems, twigs, and foliage. When deciduous trees or shrubs are moved in full-leaf, spray with antidesiccant at nursery before moving and again 2 weeks after planting.

## 3.04 CLEAN-UP AND PROTECTION

- A. During landscaping, keep pavement clean and work area in orderly condition.
- B. Protect landscaping from damage due to landscape operations, operations by other contractors and trades, and trespassers. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged landscape work as directed.

## 3.05 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of it off the owner's property.

#### 3.06 MAINTENANCE

Replace mulch when deteriorated.

# SECTION 33 1100 POTABLE WATER SYSTEMS

## **PART 1 - GENERAL**

#### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. Section includes potable water systems work.
- B. Related Sections:
  - 1. Division 31 Section "Earthwork" for excavation and backfill required for potable water systems; not work of this section.
  - Division 3 Sections for concrete work required for potable water systems; not work of this section.
  - 3. Division 22 Section "Potable Water Systems" for interior building systems including interior piping, fixtures, and equipment; not work of this section.

## 1.3 QUALITY ASSURANCE

- A. Codes and Standards:
  - 1. Plumbing Code Compliance: Comply with applicable portions of National Standard Plumbing Code pertaining to selection and installation of potable water system materials and products.
  - 2. Water Purveyor Compliance: Comply with requirements of Purveyor supplying water to project, obtain required permits and inspections.
  - 3. Local Regulations: Comply with governing regulations and standards of local government having jurisdiction.

#### 1.4 SUMBITTALS

- A. Product Data: Submit manufacturer's technical product data and installation instructions for potable water system materials and products.
- B. Maintenance Data: Submit maintenance data and parts list for potable water system materials and products. Include this data, product data, shop drawings, and record drawings in maintenance manual; in accordance with requirements of Division 1.

#### **PART 2 - PRODUCTS**

## 2.1 MANUFACTURERS

- A. Approved Manufacturers: Subject to compliance with requirements, provide products of one of the following:
  - 1. Plastic Line Markers
    - a. Allen Systems Inc.
    - b. Seton Name Plate Corp.
    - c. Equal product as approved by Engineer.
  - 2. Gate Valves:
    - a. Clow Corp; Valve Div.
    - b. Dresser Mfg.; Div. of Dresser Industries.
    - c. Fairbanks Co.
    - d. Kennedy Valve; Div. of ITT Grinnell Valve Co. Inc.
    - e. Stockham Valves and Fittings Inc.

f. Waterous Co.

## 2.2 IDENTIFICATION

- A. Underground-Type Detectable Warning Tape (refer to Specification 31 23 00):

  Manufacturer's standard permanent, bright-colored, continuous-printed plastic tape, intended for direct-burial service; not less than 6" wide x 4 mils thick. Provide blue tape with black printing reading "CAUTION WATER LINE BURIED BELOW".
- B. Nonmetallic Piping Label: If nonmetallic piping is used for water service, provide engraved plastic laminate, label permanently affixed to main electrical meter panel stating "THIS STRUCTURE HAS A NONMETALLIC WATER SERVICE".

# 2.3 PIPES AND PIPE FITTINGS

- A. Provide piping materials and factory-fabricated piping products of sizes, types, pressure ratings, and capacities indicated. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide sizes and types matching piping and equipment connections; provide fittings of materials which match pipe materials used in potable water systems. Where more than one type of materials or products are indicated, selection is Installer's option.
- B. Piping: Provide pipe fittings and accessories of same material and weight/class as pipes, with joining method as indicated.
  - 1. PVC Pipe: Schedule 40 PVC, ASTM 1785 (1-1/2" to 2" pipe diameter). AWWA Pipe: C-900 class 150 (over 2" pipe diameter).
    - a. Fittings: Schedule 80 PVC fittings ASTM 1785.
  - 2. Copper Tube: ASTM B 88; type K, soft-annealed temper (for 3/4" to 2" diameter pipe).
  - 3. Ductile Iron Pipe: AWWA C151, with cement mortar lining complying with AWWA C104; Class 51 unless otherwise indicated.
    - Fittings: Ductile-Iron complying with AWWA C110, cement lined, with rubber gaskets conforming to AWWA C111.

## 2.4 VALVES

A. Gate Valves: AWWA C509, resilient seated 175 psi working pressure, threaded, flanged, hub, or other end configurations to suit size of value and piping connection. Provide inside screw type for use with curb valve box, iron body, bronze-mounted, double disc, parallel seat, non-rising stem.

## 2.5 ACCESSORIES

- A. Anchorages: Provide anchorages for tees, wyes, crosses, plugs, caps, bends, valves, and hydrants. After installation, apply full coat of asphalt or other acceptable corrosion-retarding material to surfaces of ferrous anchorages.
  - 1. Clamps, Straps, and Washers: Steel, ASTM A 506.
  - 2. Rods: Steel, ASTM A 575.
  - 3. Rod Couplings: Malleable-iron, ASTM A 197.
  - 4. Bolts: Steel, ASTM A 307.
  - 5. Cast-Iron Washers: Gray-iron, ASTM A 126.
  - 6. Thrust Blocks: Concrete, 2,500 psi.
  - 7. Yard Hydrants: Non-freeze yard hydrants, 3/4" inlet, 3/4" hose outlet, bronze casing, cast-iron or cast-aluminum casing guard, key-operated, and tapped drain port in valve housing.
  - 8. Valve Pits: Valve pits as indicated, constructed of poured-in-place or precast concrete. Construct of dimensions indicated with manhole access, ladder, and drain. Provide sleeves for pipe entry and exit, provide waterproof sleeve seals.

## 2.6 METERS

A. Meters and meter boxes shall be of the local Water District standards having jurisdiction.

### PART 3 - EXECUTION

#### 3.1 EXAMINATION

A. Examine areas and conditions under which potable water system's materials and products are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

## 3.2 INSTALLATION OF IDENTIFICATION

A. During back-filling/top-soiling of underground potable water piping, install continuous underground-type detectable warning tape (refer to Specification 02300), located directly over buried lines at 6" to 8" below finished grade.

## 3.3 INSTALLATION OF PIPE AND PIPE FITTINGS

- A. Pipe:
  - 1. PVC Pipe: Install in accordance with manufacturers recommendations and sand bedding as required by authority having jurisdiction.
  - 2. Ductile Iron Pipe: Install in accordance with AWWA C600 "standard for installation of ductile-iron water mains and their appurtenances".
  - Copper Tube: Install in accordance with CDA "Copper Tube Handbook".
- B. Depth of Cover: Provide minimum cover over piping of 12" below average local frost depth or 60" below finished grade, whichever is greater.
- C. Water Main Connection: Arrange and pay for tap in water main, of size and in location as indicated, from water Purveyor.
- D. Water Service Termination: Terminate potable water piping 5'-0" from building foundation in location and invert as indicated. Provide temporary pipe plug for piping extension into building, by work of Division 15.
  - 1. Mark location with surface marker.
- E. Runs shall be as close as possible to those shown on drawings.
- F. Backfill only after pipe lines have been tested, inspected, and approved by the Architect.

## 3.4 INSTALLATION OF VALVES

A. Install valves with stems pointing up. Provide valve box over underground valves.

#### 3.5 FIELD QUALITY CONTROL

- A. Testing Agency: The Owner will employ and pay a qualified independent testing agency to perform field quality-control testing services specified in this section. Retesting of materials failing to meet specified requirements shall be done at Contractor's expense.
- B. Piping Tests: Conduct piping tests before joints are covered, and after thrust blocks have sufficiently hardened. Fill pipeline 24-hrs. prior to testing, and apply test pressure to stabilize system. Use only potable water.
- C. Hydrostatic Tests: Test at not less than 200 pounds per square inch for 2-hrs.
  - 1. Test fails if leakage exceeds 2-qts per hour per 100 gaskets or joints, irrespective of pipe diameter.
  - 2. Increase pressure in 50 psi increments and inspect each joint between increments. Hold at test pressure for one hour, decrease to 0 psi. Slowly increase again to test pressure and hold for one more hour.

#### 3.6 ADJUSTING AND CLEANING

A. Disinfection of Potable Water System: Flush pipe system with clean potable water until no dirty water appears at point of outlet. Fill system with water-chlorine solution containing at

least 50 ppm of chlorine. Valve off system and let stand for 24- hrs minimum. Flush with clean potable water until no chlorine remains in water coming from system.

- 1. Repeat procedure if contamination is present in bacteriological examination.
- B. Disinfection of Water Mains: Flush and disinfect in accordance with AWWA C652 "Standard for Disinfecting Water Mains".
  - 1. Contractor shall submit written verification to Project Manager stating, Disinfection has been completed in strict compliance with specification for this project and with jurisdiction having authority over water system.

# SECTION 33 3100 SANITARY SEWAGE SYSTEMS

# **PART 1 - GENERAL**

#### 1.1 SUMMARY.

- A. Section includes sanitary sewage systems.
- B. Related Sections:
  - 1. Refer to Division 31 section "Earthwork" for excavation and backfill required for sanitary sewage systems; not work of this section.
  - 2. Refer to Division 22 section "Soil and Waste Systems" for interior building systems including drain, waste, and vent piping; not work of this section.

## 1.2 QUALITY ASSURANCE:

- A. Codes and Standards:
  - 1. Plumbing Code Compliance: Comply with applicable portions of National Standard Plumbing Code pertaining to selection and installation of sanitary sewage system materials and products.
  - 2. Local Regulations: Comply with governing regulations and standards of local government having jursidiction.

#### **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURER:

- A. Acceptable Manufacturer: Subject to compliance with requirements, provide products of one of the following:
  - Line Markers:
    - a. Allen Systems, Inc.
    - b. Emed Co., Inc.
    - c. Seton Name Plate Corp.

# 2.2 IDENTIFICATION:

A. Underground-Type Detectable Warning Tape (refer to Specification 02300):

Manufacturer's standard permanent, bright-colored, continuous-printed plastic tape, intended for direct-burial service; not less than 6" wide x 4 mils thick. Provide green tape with black printing reading "CAUTION SEWER LINE BURIED BELOW".

## 2.3 PIPES AND PIPE FITTINGS:

- A. Provide pipe fittings and accessories of same material and weight/class as pipes, with joining method as indicated.
  - 1. Cast-Iron Soil Pipe: ASTM A 74, hub and spigot ends, service weight unless otherwise indicated.
    - a. Fittings: Cast-iron hub and spigot ends, standard strength unless otherwise indicated.
  - Concrete Pipe: ASTM C 14, Class III non-reinforced concrete pipe, unless otherwise indicated.
    - a. Fittings: Concrete, same strength as adjoining pipe, tongue and groove gasketed joints complying with ASTM C 443.
  - 3. Polyvinyl Chloride (PVC) Sewer Pipe: ASTM D 3034, Type PSM, SDR 35.
    - a. Fittings: ASTM 3034, bell and spigot joints.

# 2.4 SANITARY SEWER MANHOLES:

A. Provide precast reinforced concrete sanitary manholes as indicated, and complying with

# ASTM C 478.

- 1. Top: Precast concrete, of concentric cone, eccentric cone, or flat slab top type, as indicated.
- 2. Base: Precast concrete, with base riser section and separate base slab, or base riser section with integral floor, as indicated.
- Steps: Ductile-iron or aluminum, integrally cast into manhole sidewalls.
- 4. Frame and Cover: Ductile-iron, 21-3/4" diameter cover, heavy-duty, indented top design, with lettering cast into top reading "SANITARY SEWER".
- 5. Pipe Connectors: Resilient, complying with ASTM C 923.

## 2.5 CLEANOUTS:

A. Pipe extension to grade with ferrule and countersunk cleanout plug. Round cast-iron access frame over cleanout, with heavy-duty secured scoriated cover with lifting device.

#### **PART 3 - EXECUTION**

## 3.1 INSTALLATION OF IDENTIFICATION:

A. During back-filling/top-soiling of sanitary sewage systems, install continuous underground-type detectable warning tape, located directly over buried line at 6" to 8" below finished grade.

#### 3.2 INSTALLATION OF PIPE AND FITTINGS:

- A. Install piping in accordance with governing authorities having jurisdiction, except where more stringent requirements are indicated.
  - 1. Inspect piping before installation to detect apparent defects. Mark defective materials with white paint and promptly remove from site.
  - 2. Lay piping beginning at low point of system, true to grades and alignment indicated, with unbroken continuity of invert.
  - 3. Place bell ends or groove ends of piping facing upstream.
  - 4. Install gaskets in accordance with manufacturer's recommendations for use of lubricants, cements, and other special installation requirements.
  - 5. Runs shall be as close as possible to those shown on drawings.

# B. Pipe:

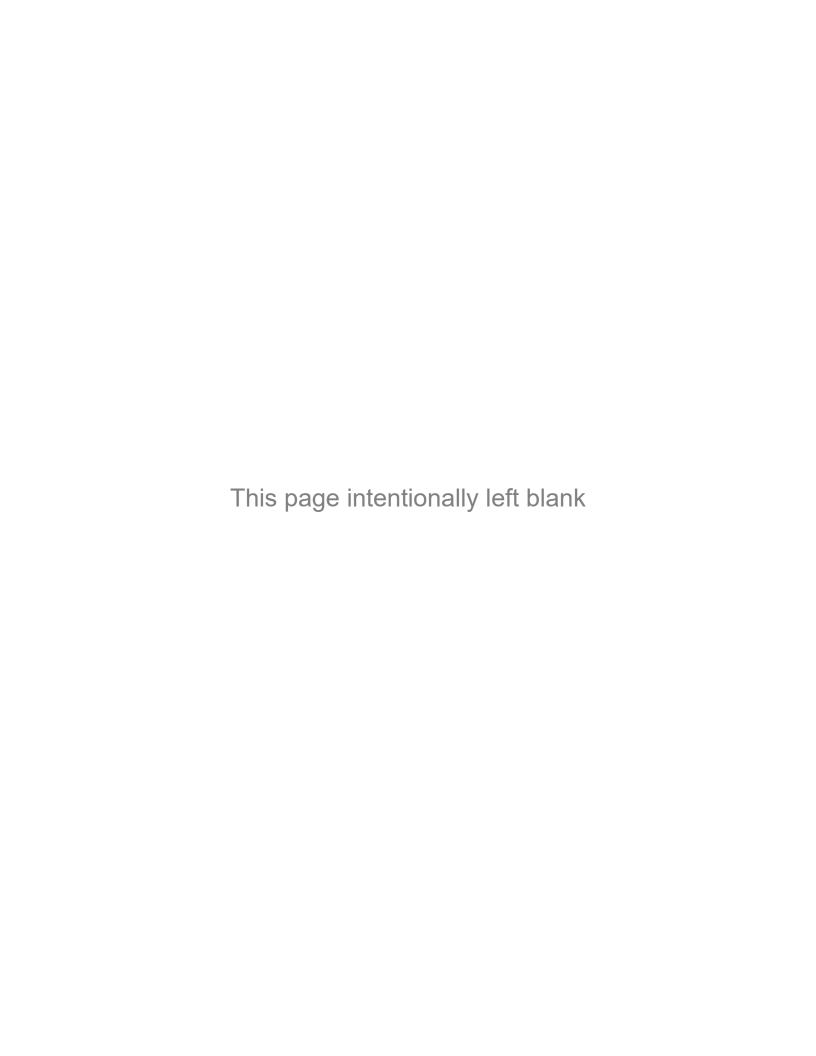
- 1. Cast-Iron Pipe: Install in accordance with applicable provisions of CISPI "Cast Iron Soil Pipe and Fittings Handbook".
- Concrete Pipe: Install in accordance with applicable provisions of ACPA "Concrete Pipe Installation Manual".
- 3. Plastic Pipe: Install in accordance with manufacturer's installation recommendations, and in accordance with ASTM D 2321.
- C. Cleaning Pipe: Clear interior of piping of dirt and other superfluous material as work progresses. Maintain swab or drag in line and pull past each joint as it is completed.
  - 1. In large, accessible piping, brushes and brooms may be used for cleaning.
  - 2. Place plugs in ends of uncompleted conduit at end of day or whenever work stops.
  - 3. Flush lines between manholes if required to remove collected debris.
- D. Joint Adapters: Make joints between different types of pipe with standard manufactured adapters and fittings intended for that purpose.
- E. Interior Inspection: Inspect piping to determine whether line displacement or other damage has occurred.
  - 1. Make inspections after lines between manholes, or manhole locations, have been

- installed and approximately 2-ft of backfill is in place, and again at completion of project.
- 2. If inspection indicates poor alignment, debris, displaced pipe, infiltration, or other defects, correct such defects, and reinspect.

## 3.3 SANITARY MANHOLES:

- A. Place precast concrete sections as indicated. Where manholes occur in pavements, set tops of frames and covers flush with finish surface. Elsewhere, set tops 3" above finish surface, unless otherwise indicated.
  - 1. Install in accordance with ASTM C 891.
  - 2. Apply bituminous mastic coating at joints of sections.

#### 3.4 TAP CONNECTIONS:


- A. Make connections to existing piping and underground structures, so that finished work will conform as nearly as practicable to requirements specified for new work.
- B. Use commercially manufactured wyes for branch connections. Field cutting into piping will not be permitted. Spring wyes into existing line and encase entire wye, plus 6" overlap, with not less than 6" of 4,000 psi 28-day compressive strength concrete.
- C. Take care while making tap connections to prevent concrete or debris from entering existing piping or structure. Remove debris, concrete, or other extraneous material which may accumulate.

## 3.5 BACKFILLING:

A. Conduct backfilling operations of open-cut trenches closely following laying, jointing, and bedding or pipe, and after initial inspection and testing are completed.

## 3.6 FIELD QUALITY CONTROL:

- A. Testing Agency: The Owner will employ and pay a qualified independent testing agency to perform field quality-control testing services specified in this section. Retesting of materials failing to meet specified requirements shall be done at Contractor's expense.
- B. Testing: Perform testing of completed piping in accordance with local authorities having jurisdiction.



# SECTION 33 4100 STORM DRAINAGE

#### **PART 1 - GENERAL**

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

## 1.2 SUMMARY

- A. This Section includes storm drainage outside the building.
- B. Related Sections include the following:
  - 1. Refer to Division-2 Section "Earthwork" for excavation and backfill required for storm drainage systems; not work of this section.
  - 2. Refer to Division-2 sections for concrete work required for storm drainage systems; not work of this section.
  - 3. Refer to Division-22 section "Plumbing Piping" for interior building systems including connections to roof and deck drains; not work of this section.

## 1.3 PROJECT CONDITIONS

- A. Site Information: Perform site survey, and verify existing utility locations.
- B. Existing Structures: Locate existing structures and piping to be closed and abandoned.
- C. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
  - Notify Architect not less than two days in advance of proposed utility interruptions.
  - 2. Do not proceed with utility interruptions without Architect's written permission.

### 1.4 QUALITY ASSURANCE

- A. Codes and Standards:
  - 1. Local Regulations: Comply with governing regulations and standards of local City having jurisdiction.

#### **PART 2 - PRODUCTS**

#### 2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
  - Stormwater Disposal Systems:
    - a. Advanced Drainage Systems, Inc.
    - b. Cultec, Inc.
    - c. Hancor, Inc.
    - d. Infiltrator Systems, Inc.
    - e. PSA, Inc.

#### 2.2 PIPES AND FITTINGS

- A. Provide pipe fittings and accessories of same material and weight/class as pipes, with joining method as indicated.
- B. Corrugated HDPE Drainage Tubing and Fittings: AASHTO M 252, Type S, with smooth waterway for coupling joints.
  - 1. Soiltight Couplings: AASHTO M 252, corrugated, matching tube and fittings to

form soiltight joints.

- C. Corrugated HDPE Pipe and Fittings: AASHTO M 294, Type S, with smooth waterway for coupling joints.
  - 1. Soiltight Couplings: AASHTO M 294, corrugated, matching pipe and fittings to form soiltight joints.
- D. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76 (ASTM C 76M), Class III, Wall B, for gasketed joints.
  - 1. Gaskets: ASTM C 443 (ASTM C 443M), rubber.
- E. Polyvinyl Chloride (PVC) Sewer Pipe: ASTM D 3034, Type PSM, SDR 35.
  - 1. Fittings: ASTM 3034, bell and spigot joints. 12" diameter and smaller.

# 2.3 MANHOLES

- A. Provide precast reinforced concrete storm drain manholes as indicated, complying with ASTM C 478.
  - Top: Precast concrete, of concentric cone, eccentric cone, or flat slab top type, as indicated.
  - 2. Base: Precast concrete, with base riser section and separate base slab, or base riser section with integral floor, as indicated.
  - 3. Steps: Ductile-iron or aluminum, integrally cast into manhole sidewalls.
  - 4. Frame and Cover: Ductile-iron, 21-3/4" diameter cover, heavy-duty, indented top design, with lettering cast into top reading "STORM SEWER", conforming to ASTM A-48, unless otherwise specified on the plans.
  - 5. Pipe Connections: Resilient, complying with ASTM C 923.

## 2.4 CATCH BASINS

- A. Precast or cast in place reinforced concrete catch basins as indicated.
  - 1. Basin: Precast or cast in place reinforced concrete, flat slab top.
  - 2. Frame and Grate: Ductile-iron or galvanized steel grate, heavy- duty, bicycle proof.
  - Pipe Connectors: Resilient, complying with ASTM C 923.

### 2.5 PIPE OUTLETS

- A. Head Walls: Amcor CP190 Precast Flared End Section or Equivalent.
- B. Riprap Basins: Broken, irregular size and shape, graded stone.
  - Average Size: NSA No. R-5, screen opening 5 inches (127 mm).

# **PART 3 - EXECUTION**

# 3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Division 2 Section "Earthwork."

# 3.2 INSTALLATION, GENERAL

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated, to extent practical.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab or drag in line, and pull past each joint as it is completed.
- C. Use manholes for changes in direction, unless fittings are indicated. Use fittings for

- branch connections, unless direct tap into existing sewer is indicated.
- D. Install gravity-flow piping and connect to building's storm drains, of sizes and in locations indicated. Terminate piping as indicated.
  - Install piping pitched down in direction of flow, at minimum slope of 1 percent, unless otherwise indicated.

## 3.3 PIPE JOINT CONSTRUCTION AND INSTALLATION

- A. General: Join and install pipe and fittings according to installations indicated.
- B. PE Pipe and Fittings: As follows:
  - Join pipe, tubing, and fittings with couplings for soiltight joints according to manufacturer's written instructions.
  - 2. Install according to ASTM D 2321 and manufacturer's written instructions.
  - 3. Install corrugated piping according to the Corrugated Polyethylene Pipe Association's "Recommended Installation Practices for Corrugated Polyethylene Pipe and Fittings."
- C. Concrete Pipe and Fittings: Install according to ACPA's "Concrete Pipe Installation Manual." Use the following seals:
  - 1. Round Pipe and Fittings: ASTM C 443 (ASTM C 443M), rubber gaskets.

#### 3.4 MANHOLE INSTALLATION

- A. General: Install manholes, complete with appurtenances and accessories indicated.
- B. Form continuous concrete channels and benches between inlets and outlet.
- C. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches (76 mm) above finished surface elsewhere, unless otherwise indicated.
- D. Install precast concrete manhole sections with gaskets according to ASTM C 891.

## 3.5 CATCH-BASIN INSTALLATION

- A. Construct catch basins to sizes and shapes indicated.
- B. Set frames and grates to elevations indicated.

# 3.6 STORM DRAINAGE OUTLET INSTALLATION

- A. Construct riprap of broken stone, as indicated.
- B. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.

# 3.7 DRAIN INSTALLATION

- A. Install type of drains in locations indicated.
- B. Fasten grates to drains if indicated.
- C. Set drain frames and covers with tops flush with pavement surface.

# 3.8 FIELD QUALITY CONTROL

- A. Clear interior of piping and structures of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed.
  - 1. In large, accessible piping, brushes and brooms may be used for cleaning.
  - 2. Place plug in end of incomplete piping at end of day and when work stops.
  - Flush piping between manholes and other structures to remove collected debris.
- B. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches (600 mm) f backfill is in place, and again at completion of Project.

- 1. Submit separate reports for each system inspection.
- 2. Defects requiring correction include the following:
  - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
  - b. Crushed, broken, cracked, or otherwise damaged piping.
  - c. Infiltration: Water leakage into piping.
  - d. Exfiltration: Water leakage from or around piping.
- 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
- 4. Reinspect and repeat procedure until results are satisfactory.