design west architects

	date:	2.12.2024
	project:	LCSD – Indoor Athletic Facility Remodel
BID ADDENDUM #	Issued by:	Michael Rigby
BID ADDENDOM #	subject:	Addendum #1

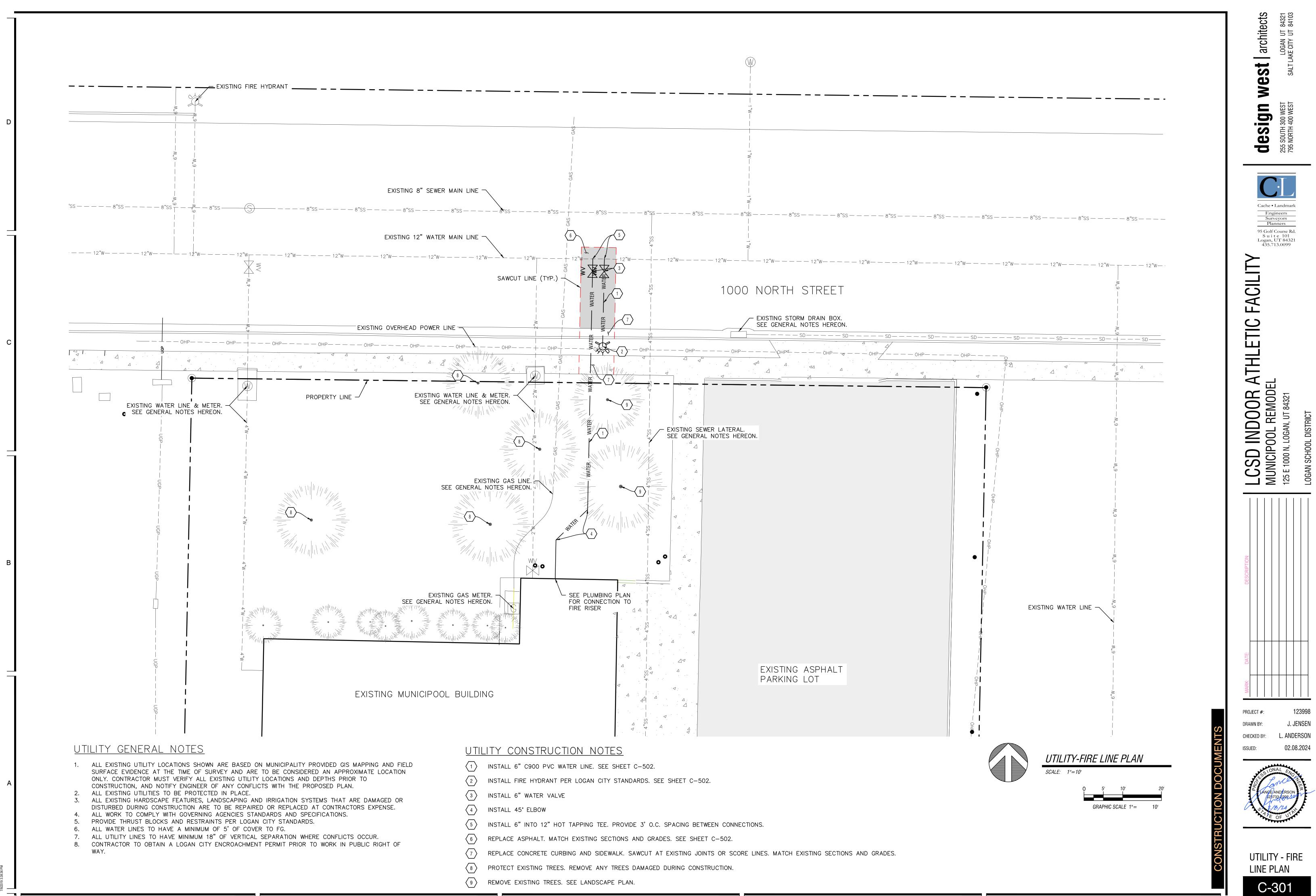
This Addendum shall be considered part of the bid documents for the above-mentioned project as though it had been issued at the same time and shall be incorporated integrally therewith. Where provisions of the following supplementary data differ from those of the original bid documents. This Addendum shall govern and take precedence. Bidders Must acknowledge this addendum on their bids.

Proposers are hereby notified that they shall make any necessary adjustments in their estimates as a result of this Addendum. It will be construed that each bidder's proposal is submitted with full knowledge of all modifications and supplemental data specified herein.

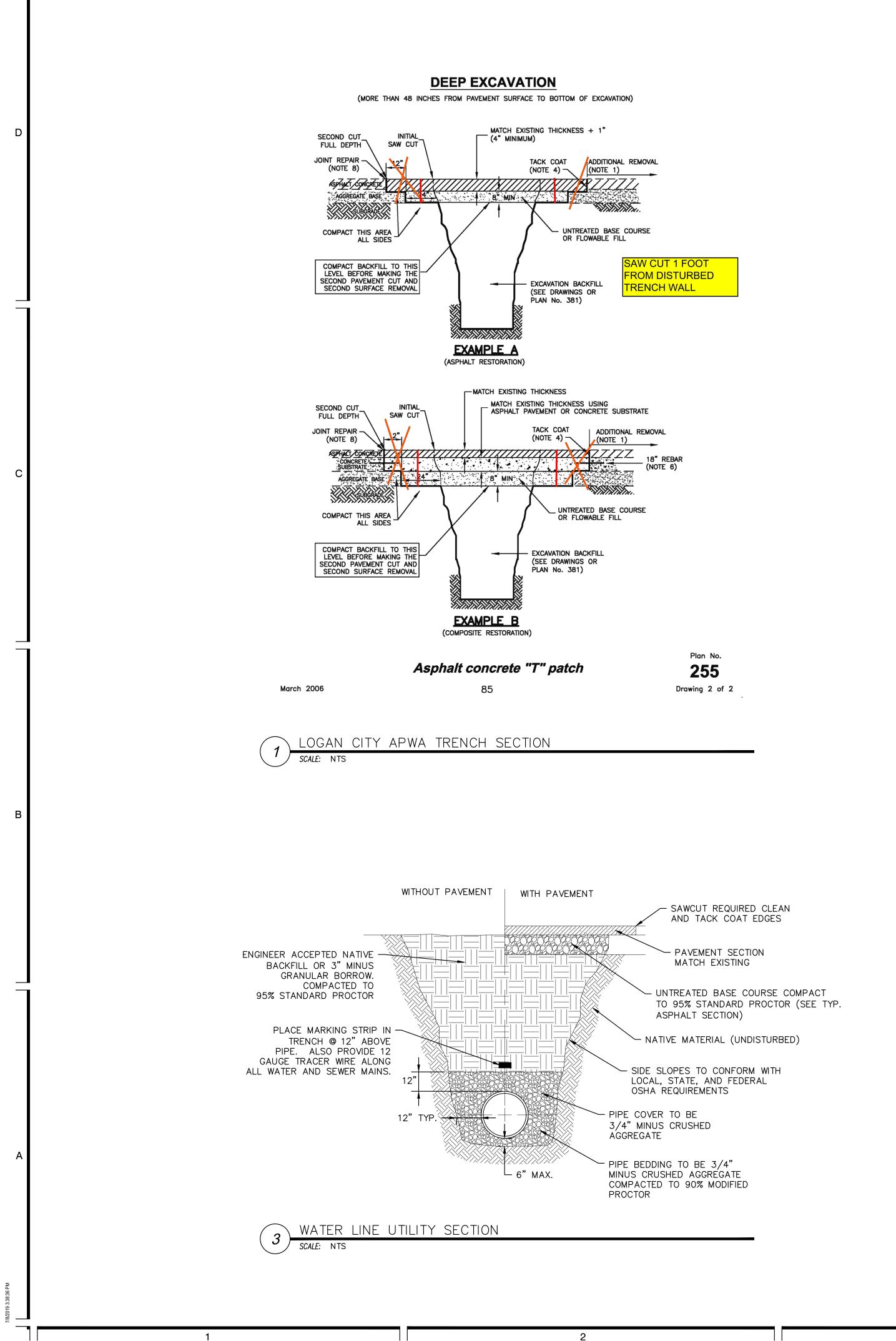
Except as described below, the original bid documents remain unchanged. The bid documents are modified and/or clarified. As follows:

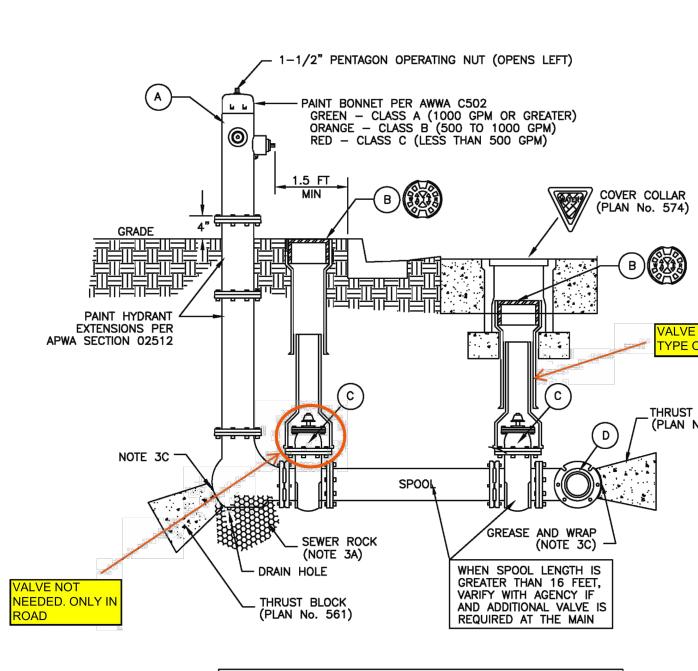
Items:

AD-01	C-301 – UTILITY – FIRE LINE PLAN • ADD Sheet
AD-02	Spec Sections: Add Following Sections:


Spec Sections: Add Following Sections:

- 31 2300 Earthwork •
- 33 1119 Fire Suppression Water System


Items:


UTILITY - FIRE LINE PLAN C-301 31 2300 EARTHWORK FIRE SUPPRESSION WATER SYSTEM 33 1119

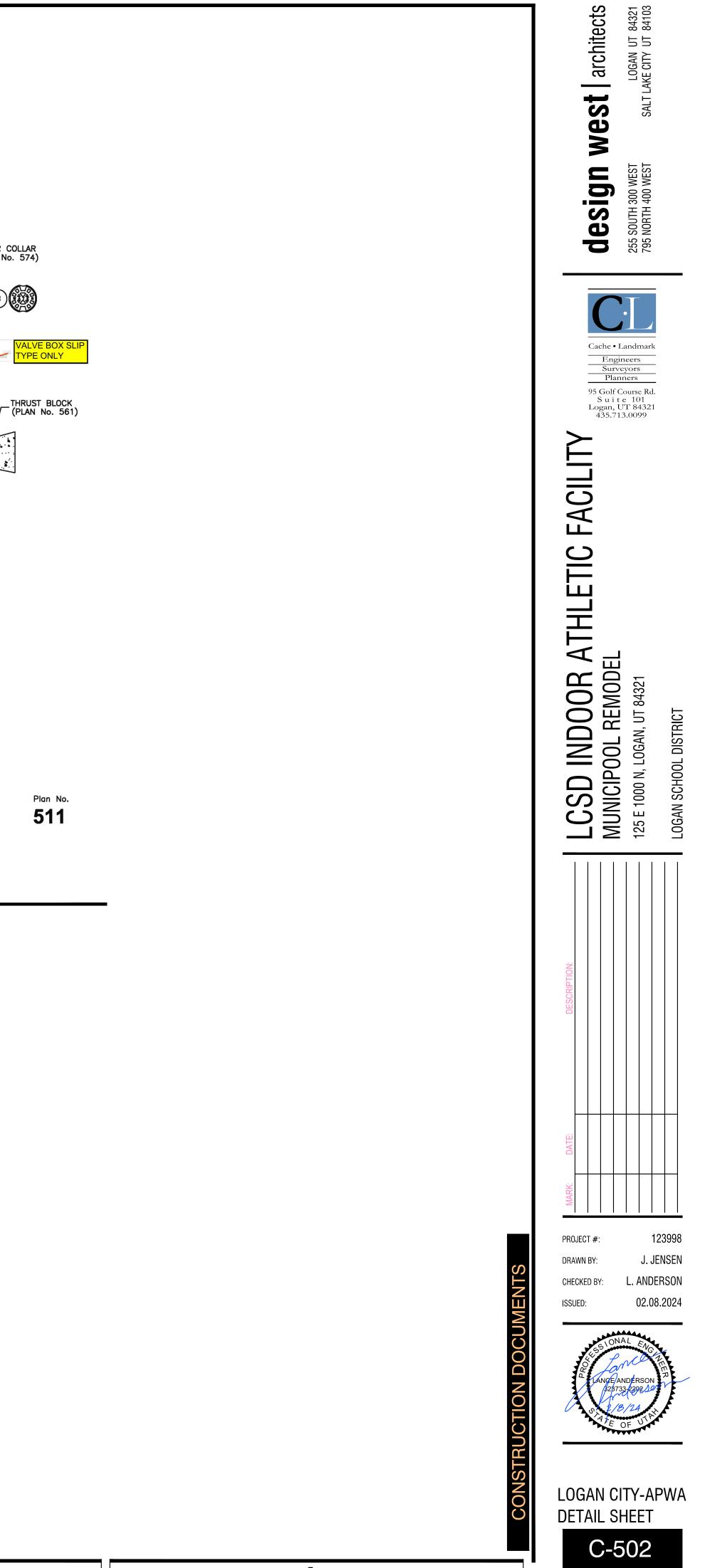
Michael Rigby	2.12.2024
ISSUED BY Architect	Date

© COPYRIGHT DESIGN WEST ARCHITECTS 2024

	LEGEND			
No.	*	ITEM	DESCRIPTION	
(A)		FIRE HYDRANT	AWWA C502	
B		VALVE BOX WITH LID	2 PIECE CAST IRON	
\odot		GATE VALVE WITH 2"x2" NUT	AWWA C509	
0		TEE WITH 125 # FLANGE	AWWA C110	
* FURNISHED BY UTILITY AGENCY				

B

SECTION


January 2003

Fire hydrant with valve

213

4

© COPYRIGHT DESIGN WEST ARCHITECTS 2024

SECTION 31 2300 EARTHWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Preparing subgrades for slabs-on-grade, walks, pavements, lawns, and plantings.
 - 2. Excavating and backfilling for buildings and structures.
 - 3. Drainage course for slabs-on-grade.
 - 4. Subbase course for concrete walks and pavements.
 - 5. Base course for asphalt paving.
 - 6. Subsurface drainage backfill for walls and trenches.
 - 7. Excavating and backfilling trenches within building lines.
 - 8. Excavating and backfilling trenches for buried mechanical and electrical utilities and pits for buried utility structures.
- B. Related Sections include the following:
 - 1. Division 1 Section "Construction Facilities and Temporary Controls."
 - 2. Division 31 Section "Site Clearing" for site stripping, grubbing, removing topsoil, and protecting trees to remain.

1.3 DEFINITIONS

- A. Backfill: Soil materials used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Layer placed between the subbase course and asphalt paving.
- C. Bedding Course: Layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- F. Excavation: Removal of material encountered above subgrade elevations.
 - 1. Bulk Excavation: Excavations more than 10 feet (3 m) in width and pits more than 30 feet (9 m) in either length or width.
 - 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.

- G. Fill: Soil materials used to raise existing grades.
- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- I. Subbase Course: Layer placed between the subgrade and base course for asphalt paving, or layer placed between the subgrade and a concrete pavement or walk.
- J. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
- K. Utilities: Utilities include on-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.4 SUBMITTALS

- A. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated:
 - 1. Classification according to ASTM D 2487 of each on-site or borrow soil material proposed for fill and backfill.
 - 2. Laboratory compaction curve according to ASTM D 1557 for each on-site or borrow soil material proposed for fill and backfill.

1.5 PROJECT CONDITIONS

- A. Site Information: A Geotechnical Investigation of this site has been prepared. Data on indicated subsurface conditions are not intended as representations or warranties of accuracy or continuity between soil borings. It is expressly understood that Owner will not be responsible for interpretations or conclusions drawn therefrom by Contractor. Data are made available for convenience of Contractor.
 - 1. Additional test borings and other exploratory operations may be made by Contractor at no cost to Owner.
- B. No additional monies for exporting or importing of soil.
 - 1. As part of the Construction Documents, Owner may have provided Contractor with a Topographic Survey performed by manual or aerial means. Such Survey was prepared for project design purposes and is provided to the Contractor as a courtesy. It is expressly understood that such survey may not accurately reflect existing topographical conditions and typically will vary from actual conditions by a significant degree. It is the Contractor's responsibility to verify actual existing conditions by whatever means the Contractor deems appropriate. The Contractor shall be responsible for determining their own earthwork quantities and not rely on any estimate prepared by the Owner, its Agents or outside parties. The Contractor is responsible as part of its lump sum bid price for the project, for importing or exporting soils to achieve final sub-grades with suitable soils per the plans and specifications. No additional monies will be allowed beyond the Contractor's Lump Sum Bid Price for the project, for the exporting or importing of soils.

- C. Existing Utilities: Locate existing underground utilities in areas of work. If utilities are to remain in place, provide adequate means of support and protection during earthwork operations.
 - 1. Should uncharted, or incorrectly charted, piping or other utilities be encountered during excavation, consult utility owner immediately for directions. Cooperate with Owner and utility companies in keeping respective services and facilities in operation. Repair damaged utilities to satisfaction of utility owner.
 - 2. Do not interrupt utilities serving facilities occupied by Owner or others unless permitted in writing by Architect and then only after arranging to provide temporary utility services according to requirements indicated:
 - 3. Notify Architect not less than seven (7) days in advance of proposed utility interruptions.
 - 4. Do not proceed with utility interruptions without Architect's written permission.
 - 5. Contact utility-locator service for area where Project is located before excavating.
- D. Utilities to be removed: Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies to shut off services if lines are active.
- E. Protection of Persons and Property: Barricade open excavations occurring as part of this work and post with warning lights.
 - 1. Operate warning lights as recommended by authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: ASTM D 2487 soil classification groups GW, GP, GM, SW, SP, and SM, or a combination of these group symbols; free of rock or gravel larger than 4 inches (100 mm) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
- C. Unsatisfactory Soils: ASTM D 2487 soil classification groups GC, SC, ML, MH, CL, CH, OL, OH, and PT, or a combination of these group symbols.
 - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
- D. Backfill and Fill: Satisfactory soil materials.
- E. Subbase: Naturally or artificially well graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 70 percent passing a 3/4- inch (18-mm) sieve and not more than 25 percent passing a No. 200 (0.075-mm) sieve.
- F. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; conforming to the 1 inch gradation requirements of Section 301 of the UDOT Standard Specification for Road and Bridge Construction.
- G. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 70 percent passing a 3/4-inch (18-mm) sieve and not more than 25 percent passing a No. 200 (0.075-mm) sieve.

- H. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch (25-mm) sieve and not more than 8 percent passing a No. 200 (0.075-mm) sieve.
- I. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2- inch (38-mm) sieve and 0 to 5 percent passing a No. 8 (2.36-mm) sieve.
- J. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch (25-mm) sieve and 0 to 5 percent passing a No. 4 (4.75-mm) sieve.
- K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of the utility; colored as follows:
- B. Detectable Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, minimum 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.
- C. Trace Wire: Insulated 10 gage copper, suitable for direct bury.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earthwork operations.
- B. Protect subgrades and foundation soils against freezing temperatures or frost. Provide protective insulating materials as necessary.
- C. Provide erosion-control measures to prevent erosion or displacement of soils and discharge of soilbearing water runoff or airborne dust to adjacent properties and walkways.

3.2 DEWATERING

A. Prevent surface water and ground water from entering excavations, from ponding on prepared

123998 LCSD Athletic Facility

subgrades, and from flooding Project site and surrounding area.

- B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.
 - 2. Install a dewatering system to keep subgrades dry and convey ground water away from excavations. Maintain until dewatering is no longer required.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.

3.4 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavation to subgrade elevations regardless of the character of surface and subsurface conditions encountered, including rock, soil materials, and obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.5 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 0.1 FT (25 mm). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. If required to not disturb bottom of excavation, excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 - 2. Excavation for Underground Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 0.1 FT (25 mm). Do not disturb bottom of excavations intended for bearing surface.

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated cross sections, elevations, and grades.

3.7 EXCAVATION FOR UTILITY TRENCHES

- A. Trench Excavation: Excavate trenches to indicated gradients, lines, depths, and elevations.
 - 1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
 - 2. Trench Clearance: Excavate trenches to uniform widths to provide a working clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches (300 mm) higher than top of pipe or conduit, unless otherwise indicated.
 - 3. Clearance: 12 inches (300 mm) on each side of pipe or conduit.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

- 1. For pipes and conduit less than 6 inches (150 mm) in nominal diameter and flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
- 2. For pipes and conduit 6 inches (150 mm) or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe circumference. Fill depressions with tamped sand backfill.
- 3. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.
- D. Trench Bottoms: Excavate trenches 4 inches (100 mm) deeper than bottom of pipe elevation to allow for bedding course. Hand excavate for bell of pipe.
 - 1. Excavate trenches 6 inches (150 mm) deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

3.8 TRENCH SUPPORT SYSTEMS

- A. Trench support system shall be suitable for the soil structure, depth of cut, water content of soil, weather conditions, superimposed loads and vibration. Contractor may select one of the following methods of ensuring the safety of workers in the trench, as approved by the Utah State Industrial Commission or its safety inspectors:
 - 1. Sloping the sides of the trench to the angle of repose at which the soil will remain safely at rest.
 - 2. Shoring trench sides by placing sheeting, timber shores, trench jacks, bracing, piles, or other materials to resist pressures surrounding the excavation.
 - 3. Using a movable trench box built-up of steel plates and heavy steel frame of sufficient strength to resist the pressures surrounding the excavation

3.9 APPROVAL OF SUBGRADE

- A. Notify Architect when excavations have reached required subgrade.
- B. If Architect determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
- C. Proof roll subgrade with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof roll wet or saturated subgrades.
- D. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect.

3.10 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill may be used when approved by Architect.
 - 1. Fill unauthorized excavations under other construction or utility pipe as directed by Architect.

3.11 STORAGE OF SOIL MATERIALS

A. Stockpile borrow materials and satisfactory excavated soil materials. Stockpile soil materials without

intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.12 BACKFILL

- A. Place and compact backfill in excavations promptly, but not before completing the following:
 - 1. Construction below finish grade including, where applicable, dampproofing, waterproofing, and perimeter insulation.
 - 2. Surveying locations of underground utilities for record documents.
 - 3. Inspecting and testing underground utilities.
 - 4. Removing concrete formwork.
 - 5. Removing trash and debris.
 - 6. Removing temporary shoring and bracing, and sheeting.
 - 7. Installing permanent or temporary horizontal bracing on horizontally supported walls.

3.13 UTILITY TRENCH BACKFILL

- A. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- B. Backfill trenches excavated under footings and within 18 inches (450 mm) of bottom of footings; fill with concrete to elevation of bottom of footings.
- C. Provide 4-inch- (100-mm-) thick, concrete-base slab support for piping or conduit less than 30 inches (750 mm) below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches (100 mm) of concrete before backfilling or placing roadway subbase.
- D. Place and compact initial backfill of subbase material, free of particles larger than 1 inch (25 mm), to a height of 12 inches (300 mm) over the utility pipe or conduit.
 - 1. Carefully compact material under pipe haunches and bring backfill evenly up on both sides and along the full length of utility piping or conduit to avoid damage or displacement of utility system.
- E. Coordinate backfilling with utilities testing.
- F. Place and compact final backfill of satisfactory soil material to final subgrade.
- G. Install warning tape directly above utilities, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.14 FILL

A. Preparation: Remove vegetation, topsoil, debris, unsatisfactory soil materials, obstructions, and deleterious

123998 LCSD Athletic Facility

materials from ground surface before placing fills.

- Β. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- C. Place and compact fill material in layers to required elevations as follows:
 - Under grass and planted areas, use satisfactory soil material. 1.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.

3.15 **MOISTURE CONTROL**

- Α. Uniformly moisten or aerate subgrade and each subsequent fill or backfill layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air-dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.16 **COMPACTION OF BACKFILLS AND FILLS**

- Α. Place backfill and fill materials in layers not more than 8 inches (200 mm) in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches (100 mm) in loose depth for material compacted by hand-operated tampers.
- Β. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- C. Compact soil to not less than the following percentages of maximum dry unit weight according to ASTM D 1557:
 - 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 6 inches (150 mm) of existing subgrade and each layer of backfill or fill material at 95 percent. Compact to 98 percent for fills thicker than 6 feet deep.
 - 2. Under walkways, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill material at 95 percent.
 - 3. Under lawn or unpaved areas, scarify and recompact top 6 inches (150 mm) below subgrade and compact each layer of backfill or fill material at 90 percent.

3.17 GRADING

- A. General: Uniformly grade areas to a smooth surface, free from irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- Β. Site Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 - 1. Lawn or Unpaved Areas: Plus or minus 0.2 FT (25 mm). 2.
 - Walks: Plus or minus 0.1 FT (25 mm).

- 3. Pavements: Plus or minus 0.1 FT (13 mm).
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 0.1 FT (13 mm) when tested with a 10-foot (3-m) straightedge.

3.18 SUBBASE AND BASE COURSES

- A. Under pavements and walks, place subbase course on prepared subgrade and as follows:
 - 1. Place base course material over subbase.
 - 2. Compact subbase and base courses at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.
 - 3. Shape subbase and base to required crown elevations and cross-slope grades.
 - 4. When thickness of compacted subbase or base course is 6 inches (150 mm) or less, place materials in a single layer.
 - 5. When thickness of compacted subbase or base course exceeds 6 inches (150 mm), place materials in equal layers, with no layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick when compacted.
- B. Pavement Shoulders: Place shoulders along edges of subbase and base course to prevent lateral movement. Construct shoulders, at least 12 inches (300 mm) wide, of satisfactory soil materials and compact simultaneously with each subbase and base layer to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

3.19 DRAINAGE COURSE

- A. Under slabs-on-grade, place drainage course on prepared subgrade and as follows:
 - 1. Compact drainage course to required cross sections and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698.
 - 2. When compacted thickness of drainage course is 6 inches (150 mm) or less, place materials in a single layer.
 - 3. When compacted thickness of drainage course exceeds 6 inches (150 mm), place materials in equal layers, with no layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick when compacted.

3.20 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified independent geotechnical engineering testing agency to perform field quality-control testing.
- B. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earthwork only after test results for previously completed work comply with requirements.
- C. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.
- D. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:

- 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 1000 sq. ft. (186 sq. m) or less of paved area or building slab, but in no case fewer than three tests.
- 2. Foundation Wall/Continuous Footing Backfill: At each compacted backfill layer, at least one test for each 15 linear feet or less of wall length, but no fewer than two tests.
- 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for each 40 feet or less of trench length, but no fewer than two tests.
- 4. Spot Footings: Minimum of 1 compaction test for each lift for each spot footing.
- 5. Sidewalks, Curbs, Gutters, Pads: Minimum of 1 test for each lift for each 40 lineal feet or 1 test for every 1000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
- E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil to depth required; recompact and retest until specified compaction is obtained.

3.21 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to the greatest extent possible.

3.22 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

END OF SECTION 31 2300

SECTION 33 1119 FIRE SUPPRESSION WATER SYSTEM

PART 1 - GENERAL

1.1 SUMMARY.

- A. Section includes fire water systems.
- B. Related Sections:
 - 1. Division 31 Section "Earthwork" for excavation and backfill required for fire water systems; not work of this section.
 - 2. Refer to fire suppression sections for interior building systems including sprinklers and standpipes; this work is not included in this section.
 - a. Refer to Division 21 Section Fire Suppression. Exterior water piping shall meet all requirements of this section. Test certificates are required.

1.2 QUALITY ASSURANCE

- A. Codes and Standards:
 - 1. NFPA Compliance: Install fire water systems in accordance with NFPA 24 "Standard for Installation of Private Fire Service Mains and Their Appurtenances.
- B. Local Fire Department/Marshall Regulations: Comply with governing regulations pertaining to hydrants, including hose unit threading and similar matching of connections.
- C. UL Compliance: Provide fire hydrants that comply with UL 246 "Hydrants for Fire-Protection Service", and are listed by UL.

1.3 SUBMITTALS

- A. Product Data: Submit manufacturer's technical product data and installation instructions for fire water system materials and products.
- B. Maintenance Data: Submit maintenance data and parts lists for fire water system materials and products. Include this data, product data, shop drawings, and record drawings in maintenance manual; in accordance with requirements of Division 1.

PART 2 - PRODUCTS

2.1 MANUFACTURER:

- A. Acceptable manufacturers: Subject to compliance with requirements, provide products of one of the following:
 - 1. Line Markers:
 - a. Allen Systems Inc.
 - b. Seton Name Plate Corp.
 - c. Equal product as approved by Architect.
 - 2. Pipe Strainers:
 - a. "Automatic" Sprinkler Corp. of America; Div. A-T-O Inc.
 - b. Cleveland Gear Co.; Sub of Vesper Corp.
 - c. Grinnell Fire Protection Systems Co., Inc.

- d. Hersey Products Inc.; Hersey Div.
- e. Mueller Steam Specialty; Div. of Core Industries Inc.
- f. Neptune Water Meter Co.
- g. Rockwell International Corp.; Municipal & Utility Div.
- h. Rockwood Systems Corp.
- i. Zurn Industries Inc.; Fluid Handling Div.
- 3. Detector Meter:
 - a. Hersey Products Inc.
- 4. Gate Valves:
 - a. American Valve Mfg. Corp.
 - b. American-Darling Valve; Div. of American Cast Iron Pipe Co.
 - c. Clow Corp.; Valve Div.
 - d. Fairbanks Co.
 - e. Kennedy Valve; Div. of ITT Grinnell Valve Co., Inc.
 - f. Stockham Valves & Fittings Inc.
 - g. United Brass Works Inc.
 - h. United States Pipe and Foundry Co.
 - i. Waterous Co.
- 5. Check Valves:
 - a. American-Darling Valve; Div. of American Cast Iron Pipe Co.
 - b. Clow Corp.; Valve Corp.
 - c. Fairbanks Co.
 - d. Kennedy Valve; Div. of ITT Grinnell Valve Co., Inc.
 - e. Mueller Co.
 - f. Nibco Inc.
 - g. Stockham Valves & Fittings Inc.
 - h. Walworth Co.
 - i. Waterous Co.
- 6. Fire Hydrants: As approved by authority having jurisdiction.

2.2 PIPES AND PIPE FITTINGS:

- A. Provide materials and products complying with NFPA 24 where applicable. Provide sizes and types matching piping and equipment connections; provide fittings of materials which match pipe materials used in fire water piping systems. Where more than one type of materials or products are indicated, selection is Installer's option.
- B. Piping: Provide pipe fittings and accessories of same material and weight/class as pipes, with joining method as indicated. Minimum size of Fire Main serving Building Fire sprinkler system on Fire Hydrants shall be 6 inches in diameter.
 - 1. Ductile Iron Pipe: AWWA C151, with cement mortar lining complying with AWWA C104; Class 51 unless otherwise indicated.
 - a. Fittings: Ductile-Iron complying with AWWA C110, cement lined, with rubber gaskets conforming to AWWA C111.
 - 2. PVC Pipe: AWWA C-900, Class 150 unless otherwise indicated.
 - a. Fittings: Schedule 80 PVC fittings complying with ASTM 1785.

2.3 PIPING SPECIALTIES:

A. Pipe Line Strainers: UL-listed, 175 psi working pressure, Y-type or basket type, with ends to suit piping connections.

2.4 METERS:

123998 LCSD Athletic Facility

A. Detector-Type Meters: UL-listed, 175 psi working pressure, with disc meter bypass.

2.5 VALVES:

- A. Gate Valves: UL-listed, 175 psi working pressure for 12" and smaller, 150 psi for sizes larger than 12". Threaded, flanged, hub, or other end configurations to suit size of valve and piping connection. Inside screw type for use with indicator post, iron body bronze mounted, non-rising stem, solid wedge disc.
- B. Check Valves: UL-listed, 175 psi working pressure for 2" through 12", 150 psi for sizes larger than 12". Swing type, iron body bronze mounted with metal-to-metal or rubber-faced checks. Threaded, flanged, or hub end, to suit size and piping connections.

2.6 ACCESSORIES:

- A. Anchorages: Provide anchorages for tees, wyes, crosses, plugs, caps, bends, valves, and hydrants. After installation, apply full coat of asphalt or other acceptable corrosion-retarding material to surfaces of ferrous anchorages.
- B. Clamps, Straps, and Washers: Steel, ASTM A 506.
- C. Rods: Steel, ASTM A 575.
- D. Rod Couplings: Malleable-iron, ASTM A 197.
- E. Bolts: Steel, ASTM A 307.
- F. Cast-Iron Washers: Gray-iron, ASTM A 126.
- G. Thrust Blocks: Concrete, 2,500 psi.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Identification: During back-filling/top-soiling of underground fire water piping systems, install continuous underground-type plastic line marker, located directly over buried line at 6" to 8" below finished grade.
- B. Pipe and pipe fittings:
 - 1. Ductile-Iron Pipe: Install in accordance with AWWA C600 "Standard for Installation of Ductile-Iron Water Mains and Their Appurtenances".
 - 2. PVC Pipe: Install in accordance with manufacturers recommendations and provide pipe bedding as required by authority having jurisdiction.
- C. Piping Specialties:
 - 1. Pipe Line Strainers: Install as indicated, with valved blowoff piped to drain.
- D. Meters: Install as indicated with shutoff valve on either side of meter and valved bypass full line size.

- E. Valves: Provide post indicator for control valves.
 - 1. Shutoff Valves: Install shutoff valve ahead of each hydrant.
- F. Runs shall be as close as possible to those shown on drawings.

3.2 FIELD QUALITY CONTROL:

- A. Testing Agency: The Owner will employ and pay a qualified independent testing agency to perform field quality-control testing services specified in this section. Retesting of materials failing to meet specified requirements shall be done at Contractor's expense.
- B. Piping Tests: Conduct piping tests before joints are covered, and after thrust blocks have sufficiently hardened. Fill pipeline with water 24-hrs prior to testing, and apply test pressure to stabilize system.
- C. Hydrostatic Tests: Test at not less than 200 psi for 2-hrs, or at 50 psi above maximum static pressure if it is greater than 150 psi.
 - 1. Test fails if leakage exceeds 2-qts per hour per 100 gaskets or joints irrespective of pipe diameter.
 - 2. Increase pressure in 50 psi increments and inspect each joint between increments. Hold at test pressure for one hour, decrease to 0 psi. Slowly increase again to test pressure and hold for one more hour.
- D. Operating Tests: Open and close all valves and hydrants under system water pressure. Check dry barrel hydrants for proper drainage.
 - 1. For systems with fire pumps, run pumps during operating tests.

3.3 ADJUSTING AND CLEANING:

- A. Flushing: Flush underground mains and lead-in connections to sprinkler risers before connection is made to sprinklers, standpipes, or other fire protection system piping.
 - 1. Flush at flow rate not less than that indicated in NFPA 24, or at hydraulically calculated water demand rate of the system, whichever is greater.
- B. Disinfection of Potable Water System: Flush pipe system with clean potable water until no dirty water appears at point of outlet. Fill system with water-chlorine solution containing at least 50 ppm of chlorine. Valve off system and let stand for 24- hrs minimum. Flush with clean potable water until no chlorine remains in water coming from system.
 - 1. Repeat procedure if contamination is present in bacteriological examination.
- C. Disinfection of Water Mains: Flush and disinfect in accordance with AWWA C652 "Standard for Disinfecting Water Mains".
 - 1. Contractor shall submit written verification to Project Manager stating, Disinfection has been completed in strict compliance with specification for this project and with jurisdiction having authority over water system

END OF SECTION 331119